Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

3276 lines
123 KiB
C++
Raw Normal View History

//===- Ops.cpp - Standard MLIR Operations ---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/CommonFolders.h"
#include "mlir/Dialect/StandardOps/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BlockAndValueMapping.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/IR/Value.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Transforms/InliningUtils.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/raw_ostream.h"
// Pull in all enum type definitions and utility function declarations.
#include "mlir/Dialect/StandardOps/IR/OpsEnums.cpp.inc"
using namespace mlir;
/// Helper function to dispatch an OpFoldResult into either the `dynamicVec` if
/// it is a Value or into `staticVec` if it is an IntegerAttr.
/// In the case of a Value, a copy of the `sentinel` value is also pushed to
/// `staticVec`. This is useful to extract mixed static and dynamic entries that
/// come from an AttrSizedOperandSegments trait.
static void dispatchIndexOpFoldResult(OpFoldResult ofr,
SmallVectorImpl<Value> &dynamicVec,
SmallVectorImpl<int64_t> &staticVec,
int64_t sentinel) {
if (auto v = ofr.dyn_cast<Value>()) {
dynamicVec.push_back(v);
staticVec.push_back(sentinel);
return;
}
APInt apInt = ofr.dyn_cast<Attribute>().cast<IntegerAttr>().getValue();
staticVec.push_back(apInt.getSExtValue());
}
static void dispatchIndexOpFoldResults(ArrayRef<OpFoldResult> ofrs,
SmallVectorImpl<Value> &dynamicVec,
SmallVectorImpl<int64_t> &staticVec,
int64_t sentinel) {
for (auto ofr : ofrs)
dispatchIndexOpFoldResult(ofr, dynamicVec, staticVec, sentinel);
}
/// If ofr is a constant integer, i.e., an IntegerAttr or a ConstantOp with an
/// IntegerAttr, return the integer.
llvm::Optional<int64_t> mlir::getConstantIntValue(OpFoldResult ofr) {
Attribute attr = ofr.dyn_cast<Attribute>();
// Note: isa+cast-like pattern allows writing the condition below as 1 line.
if (!attr && ofr.get<Value>().getDefiningOp<ConstantOp>())
attr = ofr.get<Value>().getDefiningOp<ConstantOp>().getValue();
if (auto intAttr = attr.dyn_cast_or_null<IntegerAttr>())
return intAttr.getValue().getSExtValue();
return llvm::None;
}
/// Return true if ofr and value are the same integer.
/// Ignore integer bitwidth and type mismatch that come from the fact there is
/// no IndexAttr and that IndexType has no bitwidth.
bool mlir::isEqualConstantInt(OpFoldResult ofr, int64_t value) {
auto ofrValue = getConstantIntValue(ofr);
return ofrValue && *ofrValue == value;
}
/// Return true if ofr1 and ofr2 are the same integer constant attribute values
/// or the same SSA value.
/// Ignore integer bitwidth and type mismatch that come from the fact there is
/// no IndexAttr and that IndexType has no bitwidth.
bool mlir::isEqualConstantIntOrValue(OpFoldResult ofr1, OpFoldResult ofr2) {
auto cst1 = getConstantIntValue(ofr1), cst2 = getConstantIntValue(ofr2);
if (cst1 && cst2 && *cst1 == *cst2)
return true;
auto v1 = ofr1.dyn_cast<Value>(), v2 = ofr2.dyn_cast<Value>();
return v1 && v2 && v1 == v2;
}
//===----------------------------------------------------------------------===//
// StandardOpsDialect Interfaces
//===----------------------------------------------------------------------===//
namespace {
/// This class defines the interface for handling inlining with standard
/// operations.
struct StdInlinerInterface : public DialectInlinerInterface {
using DialectInlinerInterface::DialectInlinerInterface;
//===--------------------------------------------------------------------===//
// Analysis Hooks
//===--------------------------------------------------------------------===//
/// All call operations within standard ops can be inlined.
bool isLegalToInline(Operation *call, Operation *callable,
bool wouldBeCloned) const final {
return true;
}
/// All operations within standard ops can be inlined.
bool isLegalToInline(Operation *, Region *, bool,
BlockAndValueMapping &) const final {
return true;
}
//===--------------------------------------------------------------------===//
// Transformation Hooks
//===--------------------------------------------------------------------===//
/// Handle the given inlined terminator by replacing it with a new operation
/// as necessary.
void handleTerminator(Operation *op, Block *newDest) const final {
// Only "std.return" needs to be handled here.
auto returnOp = dyn_cast<ReturnOp>(op);
if (!returnOp)
return;
// Replace the return with a branch to the dest.
OpBuilder builder(op);
builder.create<BranchOp>(op->getLoc(), newDest, returnOp.getOperands());
op->erase();
}
/// Handle the given inlined terminator by replacing it with a new operation
/// as necessary.
void handleTerminator(Operation *op,
ArrayRef<Value> valuesToRepl) const final {
// Only "std.return" needs to be handled here.
auto returnOp = cast<ReturnOp>(op);
// Replace the values directly with the return operands.
assert(returnOp.getNumOperands() == valuesToRepl.size());
for (const auto &it : llvm::enumerate(returnOp.getOperands()))
valuesToRepl[it.index()].replaceAllUsesWith(it.value());
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// StandardOpsDialect
//===----------------------------------------------------------------------===//
/// A custom unary operation printer that omits the "std." prefix from the
/// operation names.
static void printStandardUnaryOp(Operation *op, OpAsmPrinter &p) {
assert(op->getNumOperands() == 1 && "unary op should have one operand");
assert(op->getNumResults() == 1 && "unary op should have one result");
int stdDotLen = StandardOpsDialect::getDialectNamespace().size() + 1;
p << op->getName().getStringRef().drop_front(stdDotLen) << ' '
<< op->getOperand(0);
p.printOptionalAttrDict(op->getAttrs());
p << " : " << op->getOperand(0).getType();
}
/// A custom binary operation printer that omits the "std." prefix from the
/// operation names.
static void printStandardBinaryOp(Operation *op, OpAsmPrinter &p) {
assert(op->getNumOperands() == 2 && "binary op should have two operands");
assert(op->getNumResults() == 1 && "binary op should have one result");
// If not all the operand and result types are the same, just use the
// generic assembly form to avoid omitting information in printing.
auto resultType = op->getResult(0).getType();
if (op->getOperand(0).getType() != resultType ||
op->getOperand(1).getType() != resultType) {
p.printGenericOp(op);
return;
}
int stdDotLen = StandardOpsDialect::getDialectNamespace().size() + 1;
p << op->getName().getStringRef().drop_front(stdDotLen) << ' '
<< op->getOperand(0) << ", " << op->getOperand(1);
p.printOptionalAttrDict(op->getAttrs());
// Now we can output only one type for all operands and the result.
p << " : " << op->getResult(0).getType();
}
/// A custom ternary operation printer that omits the "std." prefix from the
/// operation names.
static void printStandardTernaryOp(Operation *op, OpAsmPrinter &p) {
assert(op->getNumOperands() == 3 && "ternary op should have three operands");
assert(op->getNumResults() == 1 && "ternary op should have one result");
// If not all the operand and result types are the same, just use the
// generic assembly form to avoid omitting information in printing.
auto resultType = op->getResult(0).getType();
if (op->getOperand(0).getType() != resultType ||
op->getOperand(1).getType() != resultType ||
op->getOperand(2).getType() != resultType) {
p.printGenericOp(op);
return;
}
int stdDotLen = StandardOpsDialect::getDialectNamespace().size() + 1;
p << op->getName().getStringRef().drop_front(stdDotLen) << ' '
<< op->getOperand(0) << ", " << op->getOperand(1) << ", "
<< op->getOperand(2);
p.printOptionalAttrDict(op->getAttrs());
// Now we can output only one type for all operands and the result.
p << " : " << op->getResult(0).getType();
}
/// A custom cast operation printer that omits the "std." prefix from the
/// operation names.
static void printStandardCastOp(Operation *op, OpAsmPrinter &p) {
int stdDotLen = StandardOpsDialect::getDialectNamespace().size() + 1;
p << op->getName().getStringRef().drop_front(stdDotLen) << ' '
<< op->getOperand(0) << " : " << op->getOperand(0).getType() << " to "
<< op->getResult(0).getType();
}
void StandardOpsDialect::initialize() {
getContext()->loadDialect<tensor::TensorDialect>();
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/StandardOps/IR/Ops.cpp.inc"
>();
addInterfaces<StdInlinerInterface>();
}
/// Materialize a single constant operation from a given attribute value with
/// the desired resultant type.
Operation *StandardOpsDialect::materializeConstant(OpBuilder &builder,
Attribute value, Type type,
Location loc) {
return builder.create<ConstantOp>(loc, type, value);
}
//===----------------------------------------------------------------------===//
// Common cast compatibility check for vector types.
//===----------------------------------------------------------------------===//
/// This method checks for cast compatibility of vector types.
/// If 'a' and 'b' are vector types, and they are cast compatible,
/// it calls the 'areElementsCastCompatible' function to check for
/// element cast compatibility.
/// Returns 'true' if the vector types are cast compatible, and 'false'
/// otherwise.
static bool areVectorCastSimpleCompatible(
Type a, Type b,
function_ref<bool(TypeRange, TypeRange)> areElementsCastCompatible) {
if (auto va = a.dyn_cast<VectorType>())
if (auto vb = b.dyn_cast<VectorType>())
return va.getShape().equals(vb.getShape()) &&
areElementsCastCompatible(va.getElementType(),
vb.getElementType());
return false;
}
//===----------------------------------------------------------------------===//
// AddFOp
//===----------------------------------------------------------------------===//
OpFoldResult AddFOp::fold(ArrayRef<Attribute> operands) {
return constFoldBinaryOp<FloatAttr>(
operands, [](APFloat a, APFloat b) { return a + b; });
}
//===----------------------------------------------------------------------===//
// AddIOp
//===----------------------------------------------------------------------===//
OpFoldResult AddIOp::fold(ArrayRef<Attribute> operands) {
/// addi(x, 0) -> x
if (matchPattern(rhs(), m_Zero()))
return lhs();
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a + b; });
}
/// Extract int64_t values from the assumed ArrayAttr of IntegerAttr.
static SmallVector<int64_t, 4> extractFromI64ArrayAttr(Attribute attr) {
return llvm::to_vector<4>(
llvm::map_range(attr.cast<ArrayAttr>(), [](Attribute a) -> int64_t {
return a.cast<IntegerAttr>().getInt();
}));
}
/// Canonicalize a sum of a constant and (constant - something) to simply be
/// a sum of constants minus something. This transformation does similar
/// transformations for additions of a constant with a subtract/add of
/// a constant. This may result in some operations being reordered (but should
/// remain equivalent).
struct AddConstantReorder : public OpRewritePattern<AddIOp> {
using OpRewritePattern<AddIOp>::OpRewritePattern;
LogicalResult matchAndRewrite(AddIOp addop,
PatternRewriter &rewriter) const override {
for (int i = 0; i < 2; i++) {
APInt origConst;
APInt midConst;
if (matchPattern(addop.getOperand(i), m_ConstantInt(&origConst))) {
if (auto midAddOp = addop.getOperand(1 - i).getDefiningOp<AddIOp>()) {
for (int j = 0; j < 2; j++) {
if (matchPattern(midAddOp.getOperand(j),
m_ConstantInt(&midConst))) {
auto nextConstant = rewriter.create<ConstantOp>(
addop.getLoc(), rewriter.getIntegerAttr(
addop.getType(), origConst + midConst));
rewriter.replaceOpWithNewOp<AddIOp>(addop, nextConstant,
midAddOp.getOperand(1 - j));
return success();
}
}
}
if (auto midSubOp = addop.getOperand(1 - i).getDefiningOp<SubIOp>()) {
if (matchPattern(midSubOp.getOperand(0), m_ConstantInt(&midConst))) {
auto nextConstant = rewriter.create<ConstantOp>(
addop.getLoc(),
rewriter.getIntegerAttr(addop.getType(), origConst + midConst));
rewriter.replaceOpWithNewOp<SubIOp>(addop, nextConstant,
midSubOp.getOperand(1));
return success();
}
if (matchPattern(midSubOp.getOperand(1), m_ConstantInt(&midConst))) {
auto nextConstant = rewriter.create<ConstantOp>(
addop.getLoc(),
rewriter.getIntegerAttr(addop.getType(), origConst - midConst));
rewriter.replaceOpWithNewOp<AddIOp>(addop, nextConstant,
midSubOp.getOperand(0));
return success();
}
}
}
}
return failure();
}
};
void AddIOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<AddConstantReorder>(context);
}
//===----------------------------------------------------------------------===//
// AndOp
//===----------------------------------------------------------------------===//
OpFoldResult AndOp::fold(ArrayRef<Attribute> operands) {
/// and(x, 0) -> 0
if (matchPattern(rhs(), m_Zero()))
return rhs();
/// and(x, allOnes) -> x
APInt intValue;
if (matchPattern(rhs(), m_ConstantInt(&intValue)) &&
intValue.isAllOnesValue())
return lhs();
/// and(x,x) -> x
if (lhs() == rhs())
return rhs();
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a & b; });
}
//===----------------------------------------------------------------------===//
// AssertOp
//===----------------------------------------------------------------------===//
LogicalResult AssertOp::canonicalize(AssertOp op, PatternRewriter &rewriter) {
// Erase assertion if argument is constant true.
if (matchPattern(op.arg(), m_One())) {
rewriter.eraseOp(op);
return success();
}
return failure();
}
//===----------------------------------------------------------------------===//
// AtomicRMWOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(AtomicRMWOp op) {
if (op.getMemRefType().getRank() != op.getNumOperands() - 2)
return op.emitOpError(
"expects the number of subscripts to be equal to memref rank");
switch (op.kind()) {
case AtomicRMWKind::addf:
case AtomicRMWKind::maxf:
case AtomicRMWKind::minf:
case AtomicRMWKind::mulf:
if (!op.value().getType().isa<FloatType>())
return op.emitOpError()
<< "with kind '" << stringifyAtomicRMWKind(op.kind())
<< "' expects a floating-point type";
break;
case AtomicRMWKind::addi:
case AtomicRMWKind::maxs:
case AtomicRMWKind::maxu:
case AtomicRMWKind::mins:
case AtomicRMWKind::minu:
case AtomicRMWKind::muli:
if (!op.value().getType().isa<IntegerType>())
return op.emitOpError()
<< "with kind '" << stringifyAtomicRMWKind(op.kind())
<< "' expects an integer type";
break;
default:
break;
}
return success();
}
/// Returns the identity value attribute associated with an AtomicRMWKind op.
Attribute mlir::getIdentityValueAttr(AtomicRMWKind kind, Type resultType,
OpBuilder &builder, Location loc) {
switch (kind) {
case AtomicRMWKind::addf:
case AtomicRMWKind::addi:
return builder.getZeroAttr(resultType);
case AtomicRMWKind::muli:
return builder.getIntegerAttr(resultType, 1);
case AtomicRMWKind::mulf:
return builder.getFloatAttr(resultType, 1);
// TODO: Add remaining reduction operations.
default:
(void)emitOptionalError(loc, "Reduction operation type not supported");
break;
}
return nullptr;
}
/// Returns the identity value associated with an AtomicRMWKind op.
Value mlir::getIdentityValue(AtomicRMWKind op, Type resultType,
OpBuilder &builder, Location loc) {
Attribute attr = getIdentityValueAttr(op, resultType, builder, loc);
return builder.create<ConstantOp>(loc, attr);
}
/// Return the value obtained by applying the reduction operation kind
/// associated with a binary AtomicRMWKind op to `lhs` and `rhs`.
Value mlir::getReductionOp(AtomicRMWKind op, OpBuilder &builder, Location loc,
Value lhs, Value rhs) {
switch (op) {
case AtomicRMWKind::addf:
return builder.create<AddFOp>(loc, lhs, rhs);
case AtomicRMWKind::addi:
return builder.create<AddIOp>(loc, lhs, rhs);
case AtomicRMWKind::mulf:
return builder.create<MulFOp>(loc, lhs, rhs);
case AtomicRMWKind::muli:
return builder.create<MulIOp>(loc, lhs, rhs);
// TODO: Add remaining reduction operations.
default:
(void)emitOptionalError(loc, "Reduction operation type not supported");
break;
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// GenericAtomicRMWOp
//===----------------------------------------------------------------------===//
void GenericAtomicRMWOp::build(OpBuilder &builder, OperationState &result,
Value memref, ValueRange ivs) {
result.addOperands(memref);
result.addOperands(ivs);
if (auto memrefType = memref.getType().dyn_cast<MemRefType>()) {
Type elementType = memrefType.getElementType();
result.addTypes(elementType);
Region *bodyRegion = result.addRegion();
bodyRegion->push_back(new Block());
bodyRegion->addArgument(elementType);
}
}
static LogicalResult verify(GenericAtomicRMWOp op) {
auto &body = op.body();
if (body.getNumArguments() != 1)
return op.emitOpError("expected single number of entry block arguments");
if (op.getResult().getType() != body.getArgument(0).getType())
return op.emitOpError(
"expected block argument of the same type result type");
bool hasSideEffects =
body.walk([&](Operation *nestedOp) {
if (MemoryEffectOpInterface::hasNoEffect(nestedOp))
return WalkResult::advance();
nestedOp->emitError("body of 'generic_atomic_rmw' should contain "
"only operations with no side effects");
return WalkResult::interrupt();
})
.wasInterrupted();
return hasSideEffects ? failure() : success();
}
static ParseResult parseGenericAtomicRMWOp(OpAsmParser &parser,
OperationState &result) {
OpAsmParser::OperandType memref;
Type memrefType;
SmallVector<OpAsmParser::OperandType, 4> ivs;
Type indexType = parser.getBuilder().getIndexType();
if (parser.parseOperand(memref) ||
parser.parseOperandList(ivs, OpAsmParser::Delimiter::Square) ||
parser.parseColonType(memrefType) ||
parser.resolveOperand(memref, memrefType, result.operands) ||
parser.resolveOperands(ivs, indexType, result.operands))
return failure();
Region *body = result.addRegion();
if (parser.parseRegion(*body, llvm::None, llvm::None) ||
parser.parseOptionalAttrDict(result.attributes))
return failure();
result.types.push_back(memrefType.cast<MemRefType>().getElementType());
return success();
}
static void print(OpAsmPrinter &p, GenericAtomicRMWOp op) {
p << op.getOperationName() << ' ' << op.memref() << "[" << op.indices()
<< "] : " << op.memref().getType();
p.printRegion(op.body());
p.printOptionalAttrDict(op->getAttrs());
}
//===----------------------------------------------------------------------===//
// AtomicYieldOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(AtomicYieldOp op) {
Type parentType = op->getParentOp()->getResultTypes().front();
Type resultType = op.result().getType();
if (parentType != resultType)
return op.emitOpError() << "types mismatch between yield op: " << resultType
<< " and its parent: " << parentType;
return success();
}
//===----------------------------------------------------------------------===//
// BranchOp
//===----------------------------------------------------------------------===//
/// Given a successor, try to collapse it to a new destination if it only
/// contains a passthrough unconditional branch. If the successor is
/// collapsable, `successor` and `successorOperands` are updated to reference
/// the new destination and values. `argStorage` is used as storage if operands
/// to the collapsed successor need to be remapped. It must outlive uses of
/// successorOperands.
static LogicalResult collapseBranch(Block *&successor,
ValueRange &successorOperands,
SmallVectorImpl<Value> &argStorage) {
// Check that the successor only contains a unconditional branch.
if (std::next(successor->begin()) != successor->end())
return failure();
// Check that the terminator is an unconditional branch.
BranchOp successorBranch = dyn_cast<BranchOp>(successor->getTerminator());
if (!successorBranch)
return failure();
// Check that the arguments are only used within the terminator.
for (BlockArgument arg : successor->getArguments()) {
for (Operation *user : arg.getUsers())
if (user != successorBranch)
return failure();
}
// Don't try to collapse branches to infinite loops.
Block *successorDest = successorBranch.getDest();
if (successorDest == successor)
return failure();
// Update the operands to the successor. If the branch parent has no
// arguments, we can use the branch operands directly.
OperandRange operands = successorBranch.getOperands();
if (successor->args_empty()) {
successor = successorDest;
successorOperands = operands;
return success();
}
// Otherwise, we need to remap any argument operands.
for (Value operand : operands) {
BlockArgument argOperand = operand.dyn_cast<BlockArgument>();
if (argOperand && argOperand.getOwner() == successor)
argStorage.push_back(successorOperands[argOperand.getArgNumber()]);
else
argStorage.push_back(operand);
}
successor = successorDest;
successorOperands = argStorage;
return success();
}
/// Simplify a branch to a block that has a single predecessor. This effectively
/// merges the two blocks.
static LogicalResult
simplifyBrToBlockWithSinglePred(BranchOp op, PatternRewriter &rewriter) {
// Check that the successor block has a single predecessor.
Block *succ = op.getDest();
Block *opParent = op->getBlock();
if (succ == opParent || !llvm::hasSingleElement(succ->getPredecessors()))
return failure();
// Merge the successor into the current block and erase the branch.
rewriter.mergeBlocks(succ, opParent, op.getOperands());
rewriter.eraseOp(op);
return success();
}
/// br ^bb1
/// ^bb1
/// br ^bbN(...)
///
/// -> br ^bbN(...)
///
static LogicalResult simplifyPassThroughBr(BranchOp op,
PatternRewriter &rewriter) {
Block *dest = op.getDest();
ValueRange destOperands = op.getOperands();
SmallVector<Value, 4> destOperandStorage;
// Try to collapse the successor if it points somewhere other than this
// block.
if (dest == op->getBlock() ||
failed(collapseBranch(dest, destOperands, destOperandStorage)))
return failure();
// Create a new branch with the collapsed successor.
rewriter.replaceOpWithNewOp<BranchOp>(op, dest, destOperands);
return success();
}
LogicalResult BranchOp::canonicalize(BranchOp op, PatternRewriter &rewriter) {
return success(succeeded(simplifyBrToBlockWithSinglePred(op, rewriter)) ||
succeeded(simplifyPassThroughBr(op, rewriter)));
}
Block *BranchOp::getDest() { return getSuccessor(); }
void BranchOp::setDest(Block *block) { return setSuccessor(block); }
void BranchOp::eraseOperand(unsigned index) { (*this)->eraseOperand(index); }
Optional<MutableOperandRange>
BranchOp::getMutableSuccessorOperands(unsigned index) {
assert(index == 0 && "invalid successor index");
return destOperandsMutable();
}
Block *BranchOp::getSuccessorForOperands(ArrayRef<Attribute>) { return dest(); }
//===----------------------------------------------------------------------===//
// CallOp
//===----------------------------------------------------------------------===//
LogicalResult CallOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
// Check that the callee attribute was specified.
auto fnAttr = (*this)->getAttrOfType<FlatSymbolRefAttr>("callee");
if (!fnAttr)
return emitOpError("requires a 'callee' symbol reference attribute");
FuncOp fn = symbolTable.lookupNearestSymbolFrom<FuncOp>(*this, fnAttr);
if (!fn)
return emitOpError() << "'" << fnAttr.getValue()
<< "' does not reference a valid function";
// Verify that the operand and result types match the callee.
auto fnType = fn.getType();
if (fnType.getNumInputs() != getNumOperands())
return emitOpError("incorrect number of operands for callee");
for (unsigned i = 0, e = fnType.getNumInputs(); i != e; ++i)
if (getOperand(i).getType() != fnType.getInput(i))
return emitOpError("operand type mismatch: expected operand type ")
<< fnType.getInput(i) << ", but provided "
<< getOperand(i).getType() << " for operand number " << i;
if (fnType.getNumResults() != getNumResults())
return emitOpError("incorrect number of results for callee");
for (unsigned i = 0, e = fnType.getNumResults(); i != e; ++i)
if (getResult(i).getType() != fnType.getResult(i))
return emitOpError("result type mismatch");
return success();
}
FunctionType CallOp::getCalleeType() {
return FunctionType::get(getContext(), getOperandTypes(), getResultTypes());
}
//===----------------------------------------------------------------------===//
// CallIndirectOp
//===----------------------------------------------------------------------===//
/// Fold indirect calls that have a constant function as the callee operand.
LogicalResult CallIndirectOp::canonicalize(CallIndirectOp indirectCall,
PatternRewriter &rewriter) {
// Check that the callee is a constant callee.
SymbolRefAttr calledFn;
if (!matchPattern(indirectCall.getCallee(), m_Constant(&calledFn)))
return failure();
// Replace with a direct call.
rewriter.replaceOpWithNewOp<CallOp>(indirectCall, calledFn,
indirectCall.getResultTypes(),
indirectCall.getArgOperands());
return success();
}
//===----------------------------------------------------------------------===//
// General helpers for comparison ops
//===----------------------------------------------------------------------===//
// Return the type of the same shape (scalar, vector or tensor) containing i1.
static Type getI1SameShape(Type type) {
auto i1Type = IntegerType::get(type.getContext(), 1);
if (auto tensorType = type.dyn_cast<RankedTensorType>())
return RankedTensorType::get(tensorType.getShape(), i1Type);
if (type.isa<UnrankedTensorType>())
return UnrankedTensorType::get(i1Type);
if (auto vectorType = type.dyn_cast<VectorType>())
return VectorType::get(vectorType.getShape(), i1Type);
return i1Type;
}
//===----------------------------------------------------------------------===//
// CmpIOp
//===----------------------------------------------------------------------===//
static void buildCmpIOp(OpBuilder &build, OperationState &result,
CmpIPredicate predicate, Value lhs, Value rhs) {
result.addOperands({lhs, rhs});
result.types.push_back(getI1SameShape(lhs.getType()));
result.addAttribute(CmpIOp::getPredicateAttrName(),
build.getI64IntegerAttr(static_cast<int64_t>(predicate)));
}
// Compute `lhs` `pred` `rhs`, where `pred` is one of the known integer
// comparison predicates.
bool mlir::applyCmpPredicate(CmpIPredicate predicate, const APInt &lhs,
const APInt &rhs) {
switch (predicate) {
case CmpIPredicate::eq:
return lhs.eq(rhs);
case CmpIPredicate::ne:
return lhs.ne(rhs);
case CmpIPredicate::slt:
return lhs.slt(rhs);
case CmpIPredicate::sle:
return lhs.sle(rhs);
case CmpIPredicate::sgt:
return lhs.sgt(rhs);
case CmpIPredicate::sge:
return lhs.sge(rhs);
case CmpIPredicate::ult:
return lhs.ult(rhs);
case CmpIPredicate::ule:
return lhs.ule(rhs);
case CmpIPredicate::ugt:
return lhs.ugt(rhs);
case CmpIPredicate::uge:
return lhs.uge(rhs);
}
llvm_unreachable("unknown comparison predicate");
}
// Returns true if the predicate is true for two equal operands.
static bool applyCmpPredicateToEqualOperands(CmpIPredicate predicate) {
switch (predicate) {
case CmpIPredicate::eq:
case CmpIPredicate::sle:
case CmpIPredicate::sge:
case CmpIPredicate::ule:
case CmpIPredicate::uge:
return true;
case CmpIPredicate::ne:
case CmpIPredicate::slt:
case CmpIPredicate::sgt:
case CmpIPredicate::ult:
case CmpIPredicate::ugt:
return false;
}
llvm_unreachable("unknown comparison predicate");
}
// Constant folding hook for comparisons.
OpFoldResult CmpIOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "cmpi takes two arguments");
if (lhs() == rhs()) {
auto val = applyCmpPredicateToEqualOperands(getPredicate());
return BoolAttr::get(getContext(), val);
}
auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
if (!lhs || !rhs)
return {};
auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue());
return BoolAttr::get(getContext(), val);
}
//===----------------------------------------------------------------------===//
// CmpFOp
//===----------------------------------------------------------------------===//
static void buildCmpFOp(OpBuilder &build, OperationState &result,
CmpFPredicate predicate, Value lhs, Value rhs) {
result.addOperands({lhs, rhs});
result.types.push_back(getI1SameShape(lhs.getType()));
result.addAttribute(CmpFOp::getPredicateAttrName(),
build.getI64IntegerAttr(static_cast<int64_t>(predicate)));
}
/// Compute `lhs` `pred` `rhs`, where `pred` is one of the known floating point
/// comparison predicates.
bool mlir::applyCmpPredicate(CmpFPredicate predicate, const APFloat &lhs,
const APFloat &rhs) {
auto cmpResult = lhs.compare(rhs);
switch (predicate) {
case CmpFPredicate::AlwaysFalse:
return false;
case CmpFPredicate::OEQ:
return cmpResult == APFloat::cmpEqual;
case CmpFPredicate::OGT:
return cmpResult == APFloat::cmpGreaterThan;
case CmpFPredicate::OGE:
return cmpResult == APFloat::cmpGreaterThan ||
cmpResult == APFloat::cmpEqual;
case CmpFPredicate::OLT:
return cmpResult == APFloat::cmpLessThan;
case CmpFPredicate::OLE:
return cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual;
case CmpFPredicate::ONE:
return cmpResult != APFloat::cmpUnordered && cmpResult != APFloat::cmpEqual;
case CmpFPredicate::ORD:
return cmpResult != APFloat::cmpUnordered;
case CmpFPredicate::UEQ:
return cmpResult == APFloat::cmpUnordered || cmpResult == APFloat::cmpEqual;
case CmpFPredicate::UGT:
return cmpResult == APFloat::cmpUnordered ||
cmpResult == APFloat::cmpGreaterThan;
case CmpFPredicate::UGE:
return cmpResult == APFloat::cmpUnordered ||
cmpResult == APFloat::cmpGreaterThan ||
cmpResult == APFloat::cmpEqual;
case CmpFPredicate::ULT:
return cmpResult == APFloat::cmpUnordered ||
cmpResult == APFloat::cmpLessThan;
case CmpFPredicate::ULE:
return cmpResult == APFloat::cmpUnordered ||
cmpResult == APFloat::cmpLessThan || cmpResult == APFloat::cmpEqual;
case CmpFPredicate::UNE:
return cmpResult != APFloat::cmpEqual;
case CmpFPredicate::UNO:
return cmpResult == APFloat::cmpUnordered;
case CmpFPredicate::AlwaysTrue:
return true;
}
llvm_unreachable("unknown comparison predicate");
}
// Constant folding hook for comparisons.
OpFoldResult CmpFOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "cmpf takes two arguments");
auto lhs = operands.front().dyn_cast_or_null<FloatAttr>();
auto rhs = operands.back().dyn_cast_or_null<FloatAttr>();
// TODO: We could actually do some intelligent things if we know only one
// of the operands, but it's inf or nan.
if (!lhs || !rhs)
return {};
auto val = applyCmpPredicate(getPredicate(), lhs.getValue(), rhs.getValue());
return IntegerAttr::get(IntegerType::get(getContext(), 1), APInt(1, val));
}
//===----------------------------------------------------------------------===//
// CondBranchOp
//===----------------------------------------------------------------------===//
namespace {
/// cond_br true, ^bb1, ^bb2
/// -> br ^bb1
/// cond_br false, ^bb1, ^bb2
/// -> br ^bb2
///
struct SimplifyConstCondBranchPred : public OpRewritePattern<CondBranchOp> {
using OpRewritePattern<CondBranchOp>::OpRewritePattern;
LogicalResult matchAndRewrite(CondBranchOp condbr,
PatternRewriter &rewriter) const override {
if (matchPattern(condbr.getCondition(), m_NonZero())) {
// True branch taken.
rewriter.replaceOpWithNewOp<BranchOp>(condbr, condbr.getTrueDest(),
condbr.getTrueOperands());
return success();
} else if (matchPattern(condbr.getCondition(), m_Zero())) {
// False branch taken.
rewriter.replaceOpWithNewOp<BranchOp>(condbr, condbr.getFalseDest(),
condbr.getFalseOperands());
return success();
}
return failure();
}
};
/// cond_br %cond, ^bb1, ^bb2
/// ^bb1
/// br ^bbN(...)
/// ^bb2
/// br ^bbK(...)
///
/// -> cond_br %cond, ^bbN(...), ^bbK(...)
///
struct SimplifyPassThroughCondBranch : public OpRewritePattern<CondBranchOp> {
using OpRewritePattern<CondBranchOp>::OpRewritePattern;
LogicalResult matchAndRewrite(CondBranchOp condbr,
PatternRewriter &rewriter) const override {
Block *trueDest = condbr.trueDest(), *falseDest = condbr.falseDest();
ValueRange trueDestOperands = condbr.getTrueOperands();
ValueRange falseDestOperands = condbr.getFalseOperands();
SmallVector<Value, 4> trueDestOperandStorage, falseDestOperandStorage;
// Try to collapse one of the current successors.
LogicalResult collapsedTrue =
collapseBranch(trueDest, trueDestOperands, trueDestOperandStorage);
LogicalResult collapsedFalse =
collapseBranch(falseDest, falseDestOperands, falseDestOperandStorage);
if (failed(collapsedTrue) && failed(collapsedFalse))
return failure();
// Create a new branch with the collapsed successors.
rewriter.replaceOpWithNewOp<CondBranchOp>(condbr, condbr.getCondition(),
trueDest, trueDestOperands,
falseDest, falseDestOperands);
return success();
}
};
/// cond_br %cond, ^bb1(A, ..., N), ^bb1(A, ..., N)
/// -> br ^bb1(A, ..., N)
///
/// cond_br %cond, ^bb1(A), ^bb1(B)
/// -> %select = select %cond, A, B
/// br ^bb1(%select)
///
struct SimplifyCondBranchIdenticalSuccessors
: public OpRewritePattern<CondBranchOp> {
using OpRewritePattern<CondBranchOp>::OpRewritePattern;
LogicalResult matchAndRewrite(CondBranchOp condbr,
PatternRewriter &rewriter) const override {
// Check that the true and false destinations are the same and have the same
// operands.
Block *trueDest = condbr.trueDest();
if (trueDest != condbr.falseDest())
return failure();
// If all of the operands match, no selects need to be generated.
OperandRange trueOperands = condbr.getTrueOperands();
OperandRange falseOperands = condbr.getFalseOperands();
if (trueOperands == falseOperands) {
rewriter.replaceOpWithNewOp<BranchOp>(condbr, trueDest, trueOperands);
return success();
}
// Otherwise, if the current block is the only predecessor insert selects
// for any mismatched branch operands.
if (trueDest->getUniquePredecessor() != condbr->getBlock())
return failure();
// Generate a select for any operands that differ between the two.
SmallVector<Value, 8> mergedOperands;
mergedOperands.reserve(trueOperands.size());
Value condition = condbr.getCondition();
for (auto it : llvm::zip(trueOperands, falseOperands)) {
if (std::get<0>(it) == std::get<1>(it))
mergedOperands.push_back(std::get<0>(it));
else
mergedOperands.push_back(rewriter.create<SelectOp>(
condbr.getLoc(), condition, std::get<0>(it), std::get<1>(it)));
}
rewriter.replaceOpWithNewOp<BranchOp>(condbr, trueDest, mergedOperands);
return success();
}
};
/// ...
/// cond_br %cond, ^bb1(...), ^bb2(...)
/// ...
/// ^bb1: // has single predecessor
/// ...
/// cond_br %cond, ^bb3(...), ^bb4(...)
///
/// ->
///
/// ...
/// cond_br %cond, ^bb1(...), ^bb2(...)
/// ...
/// ^bb1: // has single predecessor
/// ...
/// br ^bb3(...)
///
struct SimplifyCondBranchFromCondBranchOnSameCondition
: public OpRewritePattern<CondBranchOp> {
using OpRewritePattern<CondBranchOp>::OpRewritePattern;
LogicalResult matchAndRewrite(CondBranchOp condbr,
PatternRewriter &rewriter) const override {
// Check that we have a single distinct predecessor.
Block *currentBlock = condbr->getBlock();
Block *predecessor = currentBlock->getSinglePredecessor();
if (!predecessor)
return failure();
// Check that the predecessor terminates with a conditional branch to this
// block and that it branches on the same condition.
auto predBranch = dyn_cast<CondBranchOp>(predecessor->getTerminator());
if (!predBranch || condbr.getCondition() != predBranch.getCondition())
return failure();
// Fold this branch to an unconditional branch.
if (currentBlock == predBranch.trueDest())
rewriter.replaceOpWithNewOp<BranchOp>(condbr, condbr.trueDest(),
condbr.trueDestOperands());
else
rewriter.replaceOpWithNewOp<BranchOp>(condbr, condbr.falseDest(),
condbr.falseDestOperands());
return success();
}
};
/// cond_br %arg0, ^trueB, ^falseB
///
/// ^trueB:
/// "test.consumer1"(%arg0) : (i1) -> ()
/// ...
///
/// ^falseB:
/// "test.consumer2"(%arg0) : (i1) -> ()
/// ...
///
/// ->
///
/// cond_br %arg0, ^trueB, ^falseB
/// ^trueB:
/// "test.consumer1"(%true) : (i1) -> ()
/// ...
///
/// ^falseB:
/// "test.consumer2"(%false) : (i1) -> ()
/// ...
struct CondBranchTruthPropagation : public OpRewritePattern<CondBranchOp> {
using OpRewritePattern<CondBranchOp>::OpRewritePattern;
LogicalResult matchAndRewrite(CondBranchOp condbr,
PatternRewriter &rewriter) const override {
// Check that we have a single distinct predecessor.
bool replaced = false;
Type ty = rewriter.getI1Type();
// These variables serve to prevent creating duplicate constants
// and hold constant true or false values.
Value constantTrue = nullptr;
Value constantFalse = nullptr;
// TODO These checks can be expanded to encompas any use with only
// either the true of false edge as a predecessor. For now, we fall
// back to checking the single predecessor is given by the true/fasle
// destination, thereby ensuring that only that edge can reach the
// op.
if (condbr.getTrueDest()->getSinglePredecessor()) {
for (OpOperand &use :
llvm::make_early_inc_range(condbr.condition().getUses())) {
if (use.getOwner()->getBlock() == condbr.getTrueDest()) {
replaced = true;
if (!constantTrue)
constantTrue = rewriter.create<mlir::ConstantOp>(
condbr.getLoc(), ty, rewriter.getBoolAttr(true));
rewriter.updateRootInPlace(use.getOwner(),
[&] { use.set(constantTrue); });
}
}
}
if (condbr.getFalseDest()->getSinglePredecessor()) {
for (OpOperand &use :
llvm::make_early_inc_range(condbr.condition().getUses())) {
if (use.getOwner()->getBlock() == condbr.getFalseDest()) {
replaced = true;
if (!constantFalse)
constantFalse = rewriter.create<mlir::ConstantOp>(
condbr.getLoc(), ty, rewriter.getBoolAttr(false));
rewriter.updateRootInPlace(use.getOwner(),
[&] { use.set(constantFalse); });
}
}
}
return success(replaced);
}
};
} // end anonymous namespace
void CondBranchOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<SimplifyConstCondBranchPred, SimplifyPassThroughCondBranch,
SimplifyCondBranchIdenticalSuccessors,
SimplifyCondBranchFromCondBranchOnSameCondition,
CondBranchTruthPropagation>(context);
}
Optional<MutableOperandRange>
CondBranchOp::getMutableSuccessorOperands(unsigned index) {
assert(index < getNumSuccessors() && "invalid successor index");
return index == trueIndex ? trueDestOperandsMutable()
: falseDestOperandsMutable();
}
Block *CondBranchOp::getSuccessorForOperands(ArrayRef<Attribute> operands) {
if (IntegerAttr condAttr = operands.front().dyn_cast_or_null<IntegerAttr>())
return condAttr.getValue().isOneValue() ? trueDest() : falseDest();
return nullptr;
}
//===----------------------------------------------------------------------===//
// Constant*Op
//===----------------------------------------------------------------------===//
static void print(OpAsmPrinter &p, ConstantOp &op) {
p << "constant ";
p.printOptionalAttrDict(op->getAttrs(), /*elidedAttrs=*/{"value"});
if (op->getAttrs().size() > 1)
p << ' ';
p << op.getValue();
// If the value is a symbol reference or Array, print a trailing type.
if (op.getValue().isa<SymbolRefAttr, ArrayAttr>())
p << " : " << op.getType();
}
static ParseResult parseConstantOp(OpAsmParser &parser,
OperationState &result) {
Attribute valueAttr;
if (parser.parseOptionalAttrDict(result.attributes) ||
parser.parseAttribute(valueAttr, "value", result.attributes))
return failure();
// If the attribute is a symbol reference or array, then we expect a trailing
// type.
Type type;
if (!valueAttr.isa<SymbolRefAttr, ArrayAttr>())
type = valueAttr.getType();
else if (parser.parseColonType(type))
return failure();
// Add the attribute type to the list.
return parser.addTypeToList(type, result.types);
}
/// The constant op requires an attribute, and furthermore requires that it
/// matches the return type.
static LogicalResult verify(ConstantOp &op) {
auto value = op.getValue();
if (!value)
return op.emitOpError("requires a 'value' attribute");
Type type = op.getType();
if (!value.getType().isa<NoneType>() && type != value.getType())
return op.emitOpError() << "requires attribute's type (" << value.getType()
<< ") to match op's return type (" << type << ")";
if (auto intAttr = value.dyn_cast<IntegerAttr>()) {
if (type.isa<IndexType>() || value.isa<BoolAttr>())
return success();
IntegerType intType = type.cast<IntegerType>();
if (!intType.isSignless())
return op.emitOpError("requires integer result types to be signless");
// If the type has a known bitwidth we verify that the value can be
// represented with the given bitwidth.
unsigned bitwidth = intType.getWidth();
APInt intVal = intAttr.getValue();
if (!intVal.isSignedIntN(bitwidth) && !intVal.isIntN(bitwidth))
return op.emitOpError("requires 'value' to be an integer within the "
"range of the integer result type");
return success();
}
if (auto complexTy = type.dyn_cast<ComplexType>()) {
auto arrayAttr = value.dyn_cast<ArrayAttr>();
if (!complexTy || arrayAttr.size() != 2)
return op.emitOpError(
"requires 'value' to be a complex constant, represented as array of "
"two values");
auto complexEltTy = complexTy.getElementType();
if (complexEltTy != arrayAttr[0].getType() ||
complexEltTy != arrayAttr[1].getType()) {
return op.emitOpError()
<< "requires attribute's element types (" << arrayAttr[0].getType()
<< ", " << arrayAttr[1].getType()
<< ") to match the element type of the op's return type ("
<< complexEltTy << ")";
}
return success();
}
if (type.isa<FloatType>()) {
if (!value.isa<FloatAttr>())
return op.emitOpError("requires 'value' to be a floating point constant");
return success();
}
if (type.isa<ShapedType>()) {
if (!value.isa<ElementsAttr>())
return op.emitOpError("requires 'value' to be a shaped constant");
return success();
}
if (type.isa<FunctionType>()) {
auto fnAttr = value.dyn_cast<FlatSymbolRefAttr>();
if (!fnAttr)
return op.emitOpError("requires 'value' to be a function reference");
// Try to find the referenced function.
auto fn =
op->getParentOfType<ModuleOp>().lookupSymbol<FuncOp>(fnAttr.getValue());
if (!fn)
return op.emitOpError()
<< "reference to undefined function '" << fnAttr.getValue() << "'";
// Check that the referenced function has the correct type.
if (fn.getType() != type)
return op.emitOpError("reference to function with mismatched type");
return success();
}
if (type.isa<NoneType>() && value.isa<UnitAttr>())
return success();
return op.emitOpError("unsupported 'value' attribute: ") << value;
}
OpFoldResult ConstantOp::fold(ArrayRef<Attribute> operands) {
assert(operands.empty() && "constant has no operands");
return getValue();
}
void ConstantOp::getAsmResultNames(
function_ref<void(Value, StringRef)> setNameFn) {
Type type = getType();
if (auto intCst = getValue().dyn_cast<IntegerAttr>()) {
IntegerType intTy = type.dyn_cast<IntegerType>();
// Sugar i1 constants with 'true' and 'false'.
if (intTy && intTy.getWidth() == 1)
return setNameFn(getResult(), (intCst.getInt() ? "true" : "false"));
// Otherwise, build a complex name with the value and type.
SmallString<32> specialNameBuffer;
llvm::raw_svector_ostream specialName(specialNameBuffer);
specialName << 'c' << intCst.getInt();
if (intTy)
specialName << '_' << type;
setNameFn(getResult(), specialName.str());
} else if (type.isa<FunctionType>()) {
setNameFn(getResult(), "f");
} else {
setNameFn(getResult(), "cst");
}
}
/// Returns true if a constant operation can be built with the given value and
/// result type.
bool ConstantOp::isBuildableWith(Attribute value, Type type) {
// SymbolRefAttr can only be used with a function type.
if (value.isa<SymbolRefAttr>())
return type.isa<FunctionType>();
// The attribute must have the same type as 'type'.
if (!value.getType().isa<NoneType>() && value.getType() != type)
return false;
// If the type is an integer type, it must be signless.
if (IntegerType integerTy = type.dyn_cast<IntegerType>())
if (!integerTy.isSignless())
return false;
// Finally, check that the attribute kind is handled.
if (auto arrAttr = value.dyn_cast<ArrayAttr>()) {
auto complexTy = type.dyn_cast<ComplexType>();
if (!complexTy)
return false;
auto complexEltTy = complexTy.getElementType();
return arrAttr.size() == 2 && arrAttr[0].getType() == complexEltTy &&
arrAttr[1].getType() == complexEltTy;
}
return value.isa<IntegerAttr, FloatAttr, ElementsAttr, UnitAttr>();
}
void ConstantFloatOp::build(OpBuilder &builder, OperationState &result,
const APFloat &value, FloatType type) {
ConstantOp::build(builder, result, type, builder.getFloatAttr(type, value));
}
bool ConstantFloatOp::classof(Operation *op) {
return ConstantOp::classof(op) && op->getResult(0).getType().isa<FloatType>();
}
/// ConstantIntOp only matches values whose result type is an IntegerType.
bool ConstantIntOp::classof(Operation *op) {
return ConstantOp::classof(op) &&
[mlir] Add a signedness semantics bit to IntegerType Thus far IntegerType has been signless: a value of IntegerType does not have a sign intrinsically and it's up to the specific operation to decide how to interpret those bits. For example, std.addi does two's complement arithmetic, and std.divis/std.diviu treats the first bit as a sign. This design choice was made some time ago when we did't have lots of dialects and dialects were more rigid. Today we have much more extensible infrastructure and different dialect may want different modelling over integer signedness. So while we can say we want signless integers in the standard dialect, we cannot dictate for others. Requiring each dialect to model the signedness semantics with another set of custom types is duplicating the functionality everywhere, considering the fundamental role integer types play. This CL extends the IntegerType with a signedness semantics bit. This gives each dialect an option to opt in signedness semantics if that's what they want and helps code sharing. The parser is modified to recognize `si[1-9][0-9]*` and `ui[1-9][0-9]*` as signed and unsigned integer types, respectively, leaving the original `i[1-9][0-9]*` to continue to mean no indication over signedness semantics. All existing dialects are not affected (yet) as this is a feature to opt in. More discussions can be found at: https://groups.google.com/a/tensorflow.org/d/msg/mlir/XmkV8HOPWpo/7O4X0Nb_AQAJ Differential Revision: https://reviews.llvm.org/D72533
2020-01-10 14:48:24 -05:00
op->getResult(0).getType().isSignlessInteger();
}
void ConstantIntOp::build(OpBuilder &builder, OperationState &result,
int64_t value, unsigned width) {
Type type = builder.getIntegerType(width);
ConstantOp::build(builder, result, type, builder.getIntegerAttr(type, value));
}
/// Build a constant int op producing an integer with the specified type,
/// which must be an integer type.
void ConstantIntOp::build(OpBuilder &builder, OperationState &result,
int64_t value, Type type) {
[mlir] Add a signedness semantics bit to IntegerType Thus far IntegerType has been signless: a value of IntegerType does not have a sign intrinsically and it's up to the specific operation to decide how to interpret those bits. For example, std.addi does two's complement arithmetic, and std.divis/std.diviu treats the first bit as a sign. This design choice was made some time ago when we did't have lots of dialects and dialects were more rigid. Today we have much more extensible infrastructure and different dialect may want different modelling over integer signedness. So while we can say we want signless integers in the standard dialect, we cannot dictate for others. Requiring each dialect to model the signedness semantics with another set of custom types is duplicating the functionality everywhere, considering the fundamental role integer types play. This CL extends the IntegerType with a signedness semantics bit. This gives each dialect an option to opt in signedness semantics if that's what they want and helps code sharing. The parser is modified to recognize `si[1-9][0-9]*` and `ui[1-9][0-9]*` as signed and unsigned integer types, respectively, leaving the original `i[1-9][0-9]*` to continue to mean no indication over signedness semantics. All existing dialects are not affected (yet) as this is a feature to opt in. More discussions can be found at: https://groups.google.com/a/tensorflow.org/d/msg/mlir/XmkV8HOPWpo/7O4X0Nb_AQAJ Differential Revision: https://reviews.llvm.org/D72533
2020-01-10 14:48:24 -05:00
assert(type.isSignlessInteger() &&
"ConstantIntOp can only have signless integer type");
ConstantOp::build(builder, result, type, builder.getIntegerAttr(type, value));
}
/// ConstantIndexOp only matches values whose result type is Index.
bool ConstantIndexOp::classof(Operation *op) {
return ConstantOp::classof(op) && op->getResult(0).getType().isIndex();
}
void ConstantIndexOp::build(OpBuilder &builder, OperationState &result,
int64_t value) {
Type type = builder.getIndexType();
ConstantOp::build(builder, result, type, builder.getIntegerAttr(type, value));
}
// ---------------------------------------------------------------------------
// DivFOp
// ---------------------------------------------------------------------------
OpFoldResult DivFOp::fold(ArrayRef<Attribute> operands) {
return constFoldBinaryOp<FloatAttr>(
operands, [](APFloat a, APFloat b) { return a / b; });
}
//===----------------------------------------------------------------------===//
// FPExtOp
//===----------------------------------------------------------------------===//
bool FPExtOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
if (inputs.size() != 1 || outputs.size() != 1)
return false;
Type a = inputs.front(), b = outputs.front();
if (auto fa = a.dyn_cast<FloatType>())
if (auto fb = b.dyn_cast<FloatType>())
return fa.getWidth() < fb.getWidth();
return areVectorCastSimpleCompatible(a, b, areCastCompatible);
}
//===----------------------------------------------------------------------===//
// FPToSIOp
//===----------------------------------------------------------------------===//
bool FPToSIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
if (inputs.size() != 1 || outputs.size() != 1)
return false;
Type a = inputs.front(), b = outputs.front();
if (a.isa<FloatType>() && b.isSignlessInteger())
return true;
return areVectorCastSimpleCompatible(a, b, areCastCompatible);
}
//===----------------------------------------------------------------------===//
// FPToUIOp
//===----------------------------------------------------------------------===//
bool FPToUIOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
if (inputs.size() != 1 || outputs.size() != 1)
return false;
Type a = inputs.front(), b = outputs.front();
if (a.isa<FloatType>() && b.isSignlessInteger())
return true;
return areVectorCastSimpleCompatible(a, b, areCastCompatible);
}
//===----------------------------------------------------------------------===//
// FPTruncOp
//===----------------------------------------------------------------------===//
bool FPTruncOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
if (inputs.size() != 1 || outputs.size() != 1)
return false;
Type a = inputs.front(), b = outputs.front();
if (auto fa = a.dyn_cast<FloatType>())
if (auto fb = b.dyn_cast<FloatType>())
return fa.getWidth() > fb.getWidth();
return areVectorCastSimpleCompatible(a, b, areCastCompatible);
}
//===----------------------------------------------------------------------===//
// IndexCastOp
//===----------------------------------------------------------------------===//
// Index cast is applicable from index to integer and backwards.
bool IndexCastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
if (inputs.size() != 1 || outputs.size() != 1)
return false;
Type a = inputs.front(), b = outputs.front();
if (a.isa<ShapedType>() && b.isa<ShapedType>()) {
auto aShaped = a.cast<ShapedType>();
auto bShaped = b.cast<ShapedType>();
return (aShaped.getShape() == bShaped.getShape()) &&
areCastCompatible(aShaped.getElementType(),
bShaped.getElementType());
}
[mlir] Add a signedness semantics bit to IntegerType Thus far IntegerType has been signless: a value of IntegerType does not have a sign intrinsically and it's up to the specific operation to decide how to interpret those bits. For example, std.addi does two's complement arithmetic, and std.divis/std.diviu treats the first bit as a sign. This design choice was made some time ago when we did't have lots of dialects and dialects were more rigid. Today we have much more extensible infrastructure and different dialect may want different modelling over integer signedness. So while we can say we want signless integers in the standard dialect, we cannot dictate for others. Requiring each dialect to model the signedness semantics with another set of custom types is duplicating the functionality everywhere, considering the fundamental role integer types play. This CL extends the IntegerType with a signedness semantics bit. This gives each dialect an option to opt in signedness semantics if that's what they want and helps code sharing. The parser is modified to recognize `si[1-9][0-9]*` and `ui[1-9][0-9]*` as signed and unsigned integer types, respectively, leaving the original `i[1-9][0-9]*` to continue to mean no indication over signedness semantics. All existing dialects are not affected (yet) as this is a feature to opt in. More discussions can be found at: https://groups.google.com/a/tensorflow.org/d/msg/mlir/XmkV8HOPWpo/7O4X0Nb_AQAJ Differential Revision: https://reviews.llvm.org/D72533
2020-01-10 14:48:24 -05:00
return (a.isIndex() && b.isSignlessInteger()) ||
(a.isSignlessInteger() && b.isIndex());
}
OpFoldResult IndexCastOp::fold(ArrayRef<Attribute> cstOperands) {
// Fold IndexCast(IndexCast(x)) -> x
auto cast = getOperand().getDefiningOp<IndexCastOp>();
if (cast && cast.getOperand().getType() == getType())
return cast.getOperand();
// Fold IndexCast(constant) -> constant
// A little hack because we go through int. Otherwise, the size
// of the constant might need to change.
if (auto value = cstOperands[0].dyn_cast_or_null<IntegerAttr>())
return IntegerAttr::get(getType(), value.getInt());
return {};
}
namespace {
/// index_cast(sign_extend x) => index_cast(x)
struct IndexCastOfSExt : public OpRewritePattern<IndexCastOp> {
using OpRewritePattern<IndexCastOp>::OpRewritePattern;
LogicalResult matchAndRewrite(IndexCastOp op,
PatternRewriter &rewriter) const override {
if (auto extop = op.getOperand().getDefiningOp<SignExtendIOp>()) {
op.setOperand(extop.getOperand());
return success();
}
return failure();
}
};
} // namespace
void IndexCastOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<IndexCastOfSExt>(context);
}
//===----------------------------------------------------------------------===//
// MulFOp
//===----------------------------------------------------------------------===//
OpFoldResult MulFOp::fold(ArrayRef<Attribute> operands) {
return constFoldBinaryOp<FloatAttr>(
operands, [](APFloat a, APFloat b) { return a * b; });
}
//===----------------------------------------------------------------------===//
// MulIOp
//===----------------------------------------------------------------------===//
OpFoldResult MulIOp::fold(ArrayRef<Attribute> operands) {
/// muli(x, 0) -> 0
if (matchPattern(rhs(), m_Zero()))
return rhs();
/// muli(x, 1) -> x
if (matchPattern(rhs(), m_One()))
return getOperand(0);
// TODO: Handle the overflow case.
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a * b; });
}
//===----------------------------------------------------------------------===//
// OrOp
//===----------------------------------------------------------------------===//
OpFoldResult OrOp::fold(ArrayRef<Attribute> operands) {
/// or(x, 0) -> x
if (matchPattern(rhs(), m_Zero()))
return lhs();
/// or(x,x) -> x
if (lhs() == rhs())
return rhs();
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a | b; });
}
//===----------------------------------------------------------------------===//
// RankOp
//===----------------------------------------------------------------------===//
OpFoldResult RankOp::fold(ArrayRef<Attribute> operands) {
// Constant fold rank when the rank of the operand is known.
auto type = getOperand().getType();
if (auto shapedType = type.dyn_cast<ShapedType>())
if (shapedType.hasRank())
return IntegerAttr::get(IndexType::get(getContext()),
shapedType.getRank());
return IntegerAttr();
}
//===----------------------------------------------------------------------===//
// ReturnOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(ReturnOp op) {
auto function = cast<FuncOp>(op->getParentOp());
// The operand number and types must match the function signature.
const auto &results = function.getType().getResults();
if (op.getNumOperands() != results.size())
return op.emitOpError("has ")
<< op.getNumOperands() << " operands, but enclosing function (@"
<< function.getName() << ") returns " << results.size();
for (unsigned i = 0, e = results.size(); i != e; ++i)
if (op.getOperand(i).getType() != results[i])
return op.emitError()
<< "type of return operand " << i << " ("
<< op.getOperand(i).getType()
<< ") doesn't match function result type (" << results[i] << ")"
<< " in function @" << function.getName();
return success();
}
//===----------------------------------------------------------------------===//
// SelectOp
//===----------------------------------------------------------------------===//
OpFoldResult SelectOp::fold(ArrayRef<Attribute> operands) {
auto trueVal = getTrueValue();
auto falseVal = getFalseValue();
if (trueVal == falseVal)
return trueVal;
auto condition = getCondition();
// select true, %0, %1 => %0
if (matchPattern(condition, m_One()))
return trueVal;
// select false, %0, %1 => %1
if (matchPattern(condition, m_Zero()))
return falseVal;
if (auto cmp = dyn_cast_or_null<CmpIOp>(condition.getDefiningOp())) {
auto pred = cmp.predicate();
if (pred == mlir::CmpIPredicate::eq || pred == mlir::CmpIPredicate::ne) {
auto cmpLhs = cmp.lhs();
auto cmpRhs = cmp.rhs();
// %0 = cmpi eq, %arg0, %arg1
// %1 = select %0, %arg0, %arg1 => %arg1
// %0 = cmpi ne, %arg0, %arg1
// %1 = select %0, %arg0, %arg1 => %arg0
if ((cmpLhs == trueVal && cmpRhs == falseVal) ||
(cmpRhs == trueVal && cmpLhs == falseVal))
return pred == mlir::CmpIPredicate::ne ? trueVal : falseVal;
}
}
return nullptr;
}
static void print(OpAsmPrinter &p, SelectOp op) {
p << "select " << op.getOperands();
p.printOptionalAttrDict(op->getAttrs());
p << " : ";
if (ShapedType condType = op.getCondition().getType().dyn_cast<ShapedType>())
p << condType << ", ";
p << op.getType();
}
static ParseResult parseSelectOp(OpAsmParser &parser, OperationState &result) {
Type conditionType, resultType;
SmallVector<OpAsmParser::OperandType, 3> operands;
if (parser.parseOperandList(operands, /*requiredOperandCount=*/3) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(resultType))
return failure();
// Check for the explicit condition type if this is a masked tensor or vector.
if (succeeded(parser.parseOptionalComma())) {
conditionType = resultType;
if (parser.parseType(resultType))
return failure();
} else {
conditionType = parser.getBuilder().getI1Type();
}
result.addTypes(resultType);
return parser.resolveOperands(operands,
{conditionType, resultType, resultType},
parser.getNameLoc(), result.operands);
}
static LogicalResult verify(SelectOp op) {
Type conditionType = op.getCondition().getType();
if (conditionType.isSignlessInteger(1))
return success();
// If the result type is a vector or tensor, the type can be a mask with the
// same elements.
Type resultType = op.getType();
if (!resultType.isa<TensorType, VectorType>())
return op.emitOpError()
<< "expected condition to be a signless i1, but got "
<< conditionType;
Type shapedConditionType = getI1SameShape(resultType);
if (conditionType != shapedConditionType)
return op.emitOpError()
<< "expected condition type to have the same shape "
"as the result type, expected "
<< shapedConditionType << ", but got " << conditionType;
return success();
}
//===----------------------------------------------------------------------===//
// SignExtendIOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(SignExtendIOp op) {
// Get the scalar type (which is either directly the type of the operand
// or the vector's/tensor's element type.
auto srcType = getElementTypeOrSelf(op.getOperand().getType());
auto dstType = getElementTypeOrSelf(op.getType());
// For now, index is forbidden for the source and the destination type.
if (srcType.isa<IndexType>())
return op.emitError() << srcType << " is not a valid operand type";
if (dstType.isa<IndexType>())
return op.emitError() << dstType << " is not a valid result type";
if (srcType.cast<IntegerType>().getWidth() >=
dstType.cast<IntegerType>().getWidth())
return op.emitError("result type ")
<< dstType << " must be wider than operand type " << srcType;
return success();
}
OpFoldResult SignExtendIOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 1 && "unary operation takes one operand");
if (!operands[0])
return {};
if (auto lhs = operands[0].dyn_cast<IntegerAttr>()) {
return IntegerAttr::get(
getType(), lhs.getValue().sext(getType().getIntOrFloatBitWidth()));
}
return {};
}
//===----------------------------------------------------------------------===//
// SignedDivIOp
//===----------------------------------------------------------------------===//
OpFoldResult SignedDivIOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "binary operation takes two operands");
// Don't fold if it would overflow or if it requires a division by zero.
bool overflowOrDiv0 = false;
auto result = constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, APInt b) {
if (overflowOrDiv0 || !b) {
overflowOrDiv0 = true;
return a;
}
return a.sdiv_ov(b, overflowOrDiv0);
});
// Fold out division by one. Assumes all tensors of all ones are splats.
if (auto rhs = operands[1].dyn_cast_or_null<IntegerAttr>()) {
if (rhs.getValue() == 1)
return lhs();
} else if (auto rhs = operands[1].dyn_cast_or_null<SplatElementsAttr>()) {
if (rhs.getSplatValue<IntegerAttr>().getValue() == 1)
return lhs();
}
return overflowOrDiv0 ? Attribute() : result;
}
//===----------------------------------------------------------------------===//
// SignedFloorDivIOp
//===----------------------------------------------------------------------===//
static APInt signedCeilNonnegInputs(APInt a, APInt b, bool &overflow) {
// Returns (a-1)/b + 1
APInt one(a.getBitWidth(), 1, true); // Signed value 1.
APInt val = a.ssub_ov(one, overflow).sdiv_ov(b, overflow);
return val.sadd_ov(one, overflow);
}
OpFoldResult SignedFloorDivIOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "binary operation takes two operands");
// Don't fold if it would overflow or if it requires a division by zero.
bool overflowOrDiv0 = false;
auto result = constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, APInt b) {
if (overflowOrDiv0 || !b) {
overflowOrDiv0 = true;
return a;
}
unsigned bits = a.getBitWidth();
APInt zero = APInt::getNullValue(bits);
if (a.sge(zero) && b.sgt(zero)) {
// Both positive (or a is zero), return a / b.
return a.sdiv_ov(b, overflowOrDiv0);
} else if (a.sle(zero) && b.slt(zero)) {
// Both negative (or a is zero), return -a / -b.
APInt posA = zero.ssub_ov(a, overflowOrDiv0);
APInt posB = zero.ssub_ov(b, overflowOrDiv0);
return posA.sdiv_ov(posB, overflowOrDiv0);
} else if (a.slt(zero) && b.sgt(zero)) {
// A is negative, b is positive, return - ceil(-a, b).
APInt posA = zero.ssub_ov(a, overflowOrDiv0);
APInt ceil = signedCeilNonnegInputs(posA, b, overflowOrDiv0);
return zero.ssub_ov(ceil, overflowOrDiv0);
} else {
// A is positive, b is negative, return - ceil(a, -b).
APInt posB = zero.ssub_ov(b, overflowOrDiv0);
APInt ceil = signedCeilNonnegInputs(a, posB, overflowOrDiv0);
return zero.ssub_ov(ceil, overflowOrDiv0);
}
});
// Fold out floor division by one. Assumes all tensors of all ones are
// splats.
if (auto rhs = operands[1].dyn_cast_or_null<IntegerAttr>()) {
if (rhs.getValue() == 1)
return lhs();
} else if (auto rhs = operands[1].dyn_cast_or_null<SplatElementsAttr>()) {
if (rhs.getSplatValue<IntegerAttr>().getValue() == 1)
return lhs();
}
return overflowOrDiv0 ? Attribute() : result;
}
//===----------------------------------------------------------------------===//
// SignedCeilDivIOp
//===----------------------------------------------------------------------===//
OpFoldResult SignedCeilDivIOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "binary operation takes two operands");
// Don't fold if it would overflow or if it requires a division by zero.
bool overflowOrDiv0 = false;
auto result = constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, APInt b) {
if (overflowOrDiv0 || !b) {
overflowOrDiv0 = true;
return a;
}
unsigned bits = a.getBitWidth();
APInt zero = APInt::getNullValue(bits);
if (a.sgt(zero) && b.sgt(zero)) {
// Both positive, return ceil(a, b).
return signedCeilNonnegInputs(a, b, overflowOrDiv0);
} else if (a.slt(zero) && b.slt(zero)) {
// Both negative, return ceil(-a, -b).
APInt posA = zero.ssub_ov(a, overflowOrDiv0);
APInt posB = zero.ssub_ov(b, overflowOrDiv0);
return signedCeilNonnegInputs(posA, posB, overflowOrDiv0);
} else if (a.slt(zero) && b.sgt(zero)) {
// A is negative, b is positive, return - ( -a / b).
APInt posA = zero.ssub_ov(a, overflowOrDiv0);
APInt div = posA.sdiv_ov(b, overflowOrDiv0);
return zero.ssub_ov(div, overflowOrDiv0);
} else {
// A is positive (or zero), b is negative, return - (a / -b).
APInt posB = zero.ssub_ov(b, overflowOrDiv0);
APInt div = a.sdiv_ov(posB, overflowOrDiv0);
return zero.ssub_ov(div, overflowOrDiv0);
}
});
// Fold out floor division by one. Assumes all tensors of all ones are
// splats.
if (auto rhs = operands[1].dyn_cast_or_null<IntegerAttr>()) {
if (rhs.getValue() == 1)
return lhs();
} else if (auto rhs = operands[1].dyn_cast_or_null<SplatElementsAttr>()) {
if (rhs.getSplatValue<IntegerAttr>().getValue() == 1)
return lhs();
}
return overflowOrDiv0 ? Attribute() : result;
}
//===----------------------------------------------------------------------===//
// SignedRemIOp
//===----------------------------------------------------------------------===//
OpFoldResult SignedRemIOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "remi_signed takes two operands");
auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
if (!rhs)
return {};
auto rhsValue = rhs.getValue();
// x % 1 = 0
if (rhsValue.isOneValue())
return IntegerAttr::get(rhs.getType(), APInt(rhsValue.getBitWidth(), 0));
// Don't fold if it requires division by zero.
if (rhsValue.isNullValue())
return {};
auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
if (!lhs)
return {};
return IntegerAttr::get(lhs.getType(), lhs.getValue().srem(rhsValue));
}
//===----------------------------------------------------------------------===//
// SIToFPOp
//===----------------------------------------------------------------------===//
// sitofp is applicable from integer types to float types.
bool SIToFPOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
if (inputs.size() != 1 || outputs.size() != 1)
return false;
Type a = inputs.front(), b = outputs.front();
if (a.isSignlessInteger() && b.isa<FloatType>())
return true;
return areVectorCastSimpleCompatible(a, b, areCastCompatible);
}
//===----------------------------------------------------------------------===//
// SplatOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(SplatOp op) {
// TODO: we could replace this by a trait.
if (op.getOperand().getType() !=
op.getType().cast<ShapedType>().getElementType())
return op.emitError("operand should be of elemental type of result type");
return success();
}
// Constant folding hook for SplatOp.
OpFoldResult SplatOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 1 && "splat takes one operand");
auto constOperand = operands.front();
if (!constOperand || !constOperand.isa<IntegerAttr, FloatAttr>())
return {};
auto shapedType = getType().cast<ShapedType>();
assert(shapedType.getElementType() == constOperand.getType() &&
"incorrect input attribute type for folding");
// SplatElementsAttr::get treats single value for second arg as being a splat.
return SplatElementsAttr::get(shapedType, {constOperand});
}
//===----------------------------------------------------------------------===//
// SubFOp
//===----------------------------------------------------------------------===//
OpFoldResult SubFOp::fold(ArrayRef<Attribute> operands) {
return constFoldBinaryOp<FloatAttr>(
operands, [](APFloat a, APFloat b) { return a - b; });
}
//===----------------------------------------------------------------------===//
// SubIOp
//===----------------------------------------------------------------------===//
OpFoldResult SubIOp::fold(ArrayRef<Attribute> operands) {
// subi(x,x) -> 0
if (getOperand(0) == getOperand(1))
return Builder(getContext()).getZeroAttr(getType());
// subi(x,0) -> x
if (matchPattern(rhs(), m_Zero()))
return lhs();
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a - b; });
}
/// Canonicalize a sub of a constant and (constant +/- something) to simply be
/// a single operation that merges the two constants.
struct SubConstantReorder : public OpRewritePattern<SubIOp> {
using OpRewritePattern<SubIOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SubIOp subOp,
PatternRewriter &rewriter) const override {
APInt origConst;
APInt midConst;
if (matchPattern(subOp.getOperand(0), m_ConstantInt(&origConst))) {
if (auto midAddOp = subOp.getOperand(1).getDefiningOp<AddIOp>()) {
// origConst - (midConst + something) == (origConst - midConst) -
// something
for (int j = 0; j < 2; j++) {
if (matchPattern(midAddOp.getOperand(j), m_ConstantInt(&midConst))) {
auto nextConstant = rewriter.create<ConstantOp>(
subOp.getLoc(),
rewriter.getIntegerAttr(subOp.getType(), origConst - midConst));
rewriter.replaceOpWithNewOp<SubIOp>(subOp, nextConstant,
midAddOp.getOperand(1 - j));
return success();
}
}
}
if (auto midSubOp = subOp.getOperand(0).getDefiningOp<SubIOp>()) {
if (matchPattern(midSubOp.getOperand(0), m_ConstantInt(&midConst))) {
// (midConst - something) - origConst == (midConst - origConst) -
// something
auto nextConstant = rewriter.create<ConstantOp>(
subOp.getLoc(),
rewriter.getIntegerAttr(subOp.getType(), midConst - origConst));
rewriter.replaceOpWithNewOp<SubIOp>(subOp, nextConstant,
midSubOp.getOperand(1));
return success();
}
if (matchPattern(midSubOp.getOperand(1), m_ConstantInt(&midConst))) {
// (something - midConst) - origConst == something - (origConst +
// midConst)
auto nextConstant = rewriter.create<ConstantOp>(
subOp.getLoc(),
rewriter.getIntegerAttr(subOp.getType(), origConst + midConst));
rewriter.replaceOpWithNewOp<SubIOp>(subOp, midSubOp.getOperand(0),
nextConstant);
return success();
}
}
if (auto midSubOp = subOp.getOperand(1).getDefiningOp<SubIOp>()) {
if (matchPattern(midSubOp.getOperand(0), m_ConstantInt(&midConst))) {
// origConst - (midConst - something) == (origConst - midConst) +
// something
auto nextConstant = rewriter.create<ConstantOp>(
subOp.getLoc(),
rewriter.getIntegerAttr(subOp.getType(), origConst - midConst));
rewriter.replaceOpWithNewOp<AddIOp>(subOp, nextConstant,
midSubOp.getOperand(1));
return success();
}
if (matchPattern(midSubOp.getOperand(1), m_ConstantInt(&midConst))) {
// origConst - (something - midConst) == (origConst + midConst) -
// something
auto nextConstant = rewriter.create<ConstantOp>(
subOp.getLoc(),
rewriter.getIntegerAttr(subOp.getType(), origConst + midConst));
rewriter.replaceOpWithNewOp<SubIOp>(subOp, nextConstant,
midSubOp.getOperand(0));
return success();
}
}
}
if (matchPattern(subOp.getOperand(1), m_ConstantInt(&origConst))) {
if (auto midAddOp = subOp.getOperand(0).getDefiningOp<AddIOp>()) {
// (midConst + something) - origConst == (midConst - origConst) +
// something
for (int j = 0; j < 2; j++) {
if (matchPattern(midAddOp.getOperand(j), m_ConstantInt(&midConst))) {
auto nextConstant = rewriter.create<ConstantOp>(
subOp.getLoc(),
rewriter.getIntegerAttr(subOp.getType(), midConst - origConst));
rewriter.replaceOpWithNewOp<AddIOp>(subOp, nextConstant,
midAddOp.getOperand(1 - j));
return success();
}
}
}
if (auto midSubOp = subOp.getOperand(0).getDefiningOp<SubIOp>()) {
if (matchPattern(midSubOp.getOperand(0), m_ConstantInt(&midConst))) {
// (midConst - something) - origConst == (midConst - origConst) -
// something
auto nextConstant = rewriter.create<ConstantOp>(
subOp.getLoc(),
rewriter.getIntegerAttr(subOp.getType(), midConst - origConst));
rewriter.replaceOpWithNewOp<SubIOp>(subOp, nextConstant,
midSubOp.getOperand(1));
return success();
}
if (matchPattern(midSubOp.getOperand(1), m_ConstantInt(&midConst))) {
// (something - midConst) - origConst == something - (midConst +
// origConst)
auto nextConstant = rewriter.create<ConstantOp>(
subOp.getLoc(),
rewriter.getIntegerAttr(subOp.getType(), midConst + origConst));
rewriter.replaceOpWithNewOp<SubIOp>(subOp, midSubOp.getOperand(0),
nextConstant);
return success();
}
}
if (auto midSubOp = subOp.getOperand(1).getDefiningOp<SubIOp>()) {
if (matchPattern(midSubOp.getOperand(0), m_ConstantInt(&midConst))) {
// origConst - (midConst - something) == (origConst - midConst) +
// something
auto nextConstant = rewriter.create<ConstantOp>(
subOp.getLoc(),
rewriter.getIntegerAttr(subOp.getType(), origConst - midConst));
rewriter.replaceOpWithNewOp<AddIOp>(subOp, nextConstant,
midSubOp.getOperand(1));
return success();
}
if (matchPattern(midSubOp.getOperand(1), m_ConstantInt(&midConst))) {
// origConst - (something - midConst) == (origConst - midConst) -
// something
auto nextConstant = rewriter.create<ConstantOp>(
subOp.getLoc(),
rewriter.getIntegerAttr(subOp.getType(), origConst - midConst));
rewriter.replaceOpWithNewOp<SubIOp>(subOp, nextConstant,
midSubOp.getOperand(0));
return success();
}
}
}
return failure();
}
};
void SubIOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<SubConstantReorder>(context);
}
//===----------------------------------------------------------------------===//
// UIToFPOp
//===----------------------------------------------------------------------===//
// uitofp is applicable from integer types to float types.
bool UIToFPOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
if (inputs.size() != 1 || outputs.size() != 1)
return false;
Type a = inputs.front(), b = outputs.front();
if (a.isSignlessInteger() && b.isa<FloatType>())
return true;
return areVectorCastSimpleCompatible(a, b, areCastCompatible);
}
//===----------------------------------------------------------------------===//
// SubTensorOp
//===----------------------------------------------------------------------===//
/// A subtensor result type can be fully inferred from the source type and the
2020-05-12 17:17:34 -04:00
/// static representation of offsets, sizes and strides. Special sentinels
/// encode the dynamic case.
Type SubTensorOp::inferResultType(RankedTensorType sourceRankedTensorType,
ArrayRef<int64_t> leadingStaticOffsets,
ArrayRef<int64_t> leadingStaticSizes,
ArrayRef<int64_t> leadingStaticStrides) {
// A subtensor may specify only a leading subset of offset/sizes/strides in
// which case we complete with offset=0, sizes from memref type and strides=1.
unsigned rank = sourceRankedTensorType.getRank();
assert(leadingStaticSizes.size() <= rank &&
"unexpected leadingStaticSizes overflow");
auto staticSizes = llvm::to_vector<4>(leadingStaticSizes);
unsigned numTrailingSizes = rank - staticSizes.size();
llvm::append_range(staticSizes, sourceRankedTensorType.getShape().take_back(
numTrailingSizes));
return RankedTensorType::get(staticSizes,
sourceRankedTensorType.getElementType());
2020-05-12 17:17:34 -04:00
}
Type SubTensorOp::inferResultType(RankedTensorType sourceRankedTensorType,
ArrayRef<OpFoldResult> leadingStaticOffsets,
ArrayRef<OpFoldResult> leadingStaticSizes,
ArrayRef<OpFoldResult> leadingStaticStrides) {
SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
dispatchIndexOpFoldResults(leadingStaticOffsets, dynamicOffsets,
staticOffsets, ShapedType::kDynamicStrideOrOffset);
dispatchIndexOpFoldResults(leadingStaticSizes, dynamicSizes, staticSizes,
ShapedType::kDynamicSize);
dispatchIndexOpFoldResults(leadingStaticStrides, dynamicStrides,
staticStrides, ShapedType::kDynamicStrideOrOffset);
return SubTensorOp::inferResultType(sourceRankedTensorType, staticOffsets,
staticSizes, staticStrides);
}
/// A subtensor result type can be fully inferred from the source type and the
/// static representation of offsets, sizes and strides. Special sentinels
/// encode the dynamic case.
Type SubTensorOp::inferRankReducedResultType(
unsigned resultRank, RankedTensorType sourceRankedTensorType,
ArrayRef<int64_t> leadingStaticOffsets,
ArrayRef<int64_t> leadingStaticSizes,
ArrayRef<int64_t> leadingStaticStrides) {
auto inferredType =
inferResultType(sourceRankedTensorType, leadingStaticOffsets,
leadingStaticSizes, leadingStaticStrides)
.cast<RankedTensorType>();
int rankDiff = inferredType.getRank() - resultRank;
if (rankDiff > 0) {
auto shape = inferredType.getShape();
llvm::SmallDenseSet<unsigned> dimsToProject;
mlir::getPositionsOfShapeOne(rankDiff, shape, dimsToProject);
SmallVector<int64_t> projectedShape;
for (unsigned pos = 0, e = shape.size(); pos < e; ++pos)
if (!dimsToProject.contains(pos))
projectedShape.push_back(shape[pos]);
inferredType =
RankedTensorType::get(projectedShape, inferredType.getElementType());
}
return inferredType;
}
Type SubTensorOp::inferRankReducedResultType(
unsigned resultRank, RankedTensorType sourceRankedTensorType,
ArrayRef<OpFoldResult> leadingStaticOffsets,
ArrayRef<OpFoldResult> leadingStaticSizes,
ArrayRef<OpFoldResult> leadingStaticStrides) {
SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
dispatchIndexOpFoldResults(leadingStaticOffsets, dynamicOffsets,
staticOffsets, ShapedType::kDynamicStrideOrOffset);
dispatchIndexOpFoldResults(leadingStaticSizes, dynamicSizes, staticSizes,
ShapedType::kDynamicSize);
dispatchIndexOpFoldResults(leadingStaticStrides, dynamicStrides,
staticStrides, ShapedType::kDynamicStrideOrOffset);
return SubTensorOp::inferRankReducedResultType(
resultRank, sourceRankedTensorType, staticOffsets, staticSizes,
staticStrides);
}
// Build a SubTensorOp with mixed static and dynamic entries and custom result
// type. If the type passed is nullptr, it is inferred.
void mlir::SubTensorOp::build(OpBuilder &b, OperationState &result,
RankedTensorType resultType, Value source,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes,
ArrayRef<OpFoldResult> strides,
ArrayRef<NamedAttribute> attrs) {
SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
ShapedType::kDynamicStrideOrOffset);
dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
ShapedType::kDynamicSize);
dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
ShapedType::kDynamicStrideOrOffset);
auto sourceRankedTensorType = source.getType().cast<RankedTensorType>();
// Structuring implementation this way avoids duplication between builders.
if (!resultType) {
resultType =
SubTensorOp::inferResultType(sourceRankedTensorType, staticOffsets,
staticSizes, staticStrides)
.cast<RankedTensorType>();
}
build(b, result, resultType, source, dynamicOffsets, dynamicSizes,
dynamicStrides, b.getI64ArrayAttr(staticOffsets),
b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides));
result.addAttributes(attrs);
[mlir] Revisit std.subview handling of static information. Summary: The main objective of this revision is to change the way static information is represented, propagated and canonicalized in the SubViewOp. In the current implementation the issue is that canonicalization may strictly lose information because static offsets are combined in irrecoverable ways into the result type, in order to fit the strided memref representation. The core semantics of the op do not change but the parser and printer do: the op always requires `rank` offsets, sizes and strides. These quantities can now be either SSA values or static integer attributes. The result type is automatically deduced from the static information and more powerful canonicalizations (as powerful as the representation with sentinel `?` values allows). Previously static information was inferred on a best-effort basis from looking at the source and destination type. Relevant tests are rewritten to use the idiomatic `offset: x, strides : [...]`-form. Bugs are corrected along the way that were not trivially visible in flattened strided memref form. It is an open question, and a longer discussion, whether a better result type representation would be a nicer alternative. For now, the subview op carries the required semantic. Reviewers: ftynse, mravishankar, antiagainst, rriddle!, andydavis1, timshen, asaadaldien, stellaraccident Reviewed By: mravishankar Subscribers: aartbik, bondhugula, mehdi_amini, rriddle, jpienaar, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, stephenneuendorffer, Joonsoo, bader, grosul1, frgossen, Kayjukh, llvm-commits Tags: #llvm Differential Revision: https://reviews.llvm.org/D79662
2020-05-11 17:38:20 -04:00
}
// Build a SubTensorOp with mixed static and dynamic entries and inferred result
// type.
void mlir::SubTensorOp::build(OpBuilder &b, OperationState &result,
Value source, ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes,
ArrayRef<OpFoldResult> strides,
ArrayRef<NamedAttribute> attrs) {
build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs);
}
// Build a SubTensorOp with dynamic entries and custom result type. If the type
// passed is nullptr, it is inferred.
void mlir::SubTensorOp::build(OpBuilder &b, OperationState &result,
RankedTensorType resultType, Value source,
ValueRange offsets, ValueRange sizes,
ValueRange strides,
ArrayRef<NamedAttribute> attrs) {
SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; }));
SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>(
llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
build(b, result, resultType, source, offsetValues, sizeValues, strideValues);
}
// Build a SubTensorOp with dynamic entries and inferred result type.
void mlir::SubTensorOp::build(OpBuilder &b, OperationState &result,
Value source, ValueRange offsets,
ValueRange sizes, ValueRange strides,
ArrayRef<NamedAttribute> attrs) {
build(b, result, RankedTensorType(), source, offsets, sizes, strides, attrs);
}
enum SubTensorVerificationResult {
Success,
RankTooLarge,
SizeMismatch,
ElemTypeMismatch,
};
/// Checks if `original` Type type can be rank reduced to `reduced` type.
/// This function is slight variant of `is subsequence` algorithm where
/// not matching dimension must be 1.
static SubTensorVerificationResult
isRankReducedType(Type originalType, Type candidateReducedType,
std::string *errMsg = nullptr) {
if (originalType == candidateReducedType)
return SubTensorVerificationResult::Success;
if (!originalType.isa<RankedTensorType>())
return SubTensorVerificationResult::Success;
if (originalType.isa<RankedTensorType>() &&
!candidateReducedType.isa<RankedTensorType>())
return SubTensorVerificationResult::Success;
ShapedType originalShapedType = originalType.cast<ShapedType>();
ShapedType candidateReducedShapedType =
candidateReducedType.cast<ShapedType>();
// Rank and size logic is valid for all ShapedTypes.
ArrayRef<int64_t> originalShape = originalShapedType.getShape();
ArrayRef<int64_t> candidateReducedShape =
candidateReducedShapedType.getShape();
unsigned originalRank = originalShape.size(),
candidateReducedRank = candidateReducedShape.size();
if (candidateReducedRank > originalRank)
return SubTensorVerificationResult::RankTooLarge;
auto optionalUnusedDimsMask =
computeRankReductionMask(originalShape, candidateReducedShape);
// Sizes cannot be matched in case empty vector is returned.
if (!optionalUnusedDimsMask.hasValue())
return SubTensorVerificationResult::SizeMismatch;
if (originalShapedType.getElementType() !=
candidateReducedShapedType.getElementType())
return SubTensorVerificationResult::ElemTypeMismatch;
// We are done for the tensor case.
if (originalType.isa<RankedTensorType>())
return SubTensorVerificationResult::Success;
return SubTensorVerificationResult::Success;
}
template <typename OpTy>
static LogicalResult
produceSubTensorErrorMsg(SubTensorVerificationResult result, OpTy op,
Type expectedType, StringRef errMsg = "") {
auto memrefType = expectedType.cast<ShapedType>();
switch (result) {
case SubTensorVerificationResult::Success:
return success();
case SubTensorVerificationResult::RankTooLarge:
return op.emitError("expected result rank to be smaller or equal to ")
<< "the source rank. " << errMsg;
case SubTensorVerificationResult::SizeMismatch:
return op.emitError("expected result type to be ")
<< expectedType
<< " or a rank-reduced version. (mismatch of result sizes) "
<< errMsg;
case SubTensorVerificationResult::ElemTypeMismatch:
return op.emitError("expected result element type to be ")
<< memrefType.getElementType() << errMsg;
}
llvm_unreachable("unexpected subtensor verification result");
}
/// Verifier for SubTensorOp.
static LogicalResult verify(SubTensorOp op) {
2020-05-12 17:17:34 -04:00
// Verify result type against inferred type.
auto expectedType = SubTensorOp::inferResultType(
op.getSourceType(), extractFromI64ArrayAttr(op.static_offsets()),
2020-05-12 17:17:34 -04:00
extractFromI64ArrayAttr(op.static_sizes()),
extractFromI64ArrayAttr(op.static_strides()));
auto result = isRankReducedType(expectedType, op.getType());
return produceSubTensorErrorMsg(result, op, expectedType);
}
/// Infer the canonical type of the result of a subtensor operation. Returns a
/// type with rank `resultRank` that is either the rank of the rank-reduced
/// type, or the non-rank-reduced type.
static RankedTensorType getCanonicalSubTensorResultType(
unsigned resultRank, RankedTensorType sourceType,
ArrayRef<OpFoldResult> mixedOffsets, ArrayRef<OpFoldResult> mixedSizes,
ArrayRef<OpFoldResult> mixedStrides) {
auto resultType =
SubTensorOp::inferRankReducedResultType(
resultRank, sourceType, mixedOffsets, mixedSizes, mixedStrides)
.cast<RankedTensorType>();
if (resultType.getRank() != resultRank) {
resultType = SubTensorOp::inferResultType(sourceType, mixedOffsets,
mixedSizes, mixedStrides)
.cast<RankedTensorType>();
}
return resultType;
}
namespace {
/// Pattern to rewrite a subtensor op with tensor::Cast arguments.
/// This essentially pushes memref_cast past its consuming subtensor when
/// `canFoldIntoConsumerOp` is true.
///
/// Example:
/// ```
/// %0 = tensorcast %V : tensor<16x16xf32> to tensor<?x?xf32>
/// %1 = subtensor %0[0, 0][3, 4][1, 1] : tensor<?x?xf32> to tensor<3x4xf32>
/// ```
/// is rewritten into:
/// ```
/// %0 = subtensor %V[0, 0][3, 4][1, 1] : tensor<16x16xf32> to tensor<3x4xf32>
/// %1 = tensor.cast %0: tensor<3x4xf32> to tensor<3x4xf32>
/// ```
class SubTensorOpCastFolder final : public OpRewritePattern<SubTensorOp> {
public:
using OpRewritePattern<SubTensorOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SubTensorOp subTensorOp,
PatternRewriter &rewriter) const override {
// Any constant operand, just return to let SubViewOpConstantFolder kick in.
if (llvm::any_of(subTensorOp.getOperands(), [](Value operand) {
return matchPattern(operand, matchConstantIndex());
}))
return failure();
auto castOp = subTensorOp.source().getDefiningOp<tensor::CastOp>();
if (!castOp)
return failure();
if (!canFoldIntoConsumerOp(castOp))
return failure();
/// Deduce the type of the result to use for the canonicalized operation.
RankedTensorType resultType = getCanonicalSubTensorResultType(
subTensorOp.getType().getRank(), subTensorOp.getSourceType(),
subTensorOp.getMixedOffsets(), subTensorOp.getMixedSizes(),
subTensorOp.getMixedStrides());
Value newSubTensor = rewriter.create<SubTensorOp>(
subTensorOp.getLoc(), resultType, castOp.source(),
subTensorOp.offsets(), subTensorOp.sizes(), subTensorOp.strides(),
subTensorOp.static_offsets(), subTensorOp.static_sizes(),
subTensorOp.static_strides());
rewriter.replaceOpWithNewOp<tensor::CastOp>(
subTensorOp, subTensorOp.getType(), newSubTensor);
return success();
}
};
} // namespace
/// Return the canonical type of the result of a subtensor.
struct SubTensorReturnTypeCanonicalizer {
RankedTensorType operator()(SubTensorOp op,
ArrayRef<OpFoldResult> mixedOffsets,
ArrayRef<OpFoldResult> mixedSizes,
ArrayRef<OpFoldResult> mixedStrides) {
return getCanonicalSubTensorResultType(op.getType().getRank(),
op.getSourceType(), mixedOffsets,
mixedSizes, mixedStrides);
}
};
/// A canonicalizer wrapper to replace SubTensorOps.
struct SubTensorCanonicalizer {
void operator()(PatternRewriter &rewriter, SubTensorOp op,
SubTensorOp newOp) {
Value replacement = newOp.getResult();
if (replacement.getType() != op.getType())
replacement = rewriter.create<tensor::CastOp>(op.getLoc(), op.getType(),
replacement);
rewriter.replaceOp(op, replacement);
}
};
void SubTensorOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<OpWithOffsetSizesAndStridesConstantArgumentFolder<
SubTensorOp, SubTensorReturnTypeCanonicalizer,
SubTensorCanonicalizer>,
SubTensorOpCastFolder>(context);
}
//
static LogicalResult
foldIdentityOffsetSizeAndStrideOpInterface(OffsetSizeAndStrideOpInterface op,
ShapedType shapedType) {
OpBuilder b(op.getContext());
for (OpFoldResult ofr : op.getMixedOffsets())
if (!isEqualConstantIntOrValue(ofr, b.getIndexAttr(0)))
return failure();
// Rank-reducing noops only need to inspect the leading dimensions: llvm::zip
// is appropriate.
auto shape = shapedType.getShape();
for (auto it : llvm::zip(op.getMixedSizes(), shape))
if (!isEqualConstantIntOrValue(std::get<0>(it),
b.getIndexAttr(std::get<1>(it))))
return failure();
for (OpFoldResult ofr : op.getMixedStrides())
if (!isEqualConstantIntOrValue(ofr, b.getIndexAttr(1)))
return failure();
return success();
}
OpFoldResult SubTensorOp::fold(ArrayRef<Attribute>) {
if (getSourceType() == getType() &&
succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType())))
return this->source();
return OpFoldResult();
}
//===----------------------------------------------------------------------===//
// SubTensorInsertOp
//===----------------------------------------------------------------------===//
// Build a SubTensorInsertOp with mixed static and dynamic entries.
void mlir::SubTensorInsertOp::build(OpBuilder &b, OperationState &result,
Value source, Value dest,
ArrayRef<OpFoldResult> offsets,
ArrayRef<OpFoldResult> sizes,
ArrayRef<OpFoldResult> strides,
ArrayRef<NamedAttribute> attrs) {
SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
ShapedType::kDynamicStrideOrOffset);
dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
ShapedType::kDynamicSize);
dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
ShapedType::kDynamicStrideOrOffset);
build(b, result, dest.getType(), source, dest, dynamicOffsets, dynamicSizes,
dynamicStrides, b.getI64ArrayAttr(staticOffsets),
b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides));
result.addAttributes(attrs);
}
// Build a SubTensorInsertOp with dynamic entries.
void mlir::SubTensorInsertOp::build(OpBuilder &b, OperationState &result,
Value source, Value dest,
ValueRange offsets, ValueRange sizes,
ValueRange strides,
ArrayRef<NamedAttribute> attrs) {
SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; }));
SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>(
llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
build(b, result, source, dest, offsetValues, sizeValues, strideValues);
}
OpFoldResult SubTensorInsertOp::fold(ArrayRef<Attribute>) {
if (getSourceType().hasStaticShape() && getType().hasStaticShape() &&
getSourceType() == getType() &&
succeeded(foldIdentityOffsetSizeAndStrideOpInterface(*this, getType())))
return this->source();
return OpFoldResult();
}
namespace {
/// Pattern to rewrite a subtensor_insert op with constant arguments.
class SubTensorInsertOpConstantArgumentFolder final
: public OpRewritePattern<SubTensorInsertOp> {
public:
using OpRewritePattern<SubTensorInsertOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SubTensorInsertOp subTensorInsertOp,
PatternRewriter &rewriter) const override {
// No constant operand, just return.
if (llvm::none_of(subTensorInsertOp.getOperands(), [](Value operand) {
return matchPattern(operand, matchConstantIndex());
}))
return failure();
// At least one of offsets/sizes/strides is a new constant.
// Form the new list of operands and constant attributes from the
// existing.
SmallVector<OpFoldResult> mixedOffsets(subTensorInsertOp.getMixedOffsets());
SmallVector<OpFoldResult> mixedSizes(subTensorInsertOp.getMixedSizes());
SmallVector<OpFoldResult> mixedStrides(subTensorInsertOp.getMixedStrides());
canonicalizeSubViewPart(mixedOffsets, ShapedType::isDynamicStrideOrOffset);
canonicalizeSubViewPart(mixedSizes, ShapedType::isDynamic);
canonicalizeSubViewPart(mixedStrides, ShapedType::isDynamicStrideOrOffset);
// Create the new op in canonical form.
rewriter.replaceOpWithNewOp<SubTensorInsertOp>(
subTensorInsertOp, subTensorInsertOp.source(), subTensorInsertOp.dest(),
mixedOffsets, mixedSizes, mixedStrides);
return success();
}
};
/// Fold tensor_casts with subtensor_insert operations.
struct SubTensorInsertOpCastFolder final
: public OpRewritePattern<SubTensorInsertOp> {
using OpRewritePattern<SubTensorInsertOp>::OpRewritePattern;
LogicalResult matchAndRewrite(SubTensorInsertOp subTensorInsertOp,
PatternRewriter &rewriter) const override {
if (llvm::any_of(subTensorInsertOp.getOperands(), [](Value operand) {
return matchPattern(operand, matchConstantIndex());
}))
return failure();
auto getSourceOfCastOp = [](Value v) -> Optional<Value> {
auto castOp = v.getDefiningOp<tensor::CastOp>();
if (!castOp || !canFoldIntoConsumerOp(castOp))
return llvm::None;
return castOp.source();
};
Optional<Value> sourceCastSource =
getSourceOfCastOp(subTensorInsertOp.source());
Optional<Value> destCastSource =
getSourceOfCastOp(subTensorInsertOp.dest());
if (!sourceCastSource && !destCastSource)
return failure();
Value replacement = rewriter.create<SubTensorInsertOp>(
subTensorInsertOp.getLoc(),
(sourceCastSource ? *sourceCastSource : subTensorInsertOp.source()),
(destCastSource ? *destCastSource : subTensorInsertOp.dest()),
subTensorInsertOp.getMixedOffsets(), subTensorInsertOp.getMixedSizes(),
subTensorInsertOp.getMixedStrides());
if (replacement.getType() != subTensorInsertOp.getType()) {
replacement = rewriter.create<tensor::CastOp>(
subTensorInsertOp.getLoc(), subTensorInsertOp.getType(), replacement);
}
rewriter.replaceOp(subTensorInsertOp, replacement);
return success();
}
};
} // namespace
void SubTensorInsertOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<SubTensorInsertOpConstantArgumentFolder,
SubTensorInsertOpCastFolder>(context);
}
//===----------------------------------------------------------------------===//
// SwitchOp
//===----------------------------------------------------------------------===//
void SwitchOp::build(OpBuilder &builder, OperationState &result, Value value,
Block *defaultDestination, ValueRange defaultOperands,
DenseIntElementsAttr caseValues,
BlockRange caseDestinations,
ArrayRef<ValueRange> caseOperands) {
SmallVector<Value> flattenedCaseOperands;
SmallVector<int32_t> caseOperandOffsets;
int32_t offset = 0;
for (ValueRange operands : caseOperands) {
flattenedCaseOperands.append(operands.begin(), operands.end());
caseOperandOffsets.push_back(offset);
offset += operands.size();
}
DenseIntElementsAttr caseOperandOffsetsAttr;
if (!caseOperandOffsets.empty())
caseOperandOffsetsAttr = builder.getI32VectorAttr(caseOperandOffsets);
build(builder, result, value, defaultOperands, flattenedCaseOperands,
caseValues, caseOperandOffsetsAttr, defaultDestination,
caseDestinations);
}
void SwitchOp::build(OpBuilder &builder, OperationState &result, Value value,
Block *defaultDestination, ValueRange defaultOperands,
ArrayRef<APInt> caseValues, BlockRange caseDestinations,
ArrayRef<ValueRange> caseOperands) {
DenseIntElementsAttr caseValuesAttr;
if (!caseValues.empty()) {
ShapedType caseValueType = VectorType::get(
static_cast<int64_t>(caseValues.size()), value.getType());
caseValuesAttr = DenseIntElementsAttr::get(caseValueType, caseValues);
}
build(builder, result, value, defaultDestination, defaultOperands,
caseValuesAttr, caseDestinations, caseOperands);
}
/// <cases> ::= `default` `:` bb-id (`(` ssa-use-and-type-list `)`)?
/// ( `,` integer `:` bb-id (`(` ssa-use-and-type-list `)`)? )*
static ParseResult
parseSwitchOpCases(OpAsmParser &parser, Type &flagType,
Block *&defaultDestination,
SmallVectorImpl<OpAsmParser::OperandType> &defaultOperands,
SmallVectorImpl<Type> &defaultOperandTypes,
DenseIntElementsAttr &caseValues,
SmallVectorImpl<Block *> &caseDestinations,
SmallVectorImpl<OpAsmParser::OperandType> &caseOperands,
SmallVectorImpl<Type> &caseOperandTypes,
DenseIntElementsAttr &caseOperandOffsets) {
if (failed(parser.parseKeyword("default")) || failed(parser.parseColon()) ||
failed(parser.parseSuccessor(defaultDestination)))
return failure();
if (succeeded(parser.parseOptionalLParen())) {
if (failed(parser.parseRegionArgumentList(defaultOperands)) ||
failed(parser.parseColonTypeList(defaultOperandTypes)) ||
failed(parser.parseRParen()))
return failure();
}
SmallVector<APInt> values;
SmallVector<int32_t> offsets;
unsigned bitWidth = flagType.getIntOrFloatBitWidth();
int64_t offset = 0;
while (succeeded(parser.parseOptionalComma())) {
int64_t value = 0;
if (failed(parser.parseInteger(value)))
return failure();
values.push_back(APInt(bitWidth, value));
Block *destination;
SmallVector<OpAsmParser::OperandType> operands;
if (failed(parser.parseColon()) ||
failed(parser.parseSuccessor(destination)))
return failure();
if (succeeded(parser.parseOptionalLParen())) {
if (failed(parser.parseRegionArgumentList(operands)) ||
failed(parser.parseColonTypeList(caseOperandTypes)) ||
failed(parser.parseRParen()))
return failure();
}
caseDestinations.push_back(destination);
caseOperands.append(operands.begin(), operands.end());
offsets.push_back(offset);
offset += operands.size();
}
if (values.empty())
return success();
Builder &builder = parser.getBuilder();
ShapedType caseValueType =
VectorType::get(static_cast<int64_t>(values.size()), flagType);
caseValues = DenseIntElementsAttr::get(caseValueType, values);
caseOperandOffsets = builder.getI32VectorAttr(offsets);
return success();
}
static void printSwitchOpCases(
OpAsmPrinter &p, SwitchOp op, Type flagType, Block *defaultDestination,
OperandRange defaultOperands, TypeRange defaultOperandTypes,
DenseIntElementsAttr caseValues, SuccessorRange caseDestinations,
OperandRange caseOperands, TypeRange caseOperandTypes,
ElementsAttr caseOperandOffsets) {
p << " default: ";
p.printSuccessorAndUseList(defaultDestination, defaultOperands);
if (!caseValues)
return;
for (int64_t i = 0, size = caseValues.size(); i < size; ++i) {
p << ',';
p.printNewline();
p << " ";
p << caseValues.getValue<APInt>(i).getLimitedValue();
p << ": ";
p.printSuccessorAndUseList(caseDestinations[i], op.getCaseOperands(i));
}
p.printNewline();
}
static LogicalResult verify(SwitchOp op) {
auto caseValues = op.case_values();
auto caseDestinations = op.caseDestinations();
if (!caseValues && caseDestinations.empty())
return success();
Type flagType = op.flag().getType();
Type caseValueType = caseValues->getType().getElementType();
if (caseValueType != flagType)
return op.emitOpError()
<< "'flag' type (" << flagType << ") should match case value type ("
<< caseValueType << ")";
if (caseValues &&
caseValues->size() != static_cast<int64_t>(caseDestinations.size()))
return op.emitOpError() << "number of case values (" << caseValues->size()
<< ") should match number of "
"case destinations ("
<< caseDestinations.size() << ")";
return success();
}
OperandRange SwitchOp::getCaseOperands(unsigned index) {
return getCaseOperandsMutable(index);
}
MutableOperandRange SwitchOp::getCaseOperandsMutable(unsigned index) {
MutableOperandRange caseOperands = caseOperandsMutable();
if (!case_operand_offsets()) {
assert(caseOperands.size() == 0 &&
"non-empty case operands must have offsets");
return caseOperands;
}
ElementsAttr offsets = case_operand_offsets().getValue();
assert(index < offsets.size() && "invalid case operand offset index");
int64_t begin = offsets.getValue(index).cast<IntegerAttr>().getInt();
int64_t end = index + 1 == offsets.size()
? caseOperands.size()
: offsets.getValue(index + 1).cast<IntegerAttr>().getInt();
return caseOperandsMutable().slice(begin, end - begin);
}
Optional<MutableOperandRange>
SwitchOp::getMutableSuccessorOperands(unsigned index) {
assert(index < getNumSuccessors() && "invalid successor index");
return index == 0 ? defaultOperandsMutable()
: getCaseOperandsMutable(index - 1);
}
Block *SwitchOp::getSuccessorForOperands(ArrayRef<Attribute> operands) {
Optional<DenseIntElementsAttr> caseValues = case_values();
if (!caseValues)
return defaultDestination();
SuccessorRange caseDests = caseDestinations();
if (auto value = operands.front().dyn_cast_or_null<IntegerAttr>()) {
for (int64_t i = 0, size = case_values()->size(); i < size; ++i)
if (value == caseValues->getValue<IntegerAttr>(i))
return caseDests[i];
return defaultDestination();
}
return nullptr;
}
/// switch %flag : i32, [
/// default: ^bb1
/// ]
/// -> br ^bb1
static LogicalResult simplifySwitchWithOnlyDefault(SwitchOp op,
PatternRewriter &rewriter) {
if (!op.caseDestinations().empty())
return failure();
rewriter.replaceOpWithNewOp<BranchOp>(op, op.defaultDestination(),
op.defaultOperands());
return success();
}
/// switch %flag : i32, [
/// default: ^bb1,
/// 42: ^bb1,
/// 43: ^bb2
/// ]
/// ->
/// switch %flag : i32, [
/// default: ^bb1,
/// 43: ^bb2
/// ]
static LogicalResult
dropSwitchCasesThatMatchDefault(SwitchOp op, PatternRewriter &rewriter) {
SmallVector<Block *> newCaseDestinations;
SmallVector<ValueRange> newCaseOperands;
SmallVector<APInt> newCaseValues;
bool requiresChange = false;
auto caseValues = op.case_values();
auto caseDests = op.caseDestinations();
for (int64_t i = 0, size = caseValues->size(); i < size; ++i) {
if (caseDests[i] == op.defaultDestination() &&
op.getCaseOperands(i) == op.defaultOperands()) {
requiresChange = true;
continue;
}
newCaseDestinations.push_back(caseDests[i]);
newCaseOperands.push_back(op.getCaseOperands(i));
newCaseValues.push_back(caseValues->getValue<APInt>(i));
}
if (!requiresChange)
return failure();
rewriter.replaceOpWithNewOp<SwitchOp>(op, op.flag(), op.defaultDestination(),
op.defaultOperands(), newCaseValues,
newCaseDestinations, newCaseOperands);
return success();
}
/// Helper for folding a switch with a constant value.
/// switch %c_42 : i32, [
/// default: ^bb1 ,
/// 42: ^bb2,
/// 43: ^bb3
/// ]
/// -> br ^bb2
static void foldSwitch(SwitchOp op, PatternRewriter &rewriter,
APInt caseValue) {
auto caseValues = op.case_values();
for (int64_t i = 0, size = caseValues->size(); i < size; ++i) {
if (caseValues->getValue<APInt>(i) == caseValue) {
rewriter.replaceOpWithNewOp<BranchOp>(op, op.caseDestinations()[i],
op.getCaseOperands(i));
return;
}
}
rewriter.replaceOpWithNewOp<BranchOp>(op, op.defaultDestination(),
op.defaultOperands());
}
/// switch %c_42 : i32, [
/// default: ^bb1,
/// 42: ^bb2,
/// 43: ^bb3
/// ]
/// -> br ^bb2
static LogicalResult simplifyConstSwitchValue(SwitchOp op,
PatternRewriter &rewriter) {
APInt caseValue;
if (!matchPattern(op.flag(), m_ConstantInt(&caseValue)))
return failure();
foldSwitch(op, rewriter, caseValue);
return success();
}
/// switch %c_42 : i32, [
/// default: ^bb1,
/// 42: ^bb2,
/// ]
/// ^bb2:
/// br ^bb3
/// ->
/// switch %c_42 : i32, [
/// default: ^bb1,
/// 42: ^bb3,
/// ]
static LogicalResult simplifyPassThroughSwitch(SwitchOp op,
PatternRewriter &rewriter) {
SmallVector<Block *> newCaseDests;
SmallVector<ValueRange> newCaseOperands;
SmallVector<SmallVector<Value>> argStorage;
auto caseValues = op.case_values();
auto caseDests = op.caseDestinations();
bool requiresChange = false;
for (int64_t i = 0, size = caseValues->size(); i < size; ++i) {
Block *caseDest = caseDests[i];
ValueRange caseOperands = op.getCaseOperands(i);
argStorage.emplace_back();
if (succeeded(collapseBranch(caseDest, caseOperands, argStorage.back())))
requiresChange = true;
newCaseDests.push_back(caseDest);
newCaseOperands.push_back(caseOperands);
}
Block *defaultDest = op.defaultDestination();
ValueRange defaultOperands = op.defaultOperands();
argStorage.emplace_back();
if (succeeded(
collapseBranch(defaultDest, defaultOperands, argStorage.back())))
requiresChange = true;
if (!requiresChange)
return failure();
rewriter.replaceOpWithNewOp<SwitchOp>(op, op.flag(), defaultDest,
defaultOperands, caseValues.getValue(),
newCaseDests, newCaseOperands);
return success();
}
/// switch %flag : i32, [
/// default: ^bb1,
/// 42: ^bb2,
/// ]
/// ^bb2:
/// switch %flag : i32, [
/// default: ^bb3,
/// 42: ^bb4
/// ]
/// ->
/// switch %flag : i32, [
/// default: ^bb1,
/// 42: ^bb2,
/// ]
/// ^bb2:
/// br ^bb4
///
/// and
///
/// switch %flag : i32, [
/// default: ^bb1,
/// 42: ^bb2,
/// ]
/// ^bb2:
/// switch %flag : i32, [
/// default: ^bb3,
/// 43: ^bb4
/// ]
/// ->
/// switch %flag : i32, [
/// default: ^bb1,
/// 42: ^bb2,
/// ]
/// ^bb2:
/// br ^bb3
static LogicalResult
simplifySwitchFromSwitchOnSameCondition(SwitchOp op,
PatternRewriter &rewriter) {
// Check that we have a single distinct predecessor.
Block *currentBlock = op->getBlock();
Block *predecessor = currentBlock->getSinglePredecessor();
if (!predecessor)
return failure();
// Check that the predecessor terminates with a switch branch to this block
// and that it branches on the same condition and that this branch isn't the
// default destination.
auto predSwitch = dyn_cast<SwitchOp>(predecessor->getTerminator());
if (!predSwitch || op.flag() != predSwitch.flag() ||
predSwitch.defaultDestination() == currentBlock)
return failure();
// Fold this switch to an unconditional branch.
APInt caseValue;
bool isDefault = true;
SuccessorRange predDests = predSwitch.caseDestinations();
Optional<DenseIntElementsAttr> predCaseValues = predSwitch.case_values();
for (int64_t i = 0, size = predCaseValues->size(); i < size; ++i) {
if (currentBlock == predDests[i]) {
caseValue = predCaseValues->getValue<APInt>(i);
isDefault = false;
break;
}
}
if (isDefault)
rewriter.replaceOpWithNewOp<BranchOp>(op, op.defaultDestination(),
op.defaultOperands());
else
foldSwitch(op, rewriter, caseValue);
return success();
}
/// switch %flag : i32, [
/// default: ^bb1,
/// 42: ^bb2
/// ]
/// ^bb1:
/// switch %flag : i32, [
/// default: ^bb3,
/// 42: ^bb4,
/// 43: ^bb5
/// ]
/// ->
/// switch %flag : i32, [
/// default: ^bb1,
/// 42: ^bb2,
/// ]
/// ^bb1:
/// switch %flag : i32, [
/// default: ^bb3,
/// 43: ^bb5
/// ]
static LogicalResult
simplifySwitchFromDefaultSwitchOnSameCondition(SwitchOp op,
PatternRewriter &rewriter) {
// Check that we have a single distinct predecessor.
Block *currentBlock = op->getBlock();
Block *predecessor = currentBlock->getSinglePredecessor();
if (!predecessor)
return failure();
// Check that the predecessor terminates with a switch branch to this block
// and that it branches on the same condition and that this branch is the
// default destination.
auto predSwitch = dyn_cast<SwitchOp>(predecessor->getTerminator());
if (!predSwitch || op.flag() != predSwitch.flag() ||
predSwitch.defaultDestination() != currentBlock)
return failure();
// Delete case values that are not possible here.
DenseSet<APInt> caseValuesToRemove;
auto predDests = predSwitch.caseDestinations();
auto predCaseValues = predSwitch.case_values();
for (int64_t i = 0, size = predCaseValues->size(); i < size; ++i)
if (currentBlock != predDests[i])
caseValuesToRemove.insert(predCaseValues->getValue<APInt>(i));
SmallVector<Block *> newCaseDestinations;
SmallVector<ValueRange> newCaseOperands;
SmallVector<APInt> newCaseValues;
bool requiresChange = false;
auto caseValues = op.case_values();
auto caseDests = op.caseDestinations();
for (int64_t i = 0, size = caseValues->size(); i < size; ++i) {
if (caseValuesToRemove.contains(caseValues->getValue<APInt>(i))) {
requiresChange = true;
continue;
}
newCaseDestinations.push_back(caseDests[i]);
newCaseOperands.push_back(op.getCaseOperands(i));
newCaseValues.push_back(caseValues->getValue<APInt>(i));
}
if (!requiresChange)
return failure();
rewriter.replaceOpWithNewOp<SwitchOp>(op, op.flag(), op.defaultDestination(),
op.defaultOperands(), newCaseValues,
newCaseDestinations, newCaseOperands);
return success();
}
void SwitchOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add(&simplifySwitchWithOnlyDefault)
.add(&dropSwitchCasesThatMatchDefault)
.add(&simplifyConstSwitchValue)
.add(&simplifyPassThroughSwitch)
.add(&simplifySwitchFromSwitchOnSameCondition)
.add(&simplifySwitchFromDefaultSwitchOnSameCondition);
}
//===----------------------------------------------------------------------===//
// TruncateIOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(TruncateIOp op) {
auto srcType = getElementTypeOrSelf(op.getOperand().getType());
auto dstType = getElementTypeOrSelf(op.getType());
if (srcType.isa<IndexType>())
return op.emitError() << srcType << " is not a valid operand type";
if (dstType.isa<IndexType>())
return op.emitError() << dstType << " is not a valid result type";
if (srcType.cast<IntegerType>().getWidth() <=
dstType.cast<IntegerType>().getWidth())
return op.emitError("operand type ")
<< srcType << " must be wider than result type " << dstType;
return success();
}
OpFoldResult TruncateIOp::fold(ArrayRef<Attribute> operands) {
// trunci(zexti(a)) -> a
// trunci(sexti(a)) -> a
if (matchPattern(getOperand(), m_Op<ZeroExtendIOp>()) ||
matchPattern(getOperand(), m_Op<SignExtendIOp>()))
return getOperand().getDefiningOp()->getOperand(0);
assert(operands.size() == 1 && "unary operation takes one operand");
if (!operands[0])
return {};
if (auto lhs = operands[0].dyn_cast<IntegerAttr>()) {
return IntegerAttr::get(
getType(), lhs.getValue().trunc(getType().getIntOrFloatBitWidth()));
}
return {};
}
//===----------------------------------------------------------------------===//
// UnsignedDivIOp
//===----------------------------------------------------------------------===//
OpFoldResult UnsignedDivIOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "binary operation takes two operands");
// Don't fold if it would require a division by zero.
bool div0 = false;
auto result = constFoldBinaryOp<IntegerAttr>(operands, [&](APInt a, APInt b) {
if (div0 || !b) {
div0 = true;
return a;
}
return a.udiv(b);
});
// Fold out division by one. Assumes all tensors of all ones are splats.
if (auto rhs = operands[1].dyn_cast_or_null<IntegerAttr>()) {
if (rhs.getValue() == 1)
return lhs();
} else if (auto rhs = operands[1].dyn_cast_or_null<SplatElementsAttr>()) {
if (rhs.getSplatValue<IntegerAttr>().getValue() == 1)
return lhs();
}
return div0 ? Attribute() : result;
}
//===----------------------------------------------------------------------===//
// UnsignedRemIOp
//===----------------------------------------------------------------------===//
OpFoldResult UnsignedRemIOp::fold(ArrayRef<Attribute> operands) {
assert(operands.size() == 2 && "remi_unsigned takes two operands");
auto rhs = operands.back().dyn_cast_or_null<IntegerAttr>();
if (!rhs)
return {};
auto rhsValue = rhs.getValue();
// x % 1 = 0
if (rhsValue.isOneValue())
return IntegerAttr::get(rhs.getType(), APInt(rhsValue.getBitWidth(), 0));
// Don't fold if it requires division by zero.
if (rhsValue.isNullValue())
return {};
auto lhs = operands.front().dyn_cast_or_null<IntegerAttr>();
if (!lhs)
return {};
return IntegerAttr::get(lhs.getType(), lhs.getValue().urem(rhsValue));
}
//===----------------------------------------------------------------------===//
// XOrOp
//===----------------------------------------------------------------------===//
OpFoldResult XOrOp::fold(ArrayRef<Attribute> operands) {
/// xor(x, 0) -> x
if (matchPattern(rhs(), m_Zero()))
return lhs();
/// xor(x,x) -> 0
if (lhs() == rhs())
return Builder(getContext()).getZeroAttr(getType());
return constFoldBinaryOp<IntegerAttr>(operands,
[](APInt a, APInt b) { return a ^ b; });
}
namespace {
/// Replace a not of a comparison operation, for example: not(cmp eq A, B) =>
/// cmp ne A, B. Note that a logical not is implemented as xor 1, val.
struct NotICmp : public OpRewritePattern<XOrOp> {
using OpRewritePattern<XOrOp>::OpRewritePattern;
LogicalResult matchAndRewrite(XOrOp op,
PatternRewriter &rewriter) const override {
// Commutative ops (such as xor) have the constant appear second, which
// we assume here.
APInt constValue;
if (!matchPattern(op.getOperand(1), m_ConstantInt(&constValue)))
return failure();
if (constValue != 1)
return failure();
auto prev = op.getOperand(0).getDefiningOp<CmpIOp>();
if (!prev)
return failure();
switch (prev.predicate()) {
case CmpIPredicate::eq:
rewriter.replaceOpWithNewOp<CmpIOp>(op, CmpIPredicate::ne, prev.lhs(),
prev.rhs());
return success();
case CmpIPredicate::ne:
rewriter.replaceOpWithNewOp<CmpIOp>(op, CmpIPredicate::eq, prev.lhs(),
prev.rhs());
return success();
case CmpIPredicate::slt:
rewriter.replaceOpWithNewOp<CmpIOp>(op, CmpIPredicate::sge, prev.lhs(),
prev.rhs());
return success();
case CmpIPredicate::sle:
rewriter.replaceOpWithNewOp<CmpIOp>(op, CmpIPredicate::sgt, prev.lhs(),
prev.rhs());
return success();
case CmpIPredicate::sgt:
rewriter.replaceOpWithNewOp<CmpIOp>(op, CmpIPredicate::sle, prev.lhs(),
prev.rhs());
return success();
case CmpIPredicate::sge:
rewriter.replaceOpWithNewOp<CmpIOp>(op, CmpIPredicate::slt, prev.lhs(),
prev.rhs());
return success();
case CmpIPredicate::ult:
rewriter.replaceOpWithNewOp<CmpIOp>(op, CmpIPredicate::uge, prev.lhs(),
prev.rhs());
return success();
case CmpIPredicate::ule:
rewriter.replaceOpWithNewOp<CmpIOp>(op, CmpIPredicate::ugt, prev.lhs(),
prev.rhs());
return success();
case CmpIPredicate::ugt:
rewriter.replaceOpWithNewOp<CmpIOp>(op, CmpIPredicate::ule, prev.lhs(),
prev.rhs());
return success();
case CmpIPredicate::uge:
rewriter.replaceOpWithNewOp<CmpIOp>(op, CmpIPredicate::ult, prev.lhs(),
prev.rhs());
return success();
}
return failure();
}
};
} // namespace
void XOrOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
MLIRContext *context) {
results.insert<NotICmp>(context);
}
//===----------------------------------------------------------------------===//
// ZeroExtendIOp
//===----------------------------------------------------------------------===//
static LogicalResult verify(ZeroExtendIOp op) {
auto srcType = getElementTypeOrSelf(op.getOperand().getType());
auto dstType = getElementTypeOrSelf(op.getType());
if (srcType.isa<IndexType>())
return op.emitError() << srcType << " is not a valid operand type";
if (dstType.isa<IndexType>())
return op.emitError() << dstType << " is not a valid result type";
if (srcType.cast<IntegerType>().getWidth() >=
dstType.cast<IntegerType>().getWidth())
return op.emitError("result type ")
<< dstType << " must be wider than operand type " << srcType;
return success();
}
//===----------------------------------------------------------------------===//
// TableGen'd op method definitions
//===----------------------------------------------------------------------===//
#define GET_OP_CLASSES
#include "mlir/Dialect/StandardOps/IR/Ops.cpp.inc"