2018-06-22 22:03:48 -07:00
|
|
|
//===- MLIRContext.cpp - MLIR Type Classes --------------------------------===//
|
|
|
|
//
|
|
|
|
// Copyright 2019 The MLIR Authors.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
// =============================================================================
|
|
|
|
|
|
|
|
#include "mlir/IR/MLIRContext.h"
|
2018-10-09 10:59:27 -07:00
|
|
|
#include "AffineExprDetail.h"
|
2018-10-09 16:39:24 -07:00
|
|
|
#include "AffineMapDetail.h"
|
2018-10-25 15:46:10 -07:00
|
|
|
#include "AttributeDetail.h"
|
2018-10-10 09:45:59 -07:00
|
|
|
#include "IntegerSetDetail.h"
|
2018-11-08 12:28:35 -08:00
|
|
|
#include "LocationDetail.h"
|
2018-10-30 14:59:22 -07:00
|
|
|
#include "TypeDetail.h"
|
2018-06-29 18:09:29 -07:00
|
|
|
#include "mlir/IR/AffineExpr.h"
|
|
|
|
#include "mlir/IR/AffineMap.h"
|
2018-07-04 10:43:29 -07:00
|
|
|
#include "mlir/IR/Attributes.h"
|
2019-03-01 16:58:00 -08:00
|
|
|
#include "mlir/IR/Dialect.h"
|
2018-08-19 21:17:22 -07:00
|
|
|
#include "mlir/IR/Function.h"
|
2018-07-04 10:43:29 -07:00
|
|
|
#include "mlir/IR/Identifier.h"
|
2018-08-07 14:24:38 -07:00
|
|
|
#include "mlir/IR/IntegerSet.h"
|
2018-08-27 21:05:16 -07:00
|
|
|
#include "mlir/IR/Location.h"
|
2018-06-22 22:03:48 -07:00
|
|
|
#include "mlir/IR/Types.h"
|
2018-10-08 10:20:25 -07:00
|
|
|
#include "mlir/Support/MathExtras.h"
|
2018-07-04 10:43:29 -07:00
|
|
|
#include "mlir/Support/STLExtras.h"
|
2018-06-22 22:03:48 -07:00
|
|
|
#include "llvm/ADT/DenseSet.h"
|
2018-11-09 11:27:28 -08:00
|
|
|
#include "llvm/ADT/SetVector.h"
|
2018-06-28 20:45:33 -07:00
|
|
|
#include "llvm/ADT/StringMap.h"
|
2018-06-22 22:03:48 -07:00
|
|
|
#include "llvm/Support/Allocator.h"
|
2019-03-12 10:00:21 -07:00
|
|
|
#include "llvm/Support/RWMutex.h"
|
2018-08-01 10:18:59 -07:00
|
|
|
#include "llvm/Support/raw_ostream.h"
|
2018-10-21 19:49:31 -07:00
|
|
|
#include <memory>
|
2018-09-21 18:12:15 -07:00
|
|
|
|
2018-06-22 22:03:48 -07:00
|
|
|
using namespace mlir;
|
2018-10-08 10:20:25 -07:00
|
|
|
using namespace mlir::detail;
|
2018-06-22 22:03:48 -07:00
|
|
|
using namespace llvm;
|
|
|
|
|
2019-03-14 14:13:29 -07:00
|
|
|
/// A utility function to safely get or create a uniqued instance within the
|
|
|
|
/// given set container.
|
|
|
|
template <typename ValueT, typename DenseInfoT, typename KeyT,
|
|
|
|
typename ConstructorFn>
|
|
|
|
static ValueT safeGetOrCreate(DenseSet<ValueT, DenseInfoT> &container,
|
|
|
|
KeyT &&key, llvm::sys::SmartRWMutex<true> &mutex,
|
|
|
|
ConstructorFn &&constructorFn) {
|
|
|
|
{ // Check for an existing instance in read-only mode.
|
|
|
|
llvm::sys::SmartScopedReader<true> instanceLock(mutex);
|
|
|
|
auto it = container.find_as(key);
|
|
|
|
if (it != container.end())
|
|
|
|
return *it;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Aquire a writer-lock so that we can safely create the new instance.
|
|
|
|
llvm::sys::SmartScopedWriter<true> instanceLock(mutex);
|
|
|
|
|
|
|
|
// Check for an existing instance again here, because another writer thread
|
|
|
|
// may have already created one.
|
|
|
|
auto existing = container.insert_as(ValueT(), key);
|
|
|
|
if (!existing.second)
|
|
|
|
return *existing.first;
|
|
|
|
|
|
|
|
// Otherwise, construct a new instance of the value.
|
|
|
|
return *existing.first = constructorFn();
|
|
|
|
}
|
|
|
|
|
|
|
|
/// A utility function to safely get or create a uniqued instance within the
|
|
|
|
/// given map container.
|
|
|
|
template <typename ContainerTy, typename KeyT, typename ConstructorFn>
|
|
|
|
static typename ContainerTy::mapped_type
|
|
|
|
safeGetOrCreate(ContainerTy &container, KeyT &&key,
|
|
|
|
llvm::sys::SmartRWMutex<true> &mutex,
|
|
|
|
ConstructorFn &&constructorFn) {
|
|
|
|
{ // Check for an existing instance in read-only mode.
|
|
|
|
llvm::sys::SmartScopedReader<true> instanceLock(mutex);
|
|
|
|
auto it = container.find(key);
|
|
|
|
if (it != container.end())
|
|
|
|
return it->second;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Aquire a writer-lock so that we can safely create the new instance.
|
|
|
|
llvm::sys::SmartScopedWriter<true> instanceLock(mutex);
|
|
|
|
|
|
|
|
// Check for an existing instance again here, because another writer thread
|
|
|
|
// may have already created one.
|
|
|
|
auto *&result = container[key];
|
|
|
|
if (result)
|
|
|
|
return result;
|
|
|
|
|
|
|
|
// Otherwise, construct a new instance of the value.
|
|
|
|
return result = constructorFn();
|
|
|
|
}
|
|
|
|
|
2018-06-22 22:03:48 -07:00
|
|
|
namespace {
|
2019-03-01 16:58:00 -08:00
|
|
|
/// A builtin dialect to define types/etc that are necessary for the
|
|
|
|
/// validity of the IR.
|
|
|
|
struct BuiltinDialect : public Dialect {
|
|
|
|
BuiltinDialect(MLIRContext *context) : Dialect(/*namePrefix=*/"", context) {
|
|
|
|
addTypes<FunctionType, UnknownType, FloatType, IndexType, IntegerType,
|
|
|
|
VectorType, RankedTensorType, UnrankedTensorType, MemRefType>();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2018-10-09 16:39:24 -07:00
|
|
|
struct AffineMapKeyInfo : DenseMapInfo<AffineMap> {
|
2018-07-03 20:16:08 -07:00
|
|
|
// Affine maps are uniqued based on their dim/symbol counts and affine
|
|
|
|
// expressions.
|
2018-10-08 13:47:18 -07:00
|
|
|
using KeyTy = std::tuple<unsigned, unsigned, ArrayRef<AffineExpr>,
|
|
|
|
ArrayRef<AffineExpr>>;
|
2018-10-09 16:39:24 -07:00
|
|
|
using DenseMapInfo<AffineMap>::isEqual;
|
2018-06-29 18:09:29 -07:00
|
|
|
|
2018-12-03 14:27:24 -08:00
|
|
|
static unsigned getHashValue(const AffineMap &key) {
|
|
|
|
return getHashValue(KeyTy(key.getNumDims(), key.getNumSymbols(),
|
|
|
|
key.getResults(), key.getRangeSizes()));
|
|
|
|
}
|
|
|
|
|
2018-06-29 18:09:29 -07:00
|
|
|
static unsigned getHashValue(KeyTy key) {
|
2018-07-03 20:16:08 -07:00
|
|
|
return hash_combine(
|
2018-07-04 10:43:29 -07:00
|
|
|
std::get<0>(key), std::get<1>(key),
|
2018-07-11 21:31:07 -07:00
|
|
|
hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()),
|
|
|
|
hash_combine_range(std::get<3>(key).begin(), std::get<3>(key).end()));
|
2018-06-29 18:09:29 -07:00
|
|
|
}
|
|
|
|
|
2018-10-09 16:39:24 -07:00
|
|
|
static bool isEqual(const KeyTy &lhs, AffineMap rhs) {
|
2018-07-03 20:16:08 -07:00
|
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
|
|
return false;
|
2018-10-09 16:39:24 -07:00
|
|
|
return lhs == std::make_tuple(rhs.getNumDims(), rhs.getNumSymbols(),
|
|
|
|
rhs.getResults(), rhs.getRangeSizes());
|
2018-06-29 18:09:29 -07:00
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2018-10-25 08:33:02 -07:00
|
|
|
struct IntegerSetKeyInfo : DenseMapInfo<IntegerSet> {
|
|
|
|
// Integer sets are uniqued based on their dim/symbol counts, affine
|
|
|
|
// expressions appearing in the LHS of constraints, and eqFlags.
|
|
|
|
using KeyTy =
|
|
|
|
std::tuple<unsigned, unsigned, ArrayRef<AffineExpr>, ArrayRef<bool>>;
|
|
|
|
using DenseMapInfo<IntegerSet>::isEqual;
|
|
|
|
|
2018-12-03 14:27:24 -08:00
|
|
|
static unsigned getHashValue(const IntegerSet &key) {
|
|
|
|
return getHashValue(KeyTy(key.getNumDims(), key.getNumSymbols(),
|
|
|
|
key.getConstraints(), key.getEqFlags()));
|
|
|
|
}
|
|
|
|
|
2018-10-25 08:33:02 -07:00
|
|
|
static unsigned getHashValue(KeyTy key) {
|
|
|
|
return hash_combine(
|
|
|
|
std::get<0>(key), std::get<1>(key),
|
|
|
|
hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()),
|
|
|
|
hash_combine_range(std::get<3>(key).begin(), std::get<3>(key).end()));
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool isEqual(const KeyTy &lhs, IntegerSet rhs) {
|
|
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
|
|
return false;
|
|
|
|
return lhs == std::make_tuple(rhs.getNumDims(), rhs.getNumSymbols(),
|
|
|
|
rhs.getConstraints(), rhs.getEqFlags());
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2018-10-25 15:46:10 -07:00
|
|
|
struct FloatAttrKeyInfo : DenseMapInfo<FloatAttributeStorage *> {
|
2018-10-20 18:31:49 -07:00
|
|
|
// Float attributes are uniqued based on wrapped APFloat.
|
2018-11-15 17:53:51 -08:00
|
|
|
using KeyTy = std::pair<Type, APFloat>;
|
2018-10-25 15:46:10 -07:00
|
|
|
using DenseMapInfo<FloatAttributeStorage *>::isEqual;
|
2018-10-20 18:31:49 -07:00
|
|
|
|
2018-12-01 11:38:20 -08:00
|
|
|
static unsigned getHashValue(FloatAttributeStorage *key) {
|
|
|
|
return getHashValue(KeyTy(key->type, key->getValue()));
|
|
|
|
}
|
|
|
|
|
2018-11-15 17:53:51 -08:00
|
|
|
static unsigned getHashValue(KeyTy key) {
|
|
|
|
return hash_combine(key.first, llvm::hash_value(key.second));
|
|
|
|
}
|
2018-10-20 18:31:49 -07:00
|
|
|
|
2018-10-25 15:46:10 -07:00
|
|
|
static bool isEqual(const KeyTy &lhs, const FloatAttributeStorage *rhs) {
|
2018-10-20 18:31:49 -07:00
|
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
|
|
return false;
|
2018-11-15 17:53:51 -08:00
|
|
|
return lhs.first == rhs->type && lhs.second.bitwiseIsEqual(rhs->getValue());
|
2018-10-20 18:31:49 -07:00
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2018-11-12 06:33:22 -08:00
|
|
|
struct IntegerAttrKeyInfo : DenseMapInfo<IntegerAttributeStorage *> {
|
|
|
|
// Integer attributes are uniqued based on wrapped APInt.
|
2018-11-15 17:53:51 -08:00
|
|
|
using KeyTy = std::pair<Type, APInt>;
|
2018-11-12 06:33:22 -08:00
|
|
|
using DenseMapInfo<IntegerAttributeStorage *>::isEqual;
|
|
|
|
|
2018-12-01 11:38:20 -08:00
|
|
|
static unsigned getHashValue(IntegerAttributeStorage *key) {
|
|
|
|
return getHashValue(KeyTy(key->type, key->getValue()));
|
|
|
|
}
|
|
|
|
|
2018-11-15 17:53:51 -08:00
|
|
|
static unsigned getHashValue(KeyTy key) {
|
|
|
|
return hash_combine(key.first, llvm::hash_value(key.second));
|
|
|
|
}
|
2018-11-12 06:33:22 -08:00
|
|
|
|
|
|
|
static bool isEqual(const KeyTy &lhs, const IntegerAttributeStorage *rhs) {
|
|
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
|
|
return false;
|
2018-11-15 17:53:51 -08:00
|
|
|
assert(lhs.first.isIndex() ||
|
2018-12-17 10:05:56 -08:00
|
|
|
(lhs.first.isa<IntegerType>() &&
|
|
|
|
lhs.first.cast<IntegerType>().getWidth() ==
|
|
|
|
lhs.second.getBitWidth()) &&
|
|
|
|
"mismatching integer type and value bitwidth");
|
2018-11-15 17:53:51 -08:00
|
|
|
return lhs.first == rhs->type && lhs.second == rhs->getValue();
|
2018-11-12 06:33:22 -08:00
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2018-10-25 15:46:10 -07:00
|
|
|
struct ArrayAttrKeyInfo : DenseMapInfo<ArrayAttributeStorage *> {
|
2018-07-04 10:43:29 -07:00
|
|
|
// Array attributes are uniqued based on their elements.
|
2018-10-25 15:46:10 -07:00
|
|
|
using KeyTy = ArrayRef<Attribute>;
|
|
|
|
using DenseMapInfo<ArrayAttributeStorage *>::isEqual;
|
2018-07-04 10:43:29 -07:00
|
|
|
|
2018-12-01 11:38:20 -08:00
|
|
|
static unsigned getHashValue(ArrayAttributeStorage *key) {
|
|
|
|
return getHashValue(KeyTy(key->value));
|
|
|
|
}
|
|
|
|
|
2018-07-04 10:43:29 -07:00
|
|
|
static unsigned getHashValue(KeyTy key) {
|
|
|
|
return hash_combine_range(key.begin(), key.end());
|
|
|
|
}
|
|
|
|
|
2018-10-25 15:46:10 -07:00
|
|
|
static bool isEqual(const KeyTy &lhs, const ArrayAttributeStorage *rhs) {
|
2018-07-04 10:43:29 -07:00
|
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
|
|
return false;
|
2018-10-25 15:46:10 -07:00
|
|
|
return lhs == rhs->value;
|
2018-07-04 10:43:29 -07:00
|
|
|
}
|
|
|
|
};
|
2018-07-05 21:20:59 -07:00
|
|
|
|
|
|
|
struct AttributeListKeyInfo : DenseMapInfo<AttributeListStorage *> {
|
|
|
|
// Array attributes are uniqued based on their elements.
|
|
|
|
using KeyTy = ArrayRef<NamedAttribute>;
|
|
|
|
using DenseMapInfo<AttributeListStorage *>::isEqual;
|
|
|
|
|
2018-12-01 11:38:20 -08:00
|
|
|
static unsigned getHashValue(AttributeListStorage *key) {
|
|
|
|
return getHashValue(KeyTy(key->getElements()));
|
|
|
|
}
|
|
|
|
|
2018-07-05 21:20:59 -07:00
|
|
|
static unsigned getHashValue(KeyTy key) {
|
|
|
|
return hash_combine_range(key.begin(), key.end());
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool isEqual(const KeyTy &lhs, const AttributeListStorage *rhs) {
|
|
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
|
|
return false;
|
|
|
|
return lhs == rhs->getElements();
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2018-10-25 15:46:10 -07:00
|
|
|
struct DenseElementsAttrInfo : DenseMapInfo<DenseElementsAttributeStorage *> {
|
2018-10-30 14:59:22 -07:00
|
|
|
using KeyTy = std::pair<VectorOrTensorType, ArrayRef<char>>;
|
2018-10-25 15:46:10 -07:00
|
|
|
using DenseMapInfo<DenseElementsAttributeStorage *>::isEqual;
|
2018-10-18 13:54:44 -07:00
|
|
|
|
2018-12-01 11:38:20 -08:00
|
|
|
static unsigned getHashValue(DenseElementsAttributeStorage *key) {
|
|
|
|
return getHashValue(KeyTy(key->type, key->data));
|
|
|
|
}
|
|
|
|
|
2018-10-18 13:54:44 -07:00
|
|
|
static unsigned getHashValue(KeyTy key) {
|
|
|
|
return hash_combine(
|
|
|
|
key.first, hash_combine_range(key.second.begin(), key.second.end()));
|
|
|
|
}
|
|
|
|
|
2018-10-25 15:46:10 -07:00
|
|
|
static bool isEqual(const KeyTy &lhs,
|
|
|
|
const DenseElementsAttributeStorage *rhs) {
|
2018-10-18 13:54:44 -07:00
|
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
|
|
return false;
|
2018-10-25 15:46:10 -07:00
|
|
|
return lhs == std::make_pair(rhs->type, rhs->data);
|
2018-10-18 13:54:44 -07:00
|
|
|
}
|
|
|
|
};
|
2018-10-23 13:44:04 -07:00
|
|
|
|
2018-10-25 15:46:10 -07:00
|
|
|
struct OpaqueElementsAttrInfo : DenseMapInfo<OpaqueElementsAttributeStorage *> {
|
2019-02-11 22:51:34 -08:00
|
|
|
// Opaque element attributes are uniqued based on their dialect, type and
|
|
|
|
// value.
|
|
|
|
using KeyTy = std::tuple<Dialect *, VectorOrTensorType, StringRef>;
|
2018-10-25 15:46:10 -07:00
|
|
|
using DenseMapInfo<OpaqueElementsAttributeStorage *>::isEqual;
|
2018-10-23 13:44:04 -07:00
|
|
|
|
2018-12-01 11:38:20 -08:00
|
|
|
static unsigned getHashValue(OpaqueElementsAttributeStorage *key) {
|
2019-02-11 22:51:34 -08:00
|
|
|
return getHashValue(KeyTy(key->dialect, key->type, key->bytes));
|
2018-12-01 11:38:20 -08:00
|
|
|
}
|
|
|
|
|
2018-10-23 13:44:04 -07:00
|
|
|
static unsigned getHashValue(KeyTy key) {
|
2019-02-11 22:51:34 -08:00
|
|
|
auto bytes = std::get<2>(key);
|
|
|
|
return hash_combine(std::get<0>(key), std::get<1>(key),
|
|
|
|
hash_combine_range(bytes.begin(), bytes.end()));
|
2018-10-23 13:44:04 -07:00
|
|
|
}
|
|
|
|
|
2018-10-25 15:46:10 -07:00
|
|
|
static bool isEqual(const KeyTy &lhs,
|
|
|
|
const OpaqueElementsAttributeStorage *rhs) {
|
2018-10-23 13:44:04 -07:00
|
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
|
|
return false;
|
2019-02-11 22:51:34 -08:00
|
|
|
return lhs == std::make_tuple(rhs->dialect, rhs->type, rhs->bytes);
|
2018-10-23 13:44:04 -07:00
|
|
|
}
|
|
|
|
};
|
2018-11-09 11:27:28 -08:00
|
|
|
|
2018-12-26 12:12:28 -08:00
|
|
|
struct CallSiteLocationKeyInfo : DenseMapInfo<CallSiteLocationStorage *> {
|
|
|
|
// Call locations are uniqued based on their held concret location
|
|
|
|
// and the caller location.
|
|
|
|
using KeyTy = std::pair<Location, Location>;
|
|
|
|
using DenseMapInfo<CallSiteLocationStorage *>::isEqual;
|
|
|
|
|
|
|
|
static unsigned getHashValue(CallSiteLocationStorage *key) {
|
|
|
|
return getHashValue(KeyTy(key->callee, key->caller));
|
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned getHashValue(KeyTy key) {
|
|
|
|
return hash_combine(key.first, key.second);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool isEqual(const KeyTy &lhs, const CallSiteLocationStorage *rhs) {
|
|
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
|
|
return false;
|
|
|
|
return lhs == std::make_pair(rhs->callee, rhs->caller);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
2018-11-09 11:27:28 -08:00
|
|
|
struct FusedLocKeyInfo : DenseMapInfo<FusedLocationStorage *> {
|
|
|
|
// Fused locations are uniqued based on their held locations and an optional
|
|
|
|
// metadata attribute.
|
|
|
|
using KeyTy = std::pair<ArrayRef<Location>, Attribute>;
|
|
|
|
using DenseMapInfo<FusedLocationStorage *>::isEqual;
|
|
|
|
|
2018-12-01 11:38:20 -08:00
|
|
|
static unsigned getHashValue(FusedLocationStorage *key) {
|
|
|
|
return getHashValue(KeyTy(key->getLocations(), key->metadata));
|
|
|
|
}
|
|
|
|
|
2018-11-09 11:27:28 -08:00
|
|
|
static unsigned getHashValue(KeyTy key) {
|
|
|
|
return hash_combine(hash_combine_range(key.first.begin(), key.first.end()),
|
|
|
|
key.second);
|
|
|
|
}
|
|
|
|
|
|
|
|
static bool isEqual(const KeyTy &lhs, const FusedLocationStorage *rhs) {
|
|
|
|
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
|
|
|
|
return false;
|
|
|
|
return lhs == std::make_pair(rhs->getLocations(), rhs->metadata);
|
|
|
|
}
|
|
|
|
};
|
2019-03-12 10:00:21 -07:00
|
|
|
|
|
|
|
/// This is the implementation of the TypeUniquer class.
|
|
|
|
struct TypeUniquerImpl {
|
|
|
|
/// A lookup key for derived instances of TypeStorage objects.
|
|
|
|
struct TypeLookupKey {
|
|
|
|
/// The known derived kind for the storage.
|
|
|
|
unsigned kind;
|
|
|
|
|
|
|
|
/// The known hash value of the key.
|
|
|
|
unsigned hashValue;
|
|
|
|
|
|
|
|
/// An equality function for comparing with an existing storage instance.
|
|
|
|
llvm::function_ref<bool(const TypeStorage *)> isEqual;
|
|
|
|
};
|
|
|
|
|
|
|
|
/// A utility wrapper object representing a hashed storage object. This class
|
|
|
|
/// contains a storage object and an existing computed hash value.
|
|
|
|
struct HashedStorageType {
|
|
|
|
unsigned hashValue;
|
|
|
|
TypeStorage *storage;
|
|
|
|
};
|
|
|
|
|
|
|
|
/// Get or create an instance of a complex derived type.
|
|
|
|
TypeStorage *getOrCreate(
|
|
|
|
unsigned kind, unsigned hashValue,
|
|
|
|
llvm::function_ref<bool(const TypeStorage *)> isEqual,
|
|
|
|
std::function<TypeStorage *(TypeStorageAllocator &)> constructorFn) {
|
|
|
|
TypeLookupKey lookupKey{kind, hashValue, isEqual};
|
|
|
|
|
|
|
|
{ // Check for an existing instance in read-only mode.
|
|
|
|
llvm::sys::SmartScopedReader<true> typeLock(typeMutex);
|
|
|
|
auto it = storageTypes.find_as(lookupKey);
|
|
|
|
if (it != storageTypes.end())
|
|
|
|
return it->storage;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Aquire a writer-lock so that we can safely create the new type instance.
|
|
|
|
llvm::sys::SmartScopedWriter<true> typeLock(typeMutex);
|
|
|
|
|
|
|
|
// Check for an existing instance again here, because another writer thread
|
|
|
|
// may have already created one.
|
|
|
|
auto existing = storageTypes.insert_as({}, lookupKey);
|
|
|
|
if (!existing.second)
|
|
|
|
return existing.first->storage;
|
|
|
|
|
|
|
|
// Otherwise, construct and initialize the derived storage for this type
|
|
|
|
// instance.
|
|
|
|
TypeStorage *storage = constructorFn(allocator);
|
|
|
|
*existing.first = HashedStorageType{hashValue, storage};
|
|
|
|
return storage;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Get or create an instance of a simple derived type.
|
|
|
|
TypeStorage *getOrCreate(
|
|
|
|
unsigned kind,
|
|
|
|
std::function<TypeStorage *(TypeStorageAllocator &)> constructorFn) {
|
2019-03-14 14:13:29 -07:00
|
|
|
return safeGetOrCreate(simpleTypes, kind, typeMutex,
|
|
|
|
[&] { return constructorFn(allocator); });
|
2019-03-12 10:00:21 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
// Instance Storage
|
|
|
|
//===--------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
/// Storage info for derived TypeStorage objects.
|
|
|
|
struct StorageKeyInfo : DenseMapInfo<HashedStorageType> {
|
|
|
|
static HashedStorageType getEmptyKey() {
|
|
|
|
return HashedStorageType{0, DenseMapInfo<TypeStorage *>::getEmptyKey()};
|
|
|
|
}
|
|
|
|
static HashedStorageType getTombstoneKey() {
|
|
|
|
return HashedStorageType{0,
|
|
|
|
DenseMapInfo<TypeStorage *>::getTombstoneKey()};
|
|
|
|
}
|
|
|
|
|
|
|
|
static unsigned getHashValue(const HashedStorageType &key) {
|
|
|
|
return key.hashValue;
|
|
|
|
}
|
|
|
|
static unsigned getHashValue(TypeLookupKey key) { return key.hashValue; }
|
|
|
|
|
|
|
|
static bool isEqual(const HashedStorageType &lhs,
|
|
|
|
const HashedStorageType &rhs) {
|
|
|
|
return lhs.storage == rhs.storage;
|
|
|
|
}
|
|
|
|
static bool isEqual(const TypeLookupKey &lhs,
|
|
|
|
const HashedStorageType &rhs) {
|
|
|
|
if (isEqual(rhs, getEmptyKey()) || isEqual(rhs, getTombstoneKey()))
|
|
|
|
return false;
|
|
|
|
// If the lookup kind matches the kind of the storage, then invoke the
|
|
|
|
// equality function on the lookup key.
|
|
|
|
return lhs.kind == rhs.storage->getKind() && lhs.isEqual(rhs.storage);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
// Unique types with specific hashing or storage constraints.
|
|
|
|
using StorageTypeSet = llvm::DenseSet<HashedStorageType, StorageKeyInfo>;
|
|
|
|
StorageTypeSet storageTypes;
|
|
|
|
|
|
|
|
// Unique types with just the kind.
|
|
|
|
DenseMap<unsigned, TypeStorage *> simpleTypes;
|
|
|
|
|
|
|
|
// Allocator to use when constructing derived type instances.
|
|
|
|
TypeStorageAllocator allocator;
|
|
|
|
|
|
|
|
// A mutex to keep type uniquing thread-safe.
|
|
|
|
llvm::sys::SmartRWMutex<true> typeMutex;
|
|
|
|
};
|
2018-06-22 22:03:48 -07:00
|
|
|
} // end anonymous namespace.
|
|
|
|
|
|
|
|
namespace mlir {
|
|
|
|
/// This is the implementation of the MLIRContext class, using the pImpl idiom.
|
|
|
|
/// This class is completely private to this file, so everything is public.
|
|
|
|
class MLIRContextImpl {
|
|
|
|
public:
|
2018-08-27 21:05:16 -07:00
|
|
|
/// We put location info into this allocator, since it is generally not
|
|
|
|
/// touched by compiler passes.
|
|
|
|
llvm::BumpPtrAllocator locationAllocator;
|
|
|
|
|
|
|
|
/// The singleton for UnknownLoc.
|
2018-11-08 12:28:35 -08:00
|
|
|
UnknownLocationStorage *theUnknownLoc = nullptr;
|
2018-08-27 21:05:16 -07:00
|
|
|
|
|
|
|
/// These are filename locations uniqued into this MLIRContext.
|
|
|
|
llvm::StringMap<char, llvm::BumpPtrAllocator &> filenames;
|
|
|
|
|
|
|
|
/// FileLineColLoc uniquing.
|
2018-11-08 12:28:35 -08:00
|
|
|
DenseMap<std::tuple<const char *, unsigned, unsigned>,
|
|
|
|
FileLineColLocationStorage *>
|
2018-08-27 21:05:16 -07:00
|
|
|
fileLineColLocs;
|
|
|
|
|
2018-12-26 12:12:28 -08:00
|
|
|
/// NameLocation uniquing.
|
|
|
|
DenseMap<const char *, NameLocationStorage *> nameLocs;
|
|
|
|
|
|
|
|
/// CallLocation uniquing.
|
|
|
|
DenseSet<CallSiteLocationStorage *, CallSiteLocationKeyInfo> callLocs;
|
|
|
|
|
2018-11-09 11:27:28 -08:00
|
|
|
/// FusedLoc uniquing.
|
|
|
|
using FusedLocations = DenseSet<FusedLocationStorage *, FusedLocKeyInfo>;
|
|
|
|
FusedLocations fusedLocs;
|
|
|
|
|
2018-08-27 21:05:16 -07:00
|
|
|
/// We put immortal objects into this allocator.
|
|
|
|
llvm::BumpPtrAllocator allocator;
|
|
|
|
|
2018-08-05 21:12:29 -07:00
|
|
|
/// This is the handler to use to report diagnostics, or null if not
|
|
|
|
/// registered.
|
|
|
|
MLIRContext::DiagnosticHandlerTy diagnosticHandler;
|
2018-08-01 10:18:59 -07:00
|
|
|
|
2018-10-21 19:49:31 -07:00
|
|
|
/// This is a list of dialects that are created referring to this context.
|
|
|
|
/// The MLIRContext owns the objects.
|
|
|
|
std::vector<std::unique_ptr<Dialect>> dialects;
|
|
|
|
|
|
|
|
/// This is a mapping from operation name to AbstractOperation for registered
|
|
|
|
/// operations.
|
|
|
|
StringMap<AbstractOperation> registeredOperations;
|
|
|
|
|
2019-01-02 14:16:40 -08:00
|
|
|
/// This is a mapping from type identifier to Dialect for registered types.
|
2019-03-08 11:07:51 -08:00
|
|
|
DenseMap<const TypeID *, Dialect *> registeredTypes;
|
2019-01-02 14:16:40 -08:00
|
|
|
|
2018-06-28 20:45:33 -07:00
|
|
|
/// These are identifiers uniqued into this MLIRContext.
|
2018-07-23 11:44:40 -07:00
|
|
|
llvm::StringMap<char, llvm::BumpPtrAllocator &> identifiers;
|
2018-06-28 20:45:33 -07:00
|
|
|
|
2018-06-29 18:09:29 -07:00
|
|
|
// Affine map uniquing.
|
2018-10-09 16:39:24 -07:00
|
|
|
using AffineMapSet = DenseSet<AffineMap, AffineMapKeyInfo>;
|
2018-06-29 18:09:29 -07:00
|
|
|
AffineMapSet affineMaps;
|
|
|
|
|
2018-10-25 08:33:02 -07:00
|
|
|
// Integer set uniquing.
|
|
|
|
using IntegerSets = DenseSet<IntegerSet, IntegerSetKeyInfo>;
|
|
|
|
IntegerSets integerSets;
|
|
|
|
|
2018-07-03 21:34:58 -07:00
|
|
|
// Affine binary op expression uniquing. Figure out uniquing of dimensional
|
2018-07-03 20:16:08 -07:00
|
|
|
// or symbolic identifiers.
|
2018-10-08 13:47:18 -07:00
|
|
|
DenseMap<std::tuple<unsigned, AffineExpr, AffineExpr>, AffineExpr>
|
2018-07-03 20:16:08 -07:00
|
|
|
affineExprs;
|
|
|
|
|
2018-10-08 13:47:18 -07:00
|
|
|
// Uniqui'ing of AffineDimExpr, AffineSymbolExpr's by their position.
|
2018-10-09 10:59:27 -07:00
|
|
|
std::vector<AffineDimExprStorage *> dimExprs;
|
|
|
|
std::vector<AffineSymbolExprStorage *> symbolExprs;
|
2018-07-24 22:34:09 -07:00
|
|
|
|
2018-10-09 10:59:27 -07:00
|
|
|
// Uniqui'ing of AffineConstantExprStorage using constant value as key.
|
|
|
|
DenseMap<int64_t, AffineConstantExprStorage *> constExprs;
|
2018-07-24 22:34:09 -07:00
|
|
|
|
2018-12-21 10:18:03 -08:00
|
|
|
/// Type uniquing.
|
2019-03-12 10:00:21 -07:00
|
|
|
TypeUniquerImpl typeUniquer;
|
2018-07-16 09:45:22 -07:00
|
|
|
|
2018-07-04 10:43:29 -07:00
|
|
|
// Attribute uniquing.
|
2019-03-14 14:13:29 -07:00
|
|
|
|
|
|
|
// Attribute allocator and mutex for thread safety.
|
|
|
|
llvm::BumpPtrAllocator attributeAllocator;
|
|
|
|
llvm::sys::SmartRWMutex<true> attributeMutex;
|
|
|
|
|
2018-10-25 15:46:10 -07:00
|
|
|
BoolAttributeStorage *boolAttrs[2] = {nullptr};
|
2018-11-12 06:33:22 -08:00
|
|
|
DenseSet<IntegerAttributeStorage *, IntegerAttrKeyInfo> integerAttrs;
|
2018-10-25 15:46:10 -07:00
|
|
|
DenseSet<FloatAttributeStorage *, FloatAttrKeyInfo> floatAttrs;
|
|
|
|
StringMap<StringAttributeStorage *> stringAttrs;
|
|
|
|
using ArrayAttrSet = DenseSet<ArrayAttributeStorage *, ArrayAttrKeyInfo>;
|
2018-07-04 10:43:29 -07:00
|
|
|
ArrayAttrSet arrayAttrs;
|
2018-10-25 15:46:10 -07:00
|
|
|
DenseMap<AffineMap, AffineMapAttributeStorage *> affineMapAttrs;
|
2018-10-25 22:13:03 -07:00
|
|
|
DenseMap<IntegerSet, IntegerSetAttributeStorage *> integerSetAttrs;
|
2018-10-30 14:59:22 -07:00
|
|
|
DenseMap<Type, TypeAttributeStorage *> typeAttrs;
|
2018-07-05 21:20:59 -07:00
|
|
|
using AttributeListSet =
|
|
|
|
DenseSet<AttributeListStorage *, AttributeListKeyInfo>;
|
|
|
|
AttributeListSet attributeLists;
|
2018-10-25 15:46:10 -07:00
|
|
|
DenseMap<const Function *, FunctionAttributeStorage *> functionAttrs;
|
2018-10-30 14:59:22 -07:00
|
|
|
DenseMap<std::pair<Type, Attribute>, SplatElementsAttributeStorage *>
|
2018-10-10 08:57:51 -07:00
|
|
|
splatElementsAttrs;
|
2018-10-18 13:54:44 -07:00
|
|
|
using DenseElementsAttrSet =
|
2018-10-25 15:46:10 -07:00
|
|
|
DenseSet<DenseElementsAttributeStorage *, DenseElementsAttrInfo>;
|
2018-10-18 13:54:44 -07:00
|
|
|
DenseElementsAttrSet denseElementsAttrs;
|
2018-10-23 13:44:04 -07:00
|
|
|
using OpaqueElementsAttrSet =
|
2018-10-25 15:46:10 -07:00
|
|
|
DenseSet<OpaqueElementsAttributeStorage *, OpaqueElementsAttrInfo>;
|
2018-10-23 13:44:04 -07:00
|
|
|
OpaqueElementsAttrSet opaqueElementsAttrs;
|
2018-10-30 14:59:22 -07:00
|
|
|
DenseMap<std::tuple<Type, Attribute, Attribute>,
|
2018-10-25 15:46:10 -07:00
|
|
|
SparseElementsAttributeStorage *>
|
Add support to constant sparse tensor / vector attribute
The SparseElementsAttr uses (COO) Coordinate List encoding to represents a
sparse tensor / vector. Specifically, the coordinates and values are stored as
two dense elements attributes. The first dense elements attribute is a 2-D
attribute with shape [N, ndims], which contains the indices of the elements
with nonzero values in the constant vector/tensor. The second elements
attribute is a 1-D attribute list with shape [N], which supplies the values for
each element in the first elements attribute. ndims is the rank of the
vector/tensor and N is the total nonzero elements.
The syntax is:
`sparse<` (tensor-type | vector-type)`, ` indices-attribute-list, values-attribute-list `>`
Example: a sparse tensor
sparse<vector<3x4xi32>, [[0, 0], [1, 2]], [1, 2]> represents the dense tensor
[[1, 0, 0, 0]
[0, 0, 2, 0]
[0, 0, 0, 0]]
PiperOrigin-RevId: 217764319
2018-10-18 14:02:20 -07:00
|
|
|
sparseElementsAttrs;
|
2018-06-22 22:03:48 -07:00
|
|
|
|
|
|
|
public:
|
2018-10-10 14:23:30 -07:00
|
|
|
MLIRContextImpl() : filenames(locationAllocator), identifiers(allocator) {}
|
2018-06-22 22:03:48 -07:00
|
|
|
};
|
|
|
|
} // end namespace mlir
|
|
|
|
|
2018-09-21 18:12:15 -07:00
|
|
|
MLIRContext::MLIRContext() : impl(new MLIRContextImpl()) {
|
2018-10-21 19:49:31 -07:00
|
|
|
new BuiltinDialect(this);
|
|
|
|
registerAllDialects(this);
|
2018-09-21 18:12:15 -07:00
|
|
|
}
|
2018-06-22 22:03:48 -07:00
|
|
|
|
2018-07-23 11:44:40 -07:00
|
|
|
MLIRContext::~MLIRContext() {}
|
2018-06-22 22:03:48 -07:00
|
|
|
|
2019-03-14 14:13:29 -07:00
|
|
|
/// Copy the specified array of elements into memory managed by the provided
|
|
|
|
/// bump pointer allocator. This assumes the elements are all PODs.
|
|
|
|
template <typename T>
|
|
|
|
static ArrayRef<T> copyArrayRefInto(llvm::BumpPtrAllocator &allocator,
|
|
|
|
ArrayRef<T> elements) {
|
|
|
|
auto result = allocator.Allocate<T>(elements.size());
|
|
|
|
std::uninitialized_copy(elements.begin(), elements.end(), result);
|
|
|
|
return ArrayRef<T>(result, elements.size());
|
|
|
|
}
|
|
|
|
|
2018-10-21 19:49:31 -07:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Diagnostic Handlers
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2018-10-29 06:55:55 -07:00
|
|
|
/// Register an issue handler with this MLIR context. The issue handler is
|
|
|
|
/// passed location information along with a message and a DiagnosticKind enum
|
|
|
|
/// value that indicates the type of the diagnostic (e.g., Warning, Error).
|
2018-08-01 10:18:59 -07:00
|
|
|
void MLIRContext::registerDiagnosticHandler(
|
2018-08-05 21:12:29 -07:00
|
|
|
const DiagnosticHandlerTy &handler) {
|
|
|
|
getImpl().diagnosticHandler = handler;
|
2018-08-01 10:18:59 -07:00
|
|
|
}
|
|
|
|
|
2018-08-21 08:42:19 -07:00
|
|
|
/// Return the current diagnostic handler, or null if none is present.
|
|
|
|
auto MLIRContext::getDiagnosticHandler() const -> DiagnosticHandlerTy {
|
|
|
|
return getImpl().diagnosticHandler;
|
|
|
|
}
|
|
|
|
|
2018-08-01 10:18:59 -07:00
|
|
|
/// This emits a diagnostic using the registered issue handle if present, or
|
|
|
|
/// with the default behavior if not. The MLIR compiler should not generally
|
2019-02-04 10:34:20 -08:00
|
|
|
/// interact with this, it should use methods on Instruction instead.
|
2018-11-08 12:28:35 -08:00
|
|
|
void MLIRContext::emitDiagnostic(Location location, const llvm::Twine &message,
|
2018-08-05 21:12:29 -07:00
|
|
|
DiagnosticKind kind) const {
|
2018-11-09 11:27:28 -08:00
|
|
|
// Check to see if we are emitting a diagnostic on a fused location.
|
|
|
|
if (auto fusedLoc = location.dyn_cast<FusedLoc>()) {
|
|
|
|
auto fusedLocs = fusedLoc->getLocations();
|
|
|
|
|
|
|
|
// Emit the original diagnostic with the first location in the fused list.
|
|
|
|
emitDiagnostic(fusedLocs.front(), message, kind);
|
|
|
|
|
|
|
|
// Emit the rest of the locations as notes.
|
|
|
|
for (unsigned i = 1, e = fusedLocs.size(); i != e; ++i)
|
|
|
|
emitDiagnostic(fusedLocs[i], "fused from here", DiagnosticKind::Note);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2018-08-01 10:18:59 -07:00
|
|
|
// If we had a handler registered, emit the diagnostic using it.
|
2018-08-05 21:12:29 -07:00
|
|
|
auto handler = getImpl().diagnosticHandler;
|
2018-11-08 12:28:35 -08:00
|
|
|
if (handler)
|
2018-08-05 21:12:29 -07:00
|
|
|
return handler(location, message.str(), kind);
|
2018-08-01 10:18:59 -07:00
|
|
|
|
2018-08-05 21:12:29 -07:00
|
|
|
// The default behavior for notes and warnings is to ignore them.
|
|
|
|
if (kind != DiagnosticKind::Error)
|
2018-08-01 10:18:59 -07:00
|
|
|
return;
|
|
|
|
|
2018-09-02 22:01:45 -07:00
|
|
|
auto &os = llvm::errs();
|
|
|
|
|
2018-11-09 11:27:28 -08:00
|
|
|
if (!location.isa<UnknownLoc>())
|
|
|
|
os << location << ": ";
|
2018-09-02 22:01:45 -07:00
|
|
|
|
|
|
|
os << "error: ";
|
2018-08-27 21:05:16 -07:00
|
|
|
|
2018-11-02 01:48:22 -07:00
|
|
|
// The default behavior for errors is to emit them to stderr.
|
2018-09-02 22:01:45 -07:00
|
|
|
os << message.str() << '\n';
|
|
|
|
os.flush();
|
2018-08-01 10:18:59 -07:00
|
|
|
}
|
|
|
|
|
2018-12-07 09:30:25 -08:00
|
|
|
bool MLIRContext::emitError(Location location,
|
2018-11-08 13:41:21 -08:00
|
|
|
const llvm::Twine &message) const {
|
|
|
|
emitDiagnostic(location, message, DiagnosticKind::Error);
|
2018-12-07 09:30:25 -08:00
|
|
|
return true;
|
2018-11-08 13:41:21 -08:00
|
|
|
}
|
|
|
|
|
2018-10-21 19:49:31 -07:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Dialect and Operation Registration
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2018-10-25 16:44:04 -07:00
|
|
|
/// Return information about all registered IR dialects.
|
|
|
|
std::vector<Dialect *> MLIRContext::getRegisteredDialects() const {
|
|
|
|
std::vector<Dialect *> result;
|
|
|
|
result.reserve(getImpl().dialects.size());
|
|
|
|
for (auto &dialect : getImpl().dialects)
|
|
|
|
result.push_back(dialect.get());
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2019-01-02 09:26:35 -08:00
|
|
|
/// Get a registered IR dialect with the given namespace. If none is found,
|
|
|
|
/// then return nullptr.
|
|
|
|
Dialect *MLIRContext::getRegisteredDialect(StringRef name) const {
|
|
|
|
for (auto &dialect : getImpl().dialects)
|
|
|
|
if (name == dialect->getNamespace())
|
|
|
|
return dialect.get();
|
|
|
|
return nullptr;
|
2018-11-20 14:47:10 -08:00
|
|
|
}
|
|
|
|
|
2018-10-21 19:49:31 -07:00
|
|
|
/// Register this dialect object with the specified context. The context
|
|
|
|
/// takes ownership of the heap allocated dialect.
|
|
|
|
void Dialect::registerDialect(MLIRContext *context) {
|
|
|
|
context->getImpl().dialects.push_back(std::unique_ptr<Dialect>(this));
|
|
|
|
}
|
|
|
|
|
2018-10-25 16:44:04 -07:00
|
|
|
/// Return information about all registered operations. This isn't very
|
|
|
|
/// efficient, typically you should ask the operations about their properties
|
|
|
|
/// directly.
|
|
|
|
std::vector<AbstractOperation *> MLIRContext::getRegisteredOperations() const {
|
|
|
|
// We just have the operations in a non-deterministic hash table order. Dump
|
|
|
|
// into a temporary array, then sort it by operation name to get a stable
|
|
|
|
// ordering.
|
|
|
|
StringMap<AbstractOperation> ®isteredOps = getImpl().registeredOperations;
|
|
|
|
|
|
|
|
std::vector<std::pair<StringRef, AbstractOperation *>> opsToSort;
|
|
|
|
opsToSort.reserve(registeredOps.size());
|
|
|
|
for (auto &elt : registeredOps)
|
|
|
|
opsToSort.push_back({elt.first(), &elt.second});
|
|
|
|
|
|
|
|
llvm::array_pod_sort(opsToSort.begin(), opsToSort.end());
|
|
|
|
|
|
|
|
std::vector<AbstractOperation *> result;
|
|
|
|
result.reserve(opsToSort.size());
|
|
|
|
for (auto &elt : opsToSort)
|
|
|
|
result.push_back(elt.second);
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2018-10-21 19:49:31 -07:00
|
|
|
void Dialect::addOperation(AbstractOperation opInfo) {
|
2019-01-02 09:26:35 -08:00
|
|
|
assert((namePrefix.empty() || (opInfo.name.split('.').first == namePrefix)) &&
|
|
|
|
"op name doesn't start with dialect prefix");
|
2018-10-21 19:49:31 -07:00
|
|
|
assert(&opInfo.dialect == this && "Dialect object mismatch");
|
|
|
|
|
|
|
|
auto &impl = context->getImpl();
|
|
|
|
if (!impl.registeredOperations.insert({opInfo.name, opInfo}).second) {
|
|
|
|
llvm::errs() << "error: ops named '" << opInfo.name
|
|
|
|
<< "' is already registered.\n";
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2019-01-02 14:16:40 -08:00
|
|
|
/// Register a dialect-specific type with the current context.
|
2019-03-08 11:07:51 -08:00
|
|
|
void Dialect::addType(const TypeID *const typeID) {
|
2019-01-02 14:16:40 -08:00
|
|
|
auto &impl = context->getImpl();
|
2019-03-08 11:07:51 -08:00
|
|
|
if (!impl.registeredTypes.insert({typeID, this}).second) {
|
2019-01-02 14:16:40 -08:00
|
|
|
llvm::errs() << "error: type already registered.\n";
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2018-10-21 19:49:31 -07:00
|
|
|
/// Look up the specified operation in the operation set and return a pointer
|
|
|
|
/// to it if present. Otherwise, return a null pointer.
|
|
|
|
const AbstractOperation *AbstractOperation::lookup(StringRef opName,
|
|
|
|
MLIRContext *context) {
|
|
|
|
auto &impl = context->getImpl();
|
|
|
|
auto it = impl.registeredOperations.find(opName);
|
|
|
|
if (it != impl.registeredOperations.end())
|
|
|
|
return &it->second;
|
|
|
|
return nullptr;
|
2018-07-05 09:12:11 -07:00
|
|
|
}
|
2018-06-22 22:03:48 -07:00
|
|
|
|
2018-06-28 20:45:33 -07:00
|
|
|
//===----------------------------------------------------------------------===//
|
2018-07-04 10:43:29 -07:00
|
|
|
// Identifier uniquing
|
2018-06-28 20:45:33 -07:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
|
|
/// Return an identifier for the specified string.
|
|
|
|
Identifier Identifier::get(StringRef str, const MLIRContext *context) {
|
|
|
|
assert(!str.empty() && "Cannot create an empty identifier");
|
|
|
|
assert(str.find('\0') == StringRef::npos &&
|
|
|
|
"Cannot create an identifier with a nul character");
|
|
|
|
|
|
|
|
auto &impl = context->getImpl();
|
|
|
|
auto it = impl.identifiers.insert({str, char()}).first;
|
|
|
|
return Identifier(it->getKeyData());
|
|
|
|
}
|
|
|
|
|
2018-08-27 21:05:16 -07:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Location uniquing
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2018-11-08 12:28:35 -08:00
|
|
|
UnknownLoc UnknownLoc::get(MLIRContext *context) {
|
2018-08-27 21:05:16 -07:00
|
|
|
auto &impl = context->getImpl();
|
|
|
|
if (auto *result = impl.theUnknownLoc)
|
|
|
|
return result;
|
|
|
|
|
2018-11-08 12:28:35 -08:00
|
|
|
impl.theUnknownLoc = impl.allocator.Allocate<UnknownLocationStorage>();
|
|
|
|
new (impl.theUnknownLoc) UnknownLocationStorage{Location::Kind::Unknown};
|
2018-08-27 21:05:16 -07:00
|
|
|
return impl.theUnknownLoc;
|
|
|
|
}
|
|
|
|
|
|
|
|
UniquedFilename UniquedFilename::get(StringRef filename, MLIRContext *context) {
|
|
|
|
auto &impl = context->getImpl();
|
|
|
|
auto it = impl.filenames.insert({filename, char()}).first;
|
|
|
|
return UniquedFilename(it->getKeyData());
|
|
|
|
}
|
|
|
|
|
2018-11-08 12:28:35 -08:00
|
|
|
FileLineColLoc FileLineColLoc::get(UniquedFilename filename, unsigned line,
|
|
|
|
unsigned column, MLIRContext *context) {
|
2018-08-27 21:05:16 -07:00
|
|
|
auto &impl = context->getImpl();
|
|
|
|
auto &entry =
|
|
|
|
impl.fileLineColLocs[std::make_tuple(filename.data(), line, column)];
|
|
|
|
if (!entry) {
|
2018-11-08 12:28:35 -08:00
|
|
|
entry = impl.allocator.Allocate<FileLineColLocationStorage>();
|
|
|
|
new (entry) FileLineColLocationStorage{
|
|
|
|
{Location::Kind::FileLineCol}, filename, line, column};
|
2018-08-27 21:05:16 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
return entry;
|
|
|
|
}
|
|
|
|
|
2018-12-26 12:12:28 -08:00
|
|
|
NameLoc NameLoc::get(Identifier name, MLIRContext *context) {
|
|
|
|
auto &impl = context->getImpl();
|
|
|
|
auto &entry = impl.nameLocs[name.data()];
|
|
|
|
if (!entry) {
|
|
|
|
entry = impl.allocator.Allocate<NameLocationStorage>();
|
|
|
|
new (entry) NameLocationStorage{{Location::Kind::Name}, name};
|
|
|
|
}
|
|
|
|
|
|
|
|
return entry;
|
|
|
|
}
|
|
|
|
|
|
|
|
CallSiteLoc CallSiteLoc::get(Location callee, Location caller,
|
|
|
|
MLIRContext *context) {
|
|
|
|
auto &impl = context->getImpl();
|
|
|
|
|
|
|
|
// Look to see if the fused location has been created already.
|
|
|
|
auto existing =
|
|
|
|
impl.callLocs.insert_as(nullptr, std::make_pair(callee, caller));
|
|
|
|
|
|
|
|
// If it has been created, return it.
|
|
|
|
if (!existing.second)
|
|
|
|
return *existing.first;
|
|
|
|
|
|
|
|
// On the first use, we allocate them into the bump pointer.
|
|
|
|
auto *result = impl.allocator.Allocate<detail::CallSiteLocationStorage>();
|
|
|
|
|
|
|
|
// Initialize the memory using placement new.
|
|
|
|
new (result) detail::CallSiteLocationStorage{
|
|
|
|
{Location::Kind::CallSite}, callee, caller};
|
|
|
|
|
|
|
|
return *existing.first = result;
|
|
|
|
}
|
|
|
|
|
2019-01-23 13:37:35 -08:00
|
|
|
CallSiteLoc CallSiteLoc::get(Location name, ArrayRef<Location> frames,
|
|
|
|
MLIRContext *context) {
|
|
|
|
assert(!frames.empty() && "required at least 1 frames");
|
|
|
|
auto it = frames.rbegin();
|
|
|
|
Location caller = *it++;
|
|
|
|
for (auto e = frames.rend(); it != e; ++it) {
|
|
|
|
caller = CallSiteLoc::get(*it, caller, context);
|
|
|
|
}
|
|
|
|
return CallSiteLoc::get(name, caller, context);
|
|
|
|
}
|
|
|
|
|
2018-11-09 11:27:28 -08:00
|
|
|
Location FusedLoc::get(ArrayRef<Location> locs, MLIRContext *context) {
|
|
|
|
return get(locs, Attribute(), context);
|
|
|
|
}
|
|
|
|
|
|
|
|
Location FusedLoc::get(ArrayRef<Location> locs, Attribute metadata,
|
|
|
|
MLIRContext *context) {
|
|
|
|
// Unique the set of locations to be fused.
|
|
|
|
SmallSetVector<Location, 4> decomposedLocs;
|
|
|
|
for (auto loc : locs) {
|
|
|
|
// If the location is a fused location we decompose it if it has no
|
|
|
|
// metadata or the metadata is the same as the top level metadata.
|
|
|
|
if (auto fusedLoc = loc.dyn_cast<FusedLoc>()) {
|
|
|
|
if (fusedLoc->getMetadata() == metadata) {
|
|
|
|
// UnknownLoc's have already been removed from FusedLocs so we can
|
|
|
|
// simply add all of the internal locations.
|
|
|
|
decomposedLocs.insert(fusedLoc->getLocations().begin(),
|
|
|
|
fusedLoc->getLocations().end());
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Otherwise, only add known locations to the set.
|
|
|
|
if (!loc.isa<UnknownLoc>())
|
|
|
|
decomposedLocs.insert(loc);
|
|
|
|
}
|
|
|
|
locs = decomposedLocs.getArrayRef();
|
|
|
|
|
|
|
|
// Handle the simple cases of less than two locations.
|
|
|
|
if (locs.empty())
|
|
|
|
return UnknownLoc::get(context);
|
|
|
|
if (locs.size() == 1)
|
|
|
|
return locs.front();
|
|
|
|
|
|
|
|
auto &impl = context->getImpl();
|
|
|
|
|
|
|
|
// Look to see if the fused location has been created already.
|
|
|
|
auto existing =
|
|
|
|
impl.fusedLocs.insert_as(nullptr, std::make_pair(locs, metadata));
|
|
|
|
|
|
|
|
// If it has been created, return it.
|
|
|
|
if (!existing.second)
|
|
|
|
return *existing.first;
|
|
|
|
|
|
|
|
auto byteSize = FusedLocationStorage::totalSizeToAlloc<Location>(locs.size());
|
|
|
|
auto rawMem =
|
|
|
|
impl.allocator.Allocate(byteSize, alignof(FusedLocationStorage));
|
|
|
|
auto result =
|
|
|
|
new (rawMem) FusedLocationStorage{{Location::Kind::FusedLocation},
|
|
|
|
{},
|
|
|
|
static_cast<unsigned>(locs.size()),
|
|
|
|
metadata};
|
|
|
|
|
|
|
|
std::uninitialized_copy(locs.begin(), locs.end(),
|
|
|
|
result->getTrailingObjects<Location>());
|
|
|
|
return *existing.first = result;
|
|
|
|
}
|
|
|
|
|
2018-06-28 20:45:33 -07:00
|
|
|
//===----------------------------------------------------------------------===//
|
2018-07-04 10:43:29 -07:00
|
|
|
// Type uniquing
|
2018-06-28 20:45:33 -07:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2019-03-12 10:00:21 -07:00
|
|
|
/// Implementation for getting/creating an instance of a derived type with
|
|
|
|
/// complex storage.
|
|
|
|
TypeStorage *TypeUniquer::getImpl(
|
|
|
|
MLIRContext *ctx, unsigned kind, unsigned hashValue,
|
|
|
|
llvm::function_ref<bool(const TypeStorage *)> isEqual,
|
|
|
|
std::function<TypeStorage *(TypeStorageAllocator &)> constructorFn) {
|
|
|
|
return ctx->getImpl().typeUniquer.getOrCreate(kind, hashValue, isEqual,
|
|
|
|
constructorFn);
|
2019-01-15 16:10:34 -08:00
|
|
|
}
|
|
|
|
|
2019-03-12 10:00:21 -07:00
|
|
|
/// Implementation for getting/creating an instance of a derived type with
|
|
|
|
/// default storage.
|
|
|
|
TypeStorage *TypeUniquer::getImpl(
|
|
|
|
MLIRContext *ctx, unsigned kind,
|
|
|
|
std::function<TypeStorage *(TypeStorageAllocator &)> constructorFn) {
|
|
|
|
return ctx->getImpl().typeUniquer.getOrCreate(kind, constructorFn);
|
2018-12-21 10:18:03 -08:00
|
|
|
}
|
|
|
|
|
2019-01-02 14:16:40 -08:00
|
|
|
/// Get the dialect that registered the type with the provided typeid.
|
2019-01-15 16:10:34 -08:00
|
|
|
const Dialect &TypeUniquer::lookupDialectForType(MLIRContext *ctx,
|
2019-03-08 11:07:51 -08:00
|
|
|
const TypeID *const typeID) {
|
2019-01-02 14:16:40 -08:00
|
|
|
auto &impl = ctx->getImpl();
|
2019-03-08 11:07:51 -08:00
|
|
|
auto it = impl.registeredTypes.find(typeID);
|
|
|
|
assert(it != impl.registeredTypes.end() && "typeID is not registered.");
|
|
|
|
return *it->second;
|
2018-12-21 10:18:03 -08:00
|
|
|
}
|
|
|
|
|
2018-07-04 10:43:29 -07:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Attribute uniquing
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2018-10-25 15:46:10 -07:00
|
|
|
BoolAttr BoolAttr::get(bool value, MLIRContext *context) {
|
2019-03-14 14:13:29 -07:00
|
|
|
auto &impl = context->getImpl();
|
|
|
|
|
|
|
|
{ // Check for an existing instance in read-only mode.
|
|
|
|
llvm::sys::SmartScopedReader<true> attributeLock(impl.attributeMutex);
|
|
|
|
if (auto *result = impl.boolAttrs[value])
|
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Aquire the mutex in write mode so that we can safely construct the new
|
|
|
|
// instance.
|
|
|
|
llvm::sys::SmartScopedWriter<true> attributeLock(impl.attributeMutex);
|
|
|
|
|
|
|
|
// Check for an existing instance again here, because another writer thread
|
|
|
|
// may have already created one.
|
|
|
|
auto *&result = impl.boolAttrs[value];
|
2018-07-04 10:43:29 -07:00
|
|
|
if (result)
|
|
|
|
return result;
|
|
|
|
|
2019-03-14 14:13:29 -07:00
|
|
|
result = impl.attributeAllocator.Allocate<BoolAttributeStorage>();
|
2018-10-25 15:46:10 -07:00
|
|
|
new (result) BoolAttributeStorage{{Attribute::Kind::Bool,
|
|
|
|
/*isOrContainsFunction=*/false},
|
2019-02-03 06:15:43 -08:00
|
|
|
IntegerType::get(1, context),
|
2018-10-25 15:46:10 -07:00
|
|
|
value};
|
2018-07-04 10:43:29 -07:00
|
|
|
return result;
|
|
|
|
}
|
|
|
|
|
2018-11-15 17:53:51 -08:00
|
|
|
IntegerAttr IntegerAttr::get(Type type, const APInt &value) {
|
|
|
|
auto &impl = type.getContext()->getImpl();
|
|
|
|
IntegerAttrKeyInfo::KeyTy key({type, value});
|
2018-11-12 06:33:22 -08:00
|
|
|
|
2019-03-14 14:13:29 -07:00
|
|
|
// Safely get or create an attribute instance.
|
|
|
|
return safeGetOrCreate(impl.integerAttrs, key, impl.attributeMutex, [&] {
|
|
|
|
auto elements = ArrayRef<uint64_t>(value.getRawData(), value.getNumWords());
|
|
|
|
|
|
|
|
auto byteSize =
|
|
|
|
IntegerAttributeStorage::totalSizeToAlloc<uint64_t>(elements.size());
|
|
|
|
auto rawMem = impl.attributeAllocator.Allocate(
|
|
|
|
byteSize, alignof(IntegerAttributeStorage));
|
|
|
|
auto result = ::new (rawMem) IntegerAttributeStorage{
|
|
|
|
{Attribute::Kind::Integer, /*isOrContainsFunction=*/false},
|
|
|
|
type,
|
|
|
|
elements.size()};
|
|
|
|
std::uninitialized_copy(elements.begin(), elements.end(),
|
|
|
|
result->getTrailingObjects<uint64_t>());
|
|
|
|
return result;
|
|
|
|
});
|
2018-11-12 06:33:22 -08:00
|
|
|
}
|
|
|
|
|
2018-11-15 17:53:51 -08:00
|
|
|
IntegerAttr IntegerAttr::get(Type type, int64_t value) {
|
|
|
|
// This uses 64 bit APInts by default for index type.
|
2018-12-17 10:05:56 -08:00
|
|
|
if (type.isIndex())
|
|
|
|
return get(type, APInt(64, value));
|
|
|
|
|
|
|
|
auto intType = type.dyn_cast<IntegerType>();
|
|
|
|
assert(intType && "expected an integer type for an integer attribute");
|
|
|
|
return get(type, APInt(intType.getWidth(), value));
|
2018-07-04 10:43:29 -07:00
|
|
|
}
|
|
|
|
|
2019-01-14 05:37:14 -08:00
|
|
|
static FloatAttr getFloatAttr(Type type, double value,
|
|
|
|
llvm::Optional<Location> loc) {
|
2019-01-18 16:31:58 -08:00
|
|
|
if (!type.isa<FloatType>()) {
|
|
|
|
if (loc)
|
|
|
|
type.getContext()->emitError(*loc, "expected floating point type");
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Treat BF16 as double because it is not supported in LLVM's APFloat.
|
|
|
|
// TODO(jpienaar): add BF16 support to APFloat?
|
|
|
|
if (type.isBF16() || type.isF64())
|
|
|
|
return FloatAttr::get(type, APFloat(value));
|
|
|
|
|
|
|
|
// This handles, e.g., F16 because there is no APFloat constructor for it.
|
|
|
|
bool unused;
|
|
|
|
APFloat val(value);
|
|
|
|
val.convert(type.cast<FloatType>().getFloatSemantics(),
|
|
|
|
APFloat::rmNearestTiesToEven, &unused);
|
|
|
|
return FloatAttr::get(type, val);
|
2019-01-14 05:37:14 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
FloatAttr FloatAttr::getChecked(Type type, double value, Location loc) {
|
|
|
|
return getFloatAttr(type, value, loc);
|
|
|
|
}
|
|
|
|
|
|
|
|
FloatAttr FloatAttr::get(Type type, double value) {
|
|
|
|
auto res = getFloatAttr(type, value, /*loc=*/llvm::None);
|
|
|
|
assert(res && "failed to construct float attribute");
|
|
|
|
return res;
|
2018-10-20 18:31:49 -07:00
|
|
|
}
|
2018-07-04 10:43:29 -07:00
|
|
|
|
2018-11-15 17:53:51 -08:00
|
|
|
FloatAttr FloatAttr::get(Type type, const APFloat &value) {
|
2018-12-18 05:25:17 -08:00
|
|
|
auto fltType = type.cast<FloatType>();
|
|
|
|
assert(&fltType.getFloatSemantics() == &value.getSemantics() &&
|
2018-12-17 07:19:53 -08:00
|
|
|
"FloatAttr type doesn't match the type implied by its value");
|
2018-12-18 05:25:17 -08:00
|
|
|
(void)fltType;
|
2018-11-15 17:53:51 -08:00
|
|
|
auto &impl = type.getContext()->getImpl();
|
|
|
|
FloatAttrKeyInfo::KeyTy key({type, value});
|
2018-10-20 18:31:49 -07:00
|
|
|
|
2019-03-14 14:13:29 -07:00
|
|
|
// Safely get or create an attribute instance.
|
|
|
|
return safeGetOrCreate(impl.floatAttrs, key, impl.attributeMutex, [&] {
|
|
|
|
const auto &apint = value.bitcastToAPInt();
|
|
|
|
// Here one word's bitwidth equals to that of uint64_t.
|
|
|
|
auto elements = ArrayRef<uint64_t>(apint.getRawData(), apint.getNumWords());
|
|
|
|
|
|
|
|
auto byteSize =
|
|
|
|
FloatAttributeStorage::totalSizeToAlloc<uint64_t>(elements.size());
|
|
|
|
auto rawMem = impl.attributeAllocator.Allocate(
|
|
|
|
byteSize, alignof(FloatAttributeStorage));
|
|
|
|
auto result = ::new (rawMem) FloatAttributeStorage{
|
|
|
|
{Attribute::Kind::Float, /*isOrContainsFunction=*/false},
|
|
|
|
value.getSemantics(),
|
|
|
|
type,
|
|
|
|
elements.size()};
|
|
|
|
std::uninitialized_copy(elements.begin(), elements.end(),
|
|
|
|
result->getTrailingObjects<uint64_t>());
|
|
|
|
return result;
|
|
|
|
});
|
2018-10-20 18:31:49 -07:00
|
|
|
}
|
|
|
|
|
2018-10-25 15:46:10 -07:00
|
|
|
StringAttr StringAttr::get(StringRef bytes, MLIRContext *context) {
|
2019-03-14 14:13:29 -07:00
|
|
|
auto &impl = context->getImpl();
|
2018-07-04 10:43:29 -07:00
|
|
|
|
2019-03-14 14:13:29 -07:00
|
|
|
{ // Check for an existing instance in read-only mode.
|
|
|
|
llvm::sys::SmartScopedReader<true> attributeLock(impl.attributeMutex);
|
|
|
|
auto it = impl.stringAttrs.find(bytes);
|
|
|
|
if (it != impl.stringAttrs.end())
|
|
|
|
return it->second;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Aquire the mutex in write mode so that we can safely construct the new
|
|
|
|
// instance.
|
|
|
|
llvm::sys::SmartScopedWriter<true> attributeLock(impl.attributeMutex);
|
|
|
|
|
|
|
|
// Check for an existing instance again here, because another writer thread
|
|
|
|
// may have already created one.
|
|
|
|
auto it = impl.stringAttrs.insert({bytes, nullptr}).first;
|
2018-07-04 10:43:29 -07:00
|
|
|
if (it->second)
|
|
|
|
return it->second;
|
|
|
|
|
2019-03-14 14:13:29 -07:00
|
|
|
auto result = impl.attributeAllocator.Allocate<StringAttributeStorage>();
|
2018-10-25 15:46:10 -07:00
|
|
|
new (result) StringAttributeStorage{{Attribute::Kind::String,
|
|
|
|
/*isOrContainsFunction=*/false},
|
|
|
|
it->first()};
|
2019-03-14 14:13:29 -07:00
|
|
|
return it->second = result;
|
2018-07-04 10:43:29 -07:00
|
|
|
}
|
|
|
|
|
2018-10-25 15:46:10 -07:00
|
|
|
ArrayAttr ArrayAttr::get(ArrayRef<Attribute> value, MLIRContext *context) {
|
2018-07-04 10:43:29 -07:00
|
|
|
auto &impl = context->getImpl();
|
|
|
|
|
2019-03-14 14:13:29 -07:00
|
|
|
// Safely get or create an attribute instance.
|
|
|
|
return safeGetOrCreate(impl.arrayAttrs, value, impl.attributeMutex, [&] {
|
|
|
|
auto *result = impl.attributeAllocator.Allocate<ArrayAttributeStorage>();
|
2018-07-04 10:43:29 -07:00
|
|
|
|
2019-03-14 14:13:29 -07:00
|
|
|
// Copy the elements into the bump pointer.
|
|
|
|
value = copyArrayRefInto(impl.attributeAllocator, value);
|
2018-08-21 08:42:19 -07:00
|
|
|
|
2019-03-14 14:13:29 -07:00
|
|
|
// Check to see if any of the elements have a function attr.
|
|
|
|
bool hasFunctionAttr = false;
|
|
|
|
for (auto elt : value)
|
|
|
|
if (elt.isOrContainsFunction()) {
|
|
|
|
hasFunctionAttr = true;
|
|
|
|
break;
|
|
|
|
}
|
2018-06-23 18:09:09 -07:00
|
|
|
|
2019-03-14 14:13:29 -07:00
|
|
|
// Initialize the memory using placement new.
|
|
|
|
return new (result)
|
|
|
|
ArrayAttributeStorage{{Attribute::Kind::Array, hasFunctionAttr}, value};
|
|
|
|
});
|
2018-06-23 18:09:09 -07:00
|
|
|
}
|
2018-06-29 18:09:29 -07:00
|
|
|
|
2018-10-25 15:46:10 -07:00
|
|
|
AffineMapAttr AffineMapAttr::get(AffineMap value) {
|
2018-10-09 16:39:24 -07:00
|
|
|
auto *context = value.getResult(0).getContext();
|
2019-03-14 14:13:29 -07:00
|
|
|
auto &impl = context->getImpl();
|
2018-07-18 16:29:21 -07:00
|
|
|
|
2019-03-14 14:13:29 -07:00
|
|
|
// Safely get or create an attribute instance.
|
|
|
|
return safeGetOrCreate(impl.affineMapAttrs, value, impl.attributeMutex, [&] {
|
|
|
|
auto result = impl.attributeAllocator.Allocate<AffineMapAttributeStorage>();
|
|
|
|
return new (result)
|
|
|
|
AffineMapAttributeStorage{{Attribute::Kind::AffineMap,
|
|
|
|
/*isOrContainsFunction=*/false},
|
|
|
|
value};
|
|
|
|
});
|
2018-07-18 16:29:21 -07:00
|
|
|
}
|
|
|
|
|
2018-10-25 22:13:03 -07:00
|
|
|
IntegerSetAttr IntegerSetAttr::get(IntegerSet value) {
|
|
|
|
auto *context = value.getConstraint(0).getContext();
|
2019-03-14 14:13:29 -07:00
|
|
|
auto &impl = context->getImpl();
|
2018-10-25 22:13:03 -07:00
|
|
|
|
2019-03-14 14:13:29 -07:00
|
|
|
// Safely get or create an attribute instance.
|
|
|
|
return safeGetOrCreate(impl.integerSetAttrs, value, impl.attributeMutex, [&] {
|
|
|
|
auto result =
|
|
|
|
impl.attributeAllocator.Allocate<IntegerSetAttributeStorage>();
|
|
|
|
return new (result)
|
|
|
|
IntegerSetAttributeStorage{{Attribute::Kind::IntegerSet,
|
|
|
|
/*isOrContainsFunction=*/false},
|
|
|
|
value};
|
|
|
|
});
|
2018-10-25 22:13:03 -07:00
|
|
|
}
|
|
|
|
|
2018-10-30 14:59:22 -07:00
|
|
|
TypeAttr TypeAttr::get(Type type, MLIRContext *context) {
|
2019-03-14 14:13:29 -07:00
|
|
|
auto &impl = context->getImpl();
|
2018-08-03 01:54:46 -07:00
|
|
|
|
2019-03-14 14:13:29 -07:00
|
|
|
// Safely get or create an attribute instance.
|
|
|
|
return safeGetOrCreate(impl.typeAttrs, type, impl.attributeMutex, [&] {
|
|
|
|
auto result = impl.attributeAllocator.Allocate<TypeAttributeStorage>();
|
|
|
|
return new (result) TypeAttributeStorage{{Attribute::Kind::Type,
|
|
|
|
/*isOrContainsFunction=*/false},
|
|
|
|
type};
|
|
|
|
});
|
2018-08-03 01:54:46 -07:00
|
|
|
}
|
|
|
|
|
2018-10-25 15:46:10 -07:00
|
|
|
FunctionAttr FunctionAttr::get(const Function *value, MLIRContext *context) {
|
2018-08-21 17:55:22 -07:00
|
|
|
assert(value && "Cannot get FunctionAttr for a null function");
|
2019-03-14 14:13:29 -07:00
|
|
|
auto &impl = context->getImpl();
|
2018-08-21 17:55:22 -07:00
|
|
|
|
2019-03-14 14:13:29 -07:00
|
|
|
// Safely get or create an attribute instance.
|
|
|
|
return safeGetOrCreate(impl.functionAttrs, value, impl.attributeMutex, [&] {
|
|
|
|
auto result = impl.attributeAllocator.Allocate<FunctionAttributeStorage>();
|
|
|
|
return new (result)
|
|
|
|
FunctionAttributeStorage{{Attribute::Kind::Function,
|
|
|
|
/*isOrContainsFunction=*/true},
|
|
|
|
const_cast<Function *>(value)};
|
|
|
|
});
|
2018-08-19 21:17:22 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
/// This function is used by the internals of the Function class to null out
|
|
|
|
/// attributes refering to functions that are about to be deleted.
|
|
|
|
void FunctionAttr::dropFunctionReference(Function *value) {
|
2019-03-14 14:13:29 -07:00
|
|
|
auto &impl = value->getContext()->getImpl();
|
|
|
|
|
|
|
|
// Aquire the mutex in write mode so that we can safely remove the attribute
|
|
|
|
// if it exists.
|
|
|
|
llvm::sys::SmartScopedWriter<true> attributeLock(impl.attributeMutex);
|
|
|
|
|
2018-08-19 21:17:22 -07:00
|
|
|
// Check to see if there was an attribute referring to this function.
|
2019-03-14 14:13:29 -07:00
|
|
|
auto &functionAttrs = impl.functionAttrs;
|
2018-08-19 21:17:22 -07:00
|
|
|
|
|
|
|
// If not, then we're done.
|
|
|
|
auto it = functionAttrs.find(value);
|
|
|
|
if (it == functionAttrs.end())
|
|
|
|
return;
|
|
|
|
|
|
|
|
// If so, null out the function reference in the attribute (to avoid dangling
|
|
|
|
// pointers) and remove the entry from the map so the map doesn't contain
|
|
|
|
// dangling keys.
|
|
|
|
it->second->value = nullptr;
|
|
|
|
functionAttrs.erase(it);
|
|
|
|
}
|
|
|
|
|
2018-07-05 21:20:59 -07:00
|
|
|
/// Perform a three-way comparison between the names of the specified
|
|
|
|
/// NamedAttributes.
|
|
|
|
static int compareNamedAttributes(const NamedAttribute *lhs,
|
|
|
|
const NamedAttribute *rhs) {
|
|
|
|
return lhs->first.str().compare(rhs->first.str());
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Given a list of NamedAttribute's, canonicalize the list (sorting
|
|
|
|
/// by name) and return the unique'd result. Note that the empty list is
|
|
|
|
/// represented with a null pointer.
|
|
|
|
AttributeListStorage *AttributeListStorage::get(ArrayRef<NamedAttribute> attrs,
|
|
|
|
MLIRContext *context) {
|
|
|
|
// We need to sort the element list to canonicalize it, but we also don't want
|
|
|
|
// to do a ton of work in the super common case where the element list is
|
|
|
|
// already sorted.
|
|
|
|
SmallVector<NamedAttribute, 8> storage;
|
|
|
|
switch (attrs.size()) {
|
|
|
|
case 0:
|
|
|
|
// An empty list is represented with a null pointer.
|
|
|
|
return nullptr;
|
|
|
|
case 1:
|
|
|
|
// A single element is already sorted.
|
|
|
|
break;
|
|
|
|
case 2:
|
|
|
|
// Don't invoke a general sort for two element case.
|
|
|
|
if (attrs[0].first.str() > attrs[1].first.str()) {
|
|
|
|
storage.push_back(attrs[1]);
|
|
|
|
storage.push_back(attrs[0]);
|
|
|
|
attrs = storage;
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
// Check to see they are sorted already.
|
|
|
|
bool isSorted = true;
|
|
|
|
for (unsigned i = 0, e = attrs.size() - 1; i != e; ++i) {
|
|
|
|
if (attrs[i].first.str() > attrs[i + 1].first.str()) {
|
|
|
|
isSorted = false;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// If not, do a general sort.
|
|
|
|
if (!isSorted) {
|
|
|
|
storage.append(attrs.begin(), attrs.end());
|
|
|
|
llvm::array_pod_sort(storage.begin(), storage.end(),
|
|
|
|
compareNamedAttributes);
|
|
|
|
attrs = storage;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
auto &impl = context->getImpl();
|
|
|
|
|
2019-03-14 14:13:29 -07:00
|
|
|
// Safely get or create an attribute instance.
|
|
|
|
return safeGetOrCreate(impl.attributeLists, attrs, impl.attributeMutex, [&] {
|
|
|
|
auto byteSize =
|
|
|
|
AttributeListStorage::totalSizeToAlloc<NamedAttribute>(attrs.size());
|
|
|
|
auto rawMem =
|
|
|
|
impl.attributeAllocator.Allocate(byteSize, alignof(NamedAttribute));
|
|
|
|
|
|
|
|
// Placement initialize the AggregateSymbolicValue.
|
|
|
|
auto result = ::new (rawMem) AttributeListStorage(attrs.size());
|
|
|
|
std::uninitialized_copy(attrs.begin(), attrs.end(),
|
|
|
|
result->getTrailingObjects<NamedAttribute>());
|
|
|
|
return result;
|
|
|
|
});
|
2018-10-23 13:44:04 -07:00
|
|
|
}
|
|
|
|
|
2019-01-21 11:24:16 -08:00
|
|
|
// Returns false if the given `attr` is not of the given `type`.
|
|
|
|
// Note: This function is only intended to be used for assertion. So it's
|
|
|
|
// possibly allowing invalid cases that are unimplemented.
|
|
|
|
static bool attrIsOfType(Attribute attr, Type type) {
|
|
|
|
if (auto floatAttr = attr.dyn_cast<FloatAttr>())
|
|
|
|
return floatAttr.getType() == type;
|
|
|
|
if (auto intAttr = attr.dyn_cast<IntegerAttr>())
|
|
|
|
return intAttr.getType() == type;
|
|
|
|
if (auto elementsAttr = attr.dyn_cast<ElementsAttr>())
|
|
|
|
return elementsAttr.getType() == type;
|
|
|
|
// TODO: check the other cases
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2018-10-30 14:59:22 -07:00
|
|
|
SplatElementsAttr SplatElementsAttr::get(VectorOrTensorType type,
|
2018-10-25 15:46:10 -07:00
|
|
|
Attribute elt) {
|
2019-02-03 06:15:43 -08:00
|
|
|
auto attr = elt.dyn_cast<NumericAttr>();
|
|
|
|
assert(attr && "expected numeric value");
|
|
|
|
assert(attr.getType() == type.getElementType() &&
|
|
|
|
"value should be of the given type");
|
|
|
|
(void)attr;
|
2019-01-21 11:24:16 -08:00
|
|
|
|
2018-10-30 14:59:22 -07:00
|
|
|
auto &impl = type.getContext()->getImpl();
|
2018-10-23 13:44:04 -07:00
|
|
|
|
2019-03-14 14:13:29 -07:00
|
|
|
// Safely get or create an attribute instance.
|
|
|
|
std::pair<Type, Attribute> key(type, elt);
|
|
|
|
return safeGetOrCreate(
|
|
|
|
impl.splatElementsAttrs, key, impl.attributeMutex, [&] {
|
|
|
|
auto result =
|
|
|
|
impl.attributeAllocator.Allocate<SplatElementsAttributeStorage>();
|
|
|
|
return new (result)
|
|
|
|
SplatElementsAttributeStorage{{{Attribute::Kind::SplatElements,
|
|
|
|
/*isOrContainsFunction=*/false},
|
|
|
|
type},
|
|
|
|
elt};
|
|
|
|
});
|
2018-10-10 08:57:51 -07:00
|
|
|
}
|
|
|
|
|
2018-10-30 14:59:22 -07:00
|
|
|
DenseElementsAttr DenseElementsAttr::get(VectorOrTensorType type,
|
2018-10-25 15:46:10 -07:00
|
|
|
ArrayRef<char> data) {
|
2018-12-17 10:05:56 -08:00
|
|
|
auto bitsRequired = type.getSizeInBits();
|
2018-10-30 07:54:23 -07:00
|
|
|
(void)bitsRequired;
|
2019-02-25 12:32:43 -08:00
|
|
|
assert((bitsRequired <= data.size() * APInt::APINT_WORD_SIZE) &&
|
2018-10-18 13:54:44 -07:00
|
|
|
"Input data bit size should be larger than that type requires");
|
|
|
|
|
2018-10-30 14:59:22 -07:00
|
|
|
auto &impl = type.getContext()->getImpl();
|
2018-10-18 13:54:44 -07:00
|
|
|
DenseElementsAttrInfo::KeyTy key({type, data});
|
|
|
|
|
2019-03-14 14:13:29 -07:00
|
|
|
// Safely get or create an attribute instance.
|
|
|
|
return safeGetOrCreate(
|
|
|
|
impl.denseElementsAttrs, key, impl.attributeMutex, [&] {
|
|
|
|
Attribute::Kind kind;
|
|
|
|
switch (type.getElementType().getKind()) {
|
|
|
|
case StandardTypes::BF16:
|
|
|
|
case StandardTypes::F16:
|
|
|
|
case StandardTypes::F32:
|
|
|
|
case StandardTypes::F64:
|
|
|
|
kind = Attribute::Kind::DenseFPElements;
|
|
|
|
break;
|
|
|
|
case StandardTypes::Integer:
|
|
|
|
kind = Attribute::Kind::DenseIntElements;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
llvm_unreachable("unexpected element type");
|
|
|
|
}
|
|
|
|
|
|
|
|
auto *copy = (char *)impl.attributeAllocator.Allocate(data.size(), 64);
|
|
|
|
std::uninitialized_copy(data.begin(), data.end(), copy);
|
|
|
|
auto *result =
|
|
|
|
impl.attributeAllocator.Allocate<DenseElementsAttributeStorage>();
|
|
|
|
new (result) DenseElementsAttributeStorage{
|
|
|
|
{{kind, /*isOrContainsFunction=*/false}, type},
|
|
|
|
{copy, data.size()}};
|
|
|
|
return result;
|
|
|
|
});
|
2019-01-17 14:11:05 -08:00
|
|
|
}
|
|
|
|
|
|
|
|
DenseElementsAttr DenseElementsAttr::get(VectorOrTensorType type,
|
|
|
|
ArrayRef<Attribute> values) {
|
|
|
|
assert(type.getElementType().isIntOrFloat() &&
|
|
|
|
"expected int or float element type");
|
2019-01-18 12:23:47 -08:00
|
|
|
assert(values.size() == type.getNumElements() &&
|
|
|
|
"expected 'values' to contain the same number of elements as 'type'");
|
2019-01-17 14:11:05 -08:00
|
|
|
|
2019-01-19 20:54:09 -08:00
|
|
|
// FIXME(b/121118307): using 64 bits for BF16 because it is currently stored
|
|
|
|
// with double semantics.
|
2019-01-17 14:11:05 -08:00
|
|
|
auto eltType = type.getElementType();
|
|
|
|
size_t bitWidth = eltType.isBF16() ? 64 : eltType.getIntOrFloatBitWidth();
|
|
|
|
|
|
|
|
// Compress the attribute values into a character buffer.
|
2019-02-25 12:32:43 -08:00
|
|
|
SmallVector<char, 8> data(APInt::getNumWords(bitWidth * values.size()) *
|
|
|
|
APInt::APINT_WORD_SIZE);
|
|
|
|
APInt intVal;
|
2019-01-17 14:11:05 -08:00
|
|
|
for (unsigned i = 0, e = values.size(); i < e; ++i) {
|
|
|
|
switch (eltType.getKind()) {
|
|
|
|
case StandardTypes::BF16:
|
|
|
|
case StandardTypes::F16:
|
|
|
|
case StandardTypes::F32:
|
|
|
|
case StandardTypes::F64:
|
|
|
|
assert(eltType == values[i].cast<FloatAttr>().getType() &&
|
|
|
|
"expected attribute value to have element type");
|
|
|
|
intVal = values[i].cast<FloatAttr>().getValue().bitcastToAPInt();
|
|
|
|
break;
|
|
|
|
case StandardTypes::Integer:
|
|
|
|
assert(eltType == values[i].cast<IntegerAttr>().getType() &&
|
|
|
|
"expected attribute value to have element type");
|
|
|
|
intVal = values[i].cast<IntegerAttr>().getValue();
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
llvm_unreachable("unexpected element type");
|
|
|
|
}
|
|
|
|
assert(intVal.getBitWidth() == bitWidth &&
|
|
|
|
"expected value to have same bitwidth as element type");
|
2019-02-25 12:32:43 -08:00
|
|
|
writeBits(data.data(), i * bitWidth, intVal);
|
2019-01-17 14:11:05 -08:00
|
|
|
}
|
|
|
|
return get(type, data);
|
2018-10-18 13:54:44 -07:00
|
|
|
}
|
|
|
|
|
2019-02-11 22:51:34 -08:00
|
|
|
OpaqueElementsAttr OpaqueElementsAttr::get(Dialect *dialect,
|
|
|
|
VectorOrTensorType type,
|
2018-10-25 15:46:10 -07:00
|
|
|
StringRef bytes) {
|
2018-11-08 13:47:19 -08:00
|
|
|
assert(TensorType::isValidElementType(type.getElementType()) &&
|
2018-10-25 15:46:10 -07:00
|
|
|
"Input element type should be a valid tensor element type");
|
2018-10-18 13:54:44 -07:00
|
|
|
|
2018-10-30 14:59:22 -07:00
|
|
|
auto &impl = type.getContext()->getImpl();
|
2019-02-11 22:51:34 -08:00
|
|
|
OpaqueElementsAttrInfo::KeyTy key(dialect, type, bytes);
|
|
|
|
|
2019-03-14 14:13:29 -07:00
|
|
|
return safeGetOrCreate(
|
|
|
|
impl.opaqueElementsAttrs, key, impl.attributeMutex, [&] {
|
|
|
|
auto *result =
|
|
|
|
impl.attributeAllocator.Allocate<OpaqueElementsAttributeStorage>();
|
|
|
|
|
|
|
|
// TODO: Provide a way to avoid copying content of large opaque tensors
|
|
|
|
// This will likely require a new reference attribute kind.
|
|
|
|
bytes = bytes.copy(impl.attributeAllocator);
|
|
|
|
return new (result) OpaqueElementsAttributeStorage{
|
|
|
|
{{Attribute::Kind::OpaqueElements, /*isOrContainsFunction=*/false},
|
|
|
|
type},
|
|
|
|
dialect,
|
|
|
|
bytes};
|
|
|
|
});
|
2018-07-05 21:20:59 -07:00
|
|
|
}
|
|
|
|
|
2018-10-30 14:59:22 -07:00
|
|
|
SparseElementsAttr SparseElementsAttr::get(VectorOrTensorType type,
|
2018-10-25 15:46:10 -07:00
|
|
|
DenseIntElementsAttr indices,
|
|
|
|
DenseElementsAttr values) {
|
2019-01-19 20:54:09 -08:00
|
|
|
assert(indices.getType().getElementType().isInteger(64) &&
|
|
|
|
"expected sparse indices to be 64-bit integer values");
|
|
|
|
|
2018-10-30 14:59:22 -07:00
|
|
|
auto &impl = type.getContext()->getImpl();
|
Add support to constant sparse tensor / vector attribute
The SparseElementsAttr uses (COO) Coordinate List encoding to represents a
sparse tensor / vector. Specifically, the coordinates and values are stored as
two dense elements attributes. The first dense elements attribute is a 2-D
attribute with shape [N, ndims], which contains the indices of the elements
with nonzero values in the constant vector/tensor. The second elements
attribute is a 1-D attribute list with shape [N], which supplies the values for
each element in the first elements attribute. ndims is the rank of the
vector/tensor and N is the total nonzero elements.
The syntax is:
`sparse<` (tensor-type | vector-type)`, ` indices-attribute-list, values-attribute-list `>`
Example: a sparse tensor
sparse<vector<3x4xi32>, [[0, 0], [1, 2]], [1, 2]> represents the dense tensor
[[1, 0, 0, 0]
[0, 0, 2, 0]
[0, 0, 0, 0]]
PiperOrigin-RevId: 217764319
2018-10-18 14:02:20 -07:00
|
|
|
auto key = std::make_tuple(type, indices, values);
|
|
|
|
|
2019-03-14 14:13:29 -07:00
|
|
|
// Safely get or create an attribute instance.
|
|
|
|
return safeGetOrCreate(
|
|
|
|
impl.sparseElementsAttrs, key, impl.attributeMutex, [&] {
|
|
|
|
auto result =
|
|
|
|
impl.attributeAllocator.Allocate<SparseElementsAttributeStorage>();
|
|
|
|
return new (result)
|
|
|
|
SparseElementsAttributeStorage{{{Attribute::Kind::SparseElements,
|
|
|
|
/*isOrContainsFunction=*/false},
|
|
|
|
type},
|
|
|
|
indices,
|
|
|
|
values};
|
|
|
|
});
|
Add support to constant sparse tensor / vector attribute
The SparseElementsAttr uses (COO) Coordinate List encoding to represents a
sparse tensor / vector. Specifically, the coordinates and values are stored as
two dense elements attributes. The first dense elements attribute is a 2-D
attribute with shape [N, ndims], which contains the indices of the elements
with nonzero values in the constant vector/tensor. The second elements
attribute is a 1-D attribute list with shape [N], which supplies the values for
each element in the first elements attribute. ndims is the rank of the
vector/tensor and N is the total nonzero elements.
The syntax is:
`sparse<` (tensor-type | vector-type)`, ` indices-attribute-list, values-attribute-list `>`
Example: a sparse tensor
sparse<vector<3x4xi32>, [[0, 0], [1, 2]], [1, 2]> represents the dense tensor
[[1, 0, 0, 0]
[0, 0, 2, 0]
[0, 0, 0, 0]]
PiperOrigin-RevId: 217764319
2018-10-18 14:02:20 -07:00
|
|
|
}
|
|
|
|
|
2018-07-04 10:43:29 -07:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// AffineMap and AffineExpr uniquing
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2018-10-09 16:39:24 -07:00
|
|
|
AffineMap AffineMap::get(unsigned dimCount, unsigned symbolCount,
|
|
|
|
ArrayRef<AffineExpr> results,
|
|
|
|
ArrayRef<AffineExpr> rangeSizes) {
|
2018-07-03 20:16:08 -07:00
|
|
|
// The number of results can't be zero.
|
|
|
|
assert(!results.empty());
|
|
|
|
|
2018-07-11 21:31:07 -07:00
|
|
|
assert(rangeSizes.empty() || results.size() == rangeSizes.size());
|
|
|
|
|
2018-10-09 10:59:27 -07:00
|
|
|
auto &impl = results[0].getContext()->getImpl();
|
2018-07-03 20:16:08 -07:00
|
|
|
|
|
|
|
// Check if we already have this affine map.
|
2018-07-11 21:31:07 -07:00
|
|
|
auto key = std::make_tuple(dimCount, symbolCount, results, rangeSizes);
|
2019-01-26 10:41:17 -08:00
|
|
|
auto existing = impl.affineMaps.insert_as(AffineMap(), key);
|
2018-07-03 20:16:08 -07:00
|
|
|
|
|
|
|
// If we already have it, return that value.
|
|
|
|
if (!existing.second)
|
|
|
|
return *existing.first;
|
|
|
|
|
|
|
|
// On the first use, we allocate them into the bump pointer.
|
2018-10-09 16:39:24 -07:00
|
|
|
auto *res = impl.allocator.Allocate<detail::AffineMapStorage>();
|
2018-07-03 20:16:08 -07:00
|
|
|
|
2018-07-12 18:04:04 -07:00
|
|
|
// Copy the results and range sizes into the bump pointer.
|
2019-03-14 14:13:29 -07:00
|
|
|
results = copyArrayRefInto(impl.allocator, results);
|
|
|
|
rangeSizes = copyArrayRefInto(impl.allocator, rangeSizes);
|
2018-07-11 21:31:07 -07:00
|
|
|
|
2018-07-03 20:16:08 -07:00
|
|
|
// Initialize the memory using placement new.
|
2018-10-25 08:33:02 -07:00
|
|
|
new (res)
|
|
|
|
detail::AffineMapStorage{dimCount, symbolCount, results, rangeSizes};
|
2018-07-03 20:16:08 -07:00
|
|
|
|
|
|
|
// Cache and return it.
|
2018-10-09 16:39:24 -07:00
|
|
|
return *existing.first = AffineMap(res);
|
2018-06-29 18:09:29 -07:00
|
|
|
}
|
|
|
|
|
2018-10-08 10:20:25 -07:00
|
|
|
/// Simplify add expression. Return nullptr if it can't be simplified.
|
2018-10-08 13:47:18 -07:00
|
|
|
static AffineExpr simplifyAdd(AffineExpr lhs, AffineExpr rhs) {
|
|
|
|
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
|
|
|
|
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
|
2018-10-08 10:20:25 -07:00
|
|
|
// Fold if both LHS, RHS are a constant.
|
|
|
|
if (lhsConst && rhsConst)
|
2018-10-09 10:59:27 -07:00
|
|
|
return getAffineConstantExpr(lhsConst.getValue() + rhsConst.getValue(),
|
|
|
|
lhs.getContext());
|
2018-10-08 10:20:25 -07:00
|
|
|
|
|
|
|
// Canonicalize so that only the RHS is a constant. (4 + d0 becomes d0 + 4).
|
|
|
|
// If only one of them is a symbolic expressions, make it the RHS.
|
2018-10-08 13:47:18 -07:00
|
|
|
if (lhs.isa<AffineConstantExpr>() ||
|
2018-10-09 10:59:27 -07:00
|
|
|
(lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant())) {
|
2018-10-08 10:20:25 -07:00
|
|
|
return rhs + lhs;
|
|
|
|
}
|
|
|
|
|
|
|
|
// At this point, if there was a constant, it would be on the right.
|
|
|
|
|
|
|
|
// Addition with a zero is a noop, return the other input.
|
|
|
|
if (rhsConst) {
|
2018-10-09 10:59:27 -07:00
|
|
|
if (rhsConst.getValue() == 0)
|
2018-10-08 10:20:25 -07:00
|
|
|
return lhs;
|
|
|
|
}
|
|
|
|
// Fold successive additions like (d0 + 2) + 3 into d0 + 5.
|
2018-10-08 13:47:18 -07:00
|
|
|
auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
|
2018-10-09 10:59:27 -07:00
|
|
|
if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Add) {
|
|
|
|
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>())
|
|
|
|
return lBin.getLHS() + (lrhs.getValue() + rhsConst.getValue());
|
2018-10-08 10:20:25 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
// When doing successive additions, bring constant to the right: turn (d0 + 2)
|
|
|
|
// + d1 into (d0 + d1) + 2.
|
2018-10-09 10:59:27 -07:00
|
|
|
if (lBin && lBin.getKind() == AffineExprKind::Add) {
|
|
|
|
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
|
|
|
|
return lBin.getLHS() + rhs + lrhs;
|
2018-10-08 10:20:25 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
Convert expr - c * (expr floordiv c) to expr mod c in AffineExpr
- Detect 'mod' to replace the combination of floordiv, mul, and subtract when
possible at construction time; when 'c' is a power of two, this reduces the number of
operations; also more compact and readable. Update simplifyAdd for this.
On a side note:
- with the affine expr flattening we have, a mod expression like d0 mod c
would be flattened into d0 - c * q, c * q <= d0 <= c*q + c - 1, with 'q'
being added as the local variable (q = d0 floordiv c); as a result, a mod
was turned into a floordiv whenever the expression was reconstructed back,
i.e., as d0 - c * (d0 floordiv c); as a result of this change, we recover
the mod back.
- rename SimplifyAffineExpr -> SimplifyAffineStructures (pass had been renamed but
the file hadn't been).
PiperOrigin-RevId: 228258120
2019-01-07 16:35:06 -08:00
|
|
|
// Detect and transform "expr - c * (expr floordiv c)" to "expr mod c". This
|
|
|
|
// leads to a much more efficient form when 'c' is a power of two, and in
|
|
|
|
// general a more compact and readable form.
|
|
|
|
|
|
|
|
// Process '(expr floordiv c) * (-c)'.
|
|
|
|
AffineBinaryOpExpr rBinOpExpr = rhs.dyn_cast<AffineBinaryOpExpr>();
|
|
|
|
if (!rBinOpExpr)
|
|
|
|
return nullptr;
|
|
|
|
|
|
|
|
auto lrhs = rBinOpExpr.getLHS();
|
|
|
|
auto rrhs = rBinOpExpr.getRHS();
|
|
|
|
|
|
|
|
// Process lrhs, which is 'expr floordiv c'.
|
|
|
|
AffineBinaryOpExpr lrBinOpExpr = lrhs.dyn_cast<AffineBinaryOpExpr>();
|
|
|
|
if (!lrBinOpExpr)
|
|
|
|
return nullptr;
|
|
|
|
|
|
|
|
auto llrhs = lrBinOpExpr.getLHS();
|
|
|
|
auto rlrhs = lrBinOpExpr.getRHS();
|
|
|
|
|
|
|
|
if (lhs == llrhs && rlrhs == -rrhs) {
|
|
|
|
return lhs % rlrhs;
|
|
|
|
}
|
2018-10-08 10:20:25 -07:00
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
/// Simplify a multiply expression. Return nullptr if it can't be simplified.
|
2018-10-08 13:47:18 -07:00
|
|
|
static AffineExpr simplifyMul(AffineExpr lhs, AffineExpr rhs) {
|
|
|
|
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
|
|
|
|
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
|
2018-10-08 10:20:25 -07:00
|
|
|
|
|
|
|
if (lhsConst && rhsConst)
|
2018-10-09 10:59:27 -07:00
|
|
|
return getAffineConstantExpr(lhsConst.getValue() * rhsConst.getValue(),
|
|
|
|
lhs.getContext());
|
2018-10-08 10:20:25 -07:00
|
|
|
|
2018-10-09 10:59:27 -07:00
|
|
|
assert(lhs.isSymbolicOrConstant() || rhs.isSymbolicOrConstant());
|
2018-10-08 10:20:25 -07:00
|
|
|
|
|
|
|
// Canonicalize the mul expression so that the constant/symbolic term is the
|
|
|
|
// RHS. If both the lhs and rhs are symbolic, swap them if the lhs is a
|
|
|
|
// constant. (Note that a constant is trivially symbolic).
|
2018-10-09 10:59:27 -07:00
|
|
|
if (!rhs.isSymbolicOrConstant() || lhs.isa<AffineConstantExpr>()) {
|
2018-10-08 10:20:25 -07:00
|
|
|
// At least one of them has to be symbolic.
|
|
|
|
return rhs * lhs;
|
|
|
|
}
|
|
|
|
|
|
|
|
// At this point, if there was a constant, it would be on the right.
|
|
|
|
|
|
|
|
// Multiplication with a one is a noop, return the other input.
|
|
|
|
if (rhsConst) {
|
2018-10-09 10:59:27 -07:00
|
|
|
if (rhsConst.getValue() == 1)
|
2018-10-08 10:20:25 -07:00
|
|
|
return lhs;
|
|
|
|
// Multiplication with zero.
|
2018-10-09 10:59:27 -07:00
|
|
|
if (rhsConst.getValue() == 0)
|
2018-10-08 10:20:25 -07:00
|
|
|
return rhsConst;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Fold successive multiplications: eg: (d0 * 2) * 3 into d0 * 6.
|
2018-10-08 13:47:18 -07:00
|
|
|
auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
|
2018-10-09 10:59:27 -07:00
|
|
|
if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Mul) {
|
|
|
|
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>())
|
|
|
|
return lBin.getLHS() * (lrhs.getValue() * rhsConst.getValue());
|
2018-10-08 10:20:25 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
// When doing successive multiplication, bring constant to the right: turn (d0
|
|
|
|
// * 2) * d1 into (d0 * d1) * 2.
|
2018-10-09 10:59:27 -07:00
|
|
|
if (lBin && lBin.getKind() == AffineExprKind::Mul) {
|
|
|
|
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
|
|
|
|
return (lBin.getLHS() * rhs) * lrhs;
|
2018-10-08 10:20:25 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
2018-10-08 13:47:18 -07:00
|
|
|
static AffineExpr simplifyFloorDiv(AffineExpr lhs, AffineExpr rhs) {
|
|
|
|
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
|
|
|
|
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
|
2018-10-08 10:20:25 -07:00
|
|
|
|
2018-10-10 11:12:59 -07:00
|
|
|
if (!rhsConst || rhsConst.getValue() < 1)
|
|
|
|
return nullptr;
|
|
|
|
|
|
|
|
if (lhsConst)
|
2018-10-08 10:20:25 -07:00
|
|
|
return getAffineConstantExpr(
|
2018-10-09 10:59:27 -07:00
|
|
|
floorDiv(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext());
|
2018-10-08 10:20:25 -07:00
|
|
|
|
|
|
|
// Fold floordiv of a multiply with a constant that is a multiple of the
|
|
|
|
// divisor. Eg: (i * 128) floordiv 64 = i * 2.
|
2018-10-10 11:12:59 -07:00
|
|
|
if (rhsConst.getValue() == 1)
|
|
|
|
return lhs;
|
2018-10-08 10:20:25 -07:00
|
|
|
|
2018-10-10 11:12:59 -07:00
|
|
|
auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
|
|
|
|
if (lBin && lBin.getKind() == AffineExprKind::Mul) {
|
|
|
|
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
|
|
|
|
// rhsConst is known to be positive if a constant.
|
|
|
|
if (lrhs.getValue() % rhsConst.getValue() == 0)
|
|
|
|
return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue());
|
2018-10-08 10:20:25 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
2018-10-08 13:47:18 -07:00
|
|
|
static AffineExpr simplifyCeilDiv(AffineExpr lhs, AffineExpr rhs) {
|
|
|
|
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
|
|
|
|
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
|
2018-10-08 10:20:25 -07:00
|
|
|
|
2018-10-10 11:12:59 -07:00
|
|
|
if (!rhsConst || rhsConst.getValue() < 1)
|
|
|
|
return nullptr;
|
|
|
|
|
|
|
|
if (lhsConst)
|
2018-10-08 10:20:25 -07:00
|
|
|
return getAffineConstantExpr(
|
2018-10-09 10:59:27 -07:00
|
|
|
ceilDiv(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext());
|
2018-10-08 10:20:25 -07:00
|
|
|
|
|
|
|
// Fold ceildiv of a multiply with a constant that is a multiple of the
|
|
|
|
// divisor. Eg: (i * 128) ceildiv 64 = i * 2.
|
2018-10-10 11:12:59 -07:00
|
|
|
if (rhsConst.getValue() == 1)
|
|
|
|
return lhs;
|
2018-10-08 10:20:25 -07:00
|
|
|
|
2018-10-10 11:12:59 -07:00
|
|
|
auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
|
|
|
|
if (lBin && lBin.getKind() == AffineExprKind::Mul) {
|
|
|
|
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
|
|
|
|
// rhsConst is known to be positive if a constant.
|
|
|
|
if (lrhs.getValue() % rhsConst.getValue() == 0)
|
|
|
|
return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue());
|
2018-10-08 10:20:25 -07:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
2018-10-08 13:47:18 -07:00
|
|
|
static AffineExpr simplifyMod(AffineExpr lhs, AffineExpr rhs) {
|
|
|
|
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
|
|
|
|
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
|
2018-10-08 10:20:25 -07:00
|
|
|
|
2018-10-10 11:12:59 -07:00
|
|
|
if (!rhsConst || rhsConst.getValue() < 1)
|
|
|
|
return nullptr;
|
|
|
|
|
|
|
|
if (lhsConst)
|
2018-10-09 10:59:27 -07:00
|
|
|
return getAffineConstantExpr(mod(lhsConst.getValue(), rhsConst.getValue()),
|
|
|
|
lhs.getContext());
|
2018-10-08 10:20:25 -07:00
|
|
|
|
|
|
|
// Fold modulo of an expression that is known to be a multiple of a constant
|
|
|
|
// to zero if that constant is a multiple of the modulo factor. Eg: (i * 128)
|
|
|
|
// mod 64 is folded to 0, and less trivially, (i*(j*4*(k*32))) mod 128 = 0.
|
2018-10-10 11:12:59 -07:00
|
|
|
if (lhs.getLargestKnownDivisor() % rhsConst.getValue() == 0)
|
|
|
|
return getAffineConstantExpr(0, lhs.getContext());
|
2018-10-08 10:20:25 -07:00
|
|
|
|
|
|
|
return nullptr;
|
|
|
|
// TODO(bondhugula): In general, this can be simplified more by using the GCD
|
|
|
|
// test, or in general using quantifier elimination (add two new variables q
|
|
|
|
// and r, and eliminate all variables from the linear system other than r. All
|
|
|
|
// of this can be done through mlir/Analysis/'s FlatAffineConstraints.
|
|
|
|
}
|
|
|
|
|
2018-07-11 21:19:31 -07:00
|
|
|
/// Return a binary affine op expression with the specified op type and
|
|
|
|
/// operands: if it doesn't exist, create it and store it; if it is already
|
|
|
|
/// present, return from the list. The stored expressions are unique: they are
|
|
|
|
/// constructed and stored in a simplified/canonicalized form. The result after
|
|
|
|
/// simplification could be any form of affine expression.
|
2018-10-09 10:59:27 -07:00
|
|
|
AffineExpr AffineBinaryOpExprStorage::get(AffineExprKind kind, AffineExpr lhs,
|
|
|
|
AffineExpr rhs) {
|
|
|
|
auto &impl = lhs.getContext()->getImpl();
|
2018-07-03 20:16:08 -07:00
|
|
|
|
2018-07-26 00:19:21 -07:00
|
|
|
// Check if we already have this affine expression, and return it if we do.
|
[RFC][MLIR] Use AffineExprRef in place of AffineExpr* in IR
This CL starts by replacing AffineExpr* with value-type AffineExprRef in a few
places in the IR. By a domino effect that is pretty telling of the
inconsistencies in the codebase, const is removed where it makes sense.
The rationale is that the decision was concisously made that unique'd types
have pointer semantics without const specifier. This is fine but we should be
consistent. In the end, the only logical invariant is that there should never
be such a thing as a const AffineExpr*, const AffineMap* or const IntegerSet*
in our codebase.
This CL takes a number of shortcuts to killing const with fire, in particular
forcing const AffineExprRef to return the underlying non-const
AffineExpr*. This will be removed once AffineExpr* has disappeared in
containers but for now such shortcuts allow a bit of sanity in this long quest
for cleanups.
The **only** places where const AffineExpr*, const AffineMap* or const
IntegerSet* may still appear is by transitive needs from containers,
comparison operators etc.
There is still one major thing remaining here: figure out why cast/dyn_cast
return me a const AffineXXX*, which in turn requires a bunch of ugly
const_casts. I suspect this is due to the classof
taking const AffineXXXExpr*. I wonder whether this is a side effect of 1., if
it is coming from llvm itself (I'd doubt it) or something else (clattner@?)
In light of this, the whole discussion about const makes total sense to me now
and I would systematically apply the rule that in the end, we should never
have any const XXX in our codebase for unique'd types (assuming we can remove
them all in containers and no additional constness constraint is added on us
from the outside world).
PiperOrigin-RevId: 215811554
2018-10-04 15:10:33 -07:00
|
|
|
auto keyValue = std::make_tuple((unsigned)kind, lhs, rhs);
|
2018-07-26 00:19:21 -07:00
|
|
|
auto cached = impl.affineExprs.find(keyValue);
|
|
|
|
if (cached != impl.affineExprs.end())
|
2018-10-09 10:59:27 -07:00
|
|
|
return cached->second;
|
2018-07-09 09:00:25 -07:00
|
|
|
|
2018-07-11 21:19:31 -07:00
|
|
|
// Simplify the expression if possible.
|
2018-10-08 13:47:18 -07:00
|
|
|
AffineExpr simplified;
|
2018-07-11 21:19:31 -07:00
|
|
|
switch (kind) {
|
2018-10-08 10:20:25 -07:00
|
|
|
case AffineExprKind::Add:
|
2018-10-08 13:47:18 -07:00
|
|
|
simplified = simplifyAdd(lhs, rhs);
|
2018-07-11 21:19:31 -07:00
|
|
|
break;
|
2018-10-08 10:20:25 -07:00
|
|
|
case AffineExprKind::Mul:
|
2018-10-08 13:47:18 -07:00
|
|
|
simplified = simplifyMul(lhs, rhs);
|
2018-07-11 21:19:31 -07:00
|
|
|
break;
|
2018-10-08 10:20:25 -07:00
|
|
|
case AffineExprKind::FloorDiv:
|
2018-10-08 13:47:18 -07:00
|
|
|
simplified = simplifyFloorDiv(lhs, rhs);
|
2018-07-11 21:19:31 -07:00
|
|
|
break;
|
2018-10-08 10:20:25 -07:00
|
|
|
case AffineExprKind::CeilDiv:
|
2018-10-08 13:47:18 -07:00
|
|
|
simplified = simplifyCeilDiv(lhs, rhs);
|
2018-07-11 21:19:31 -07:00
|
|
|
break;
|
2018-10-08 10:20:25 -07:00
|
|
|
case AffineExprKind::Mod:
|
2018-10-08 13:47:18 -07:00
|
|
|
simplified = simplifyMod(lhs, rhs);
|
2018-07-11 21:19:31 -07:00
|
|
|
break;
|
|
|
|
default:
|
|
|
|
llvm_unreachable("unexpected binary affine expr");
|
2018-07-03 20:16:08 -07:00
|
|
|
}
|
2018-06-29 18:09:29 -07:00
|
|
|
|
2018-07-26 00:19:21 -07:00
|
|
|
// The simplified one would have already been cached; just return it.
|
2018-07-11 21:19:31 -07:00
|
|
|
if (simplified)
|
2018-10-09 10:59:27 -07:00
|
|
|
return simplified;
|
2018-07-09 09:00:25 -07:00
|
|
|
|
2018-07-26 00:19:21 -07:00
|
|
|
// An expression with these operands will already be in the
|
|
|
|
// simplified/canonical form. Create and store it.
|
2018-10-09 10:59:27 -07:00
|
|
|
auto *result = impl.allocator.Allocate<AffineBinaryOpExprStorage>();
|
2018-07-11 21:19:31 -07:00
|
|
|
// Initialize the memory using placement new.
|
2018-10-09 10:59:27 -07:00
|
|
|
new (result) AffineBinaryOpExprStorage{{kind, lhs.getContext()}, lhs, rhs};
|
2018-07-26 00:19:21 -07:00
|
|
|
bool inserted = impl.affineExprs.insert({keyValue, result}).second;
|
|
|
|
assert(inserted && "the expression shouldn't already exist in the map");
|
|
|
|
(void)inserted;
|
|
|
|
return result;
|
2018-07-03 20:16:08 -07:00
|
|
|
}
|
|
|
|
|
2019-01-07 07:51:23 -08:00
|
|
|
AffineExpr mlir::getAffineBinaryOpExpr(AffineExprKind kind, AffineExpr lhs,
|
|
|
|
AffineExpr rhs) {
|
2019-01-04 07:23:28 -08:00
|
|
|
return AffineBinaryOpExprStorage::get(kind, lhs, rhs);
|
|
|
|
}
|
|
|
|
|
2018-10-08 13:47:18 -07:00
|
|
|
AffineExpr mlir::getAffineDimExpr(unsigned position, MLIRContext *context) {
|
2018-07-24 22:34:09 -07:00
|
|
|
auto &impl = context->getImpl();
|
|
|
|
|
|
|
|
// Check if we need to resize.
|
|
|
|
if (position >= impl.dimExprs.size())
|
|
|
|
impl.dimExprs.resize(position + 1, nullptr);
|
|
|
|
|
|
|
|
auto *&result = impl.dimExprs[position];
|
|
|
|
if (result)
|
|
|
|
return result;
|
|
|
|
|
2018-10-09 10:59:27 -07:00
|
|
|
result = impl.allocator.Allocate<AffineDimExprStorage>();
|
2018-07-24 22:34:09 -07:00
|
|
|
// Initialize the memory using placement new.
|
2018-10-09 10:59:27 -07:00
|
|
|
new (result) AffineDimExprStorage{{AffineExprKind::DimId, context}, position};
|
2018-07-24 22:34:09 -07:00
|
|
|
return result;
|
2018-06-29 18:09:29 -07:00
|
|
|
}
|
|
|
|
|
2018-10-08 13:47:18 -07:00
|
|
|
AffineExpr mlir::getAffineSymbolExpr(unsigned position, MLIRContext *context) {
|
2018-07-24 22:34:09 -07:00
|
|
|
auto &impl = context->getImpl();
|
|
|
|
|
|
|
|
// Check if we need to resize.
|
|
|
|
if (position >= impl.symbolExprs.size())
|
|
|
|
impl.symbolExprs.resize(position + 1, nullptr);
|
|
|
|
|
|
|
|
auto *&result = impl.symbolExprs[position];
|
|
|
|
if (result)
|
|
|
|
return result;
|
|
|
|
|
2018-10-09 10:59:27 -07:00
|
|
|
result = impl.allocator.Allocate<AffineSymbolExprStorage>();
|
2018-07-24 22:34:09 -07:00
|
|
|
// Initialize the memory using placement new.
|
2018-10-09 10:59:27 -07:00
|
|
|
new (result)
|
|
|
|
AffineSymbolExprStorage{{AffineExprKind::SymbolId, context}, position};
|
2018-07-24 22:34:09 -07:00
|
|
|
return result;
|
2018-06-29 18:09:29 -07:00
|
|
|
}
|
|
|
|
|
2018-10-08 13:47:18 -07:00
|
|
|
AffineExpr mlir::getAffineConstantExpr(int64_t constant, MLIRContext *context) {
|
2018-07-24 22:34:09 -07:00
|
|
|
auto &impl = context->getImpl();
|
|
|
|
auto *&result = impl.constExprs[constant];
|
|
|
|
|
|
|
|
if (result)
|
|
|
|
return result;
|
|
|
|
|
2018-10-09 10:59:27 -07:00
|
|
|
result = impl.allocator.Allocate<AffineConstantExprStorage>();
|
2018-07-24 22:34:09 -07:00
|
|
|
// Initialize the memory using placement new.
|
2018-10-09 10:59:27 -07:00
|
|
|
new (result)
|
|
|
|
AffineConstantExprStorage{{AffineExprKind::Constant, context}, constant};
|
2018-07-24 22:34:09 -07:00
|
|
|
return result;
|
2018-06-29 18:09:29 -07:00
|
|
|
}
|
2018-08-07 14:24:38 -07:00
|
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
// Integer Sets: these are allocated into the bump pointer, and are immutable.
|
2018-10-25 08:33:02 -07:00
|
|
|
// Unlike AffineMap's, these are uniqued only if they are small.
|
2018-08-07 14:24:38 -07:00
|
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
2018-10-10 09:45:59 -07:00
|
|
|
IntegerSet IntegerSet::get(unsigned dimCount, unsigned symbolCount,
|
|
|
|
ArrayRef<AffineExpr> constraints,
|
2018-10-25 08:33:02 -07:00
|
|
|
ArrayRef<bool> eqFlags) {
|
|
|
|
// The number of constraints can't be zero.
|
|
|
|
assert(!constraints.empty());
|
|
|
|
assert(constraints.size() == eqFlags.size());
|
2018-08-07 14:24:38 -07:00
|
|
|
|
2018-10-25 08:33:02 -07:00
|
|
|
bool unique = constraints.size() < IntegerSet::kUniquingThreshold;
|
2018-08-07 14:24:38 -07:00
|
|
|
|
2018-10-25 08:33:02 -07:00
|
|
|
auto &impl = constraints[0].getContext()->getImpl();
|
2018-08-07 14:24:38 -07:00
|
|
|
|
2018-10-25 08:33:02 -07:00
|
|
|
std::pair<DenseSet<IntegerSet, IntegerSetKeyInfo>::Iterator, bool> existing;
|
|
|
|
if (unique) {
|
|
|
|
// Check if we already have this integer set.
|
|
|
|
auto key = std::make_tuple(dimCount, symbolCount, constraints, eqFlags);
|
|
|
|
existing = impl.integerSets.insert_as(IntegerSet(nullptr), key);
|
|
|
|
|
|
|
|
// If we already have it, return that value.
|
|
|
|
if (!existing.second)
|
|
|
|
return *existing.first;
|
|
|
|
}
|
|
|
|
|
|
|
|
// On the first use, we allocate them into the bump pointer.
|
|
|
|
auto *res = impl.allocator.Allocate<detail::IntegerSetStorage>();
|
|
|
|
|
|
|
|
// Copy the results and equality flags into the bump pointer.
|
2019-03-14 14:13:29 -07:00
|
|
|
constraints = copyArrayRefInto(impl.allocator, constraints);
|
|
|
|
eqFlags = copyArrayRefInto(impl.allocator, eqFlags);
|
2018-08-07 14:24:38 -07:00
|
|
|
|
|
|
|
// Initialize the memory using placement new.
|
2018-10-25 08:33:02 -07:00
|
|
|
new (res)
|
|
|
|
detail::IntegerSetStorage{dimCount, symbolCount, constraints, eqFlags};
|
|
|
|
|
|
|
|
if (unique)
|
|
|
|
// Cache and return it.
|
|
|
|
return *existing.first = IntegerSet(res);
|
2018-10-10 09:45:59 -07:00
|
|
|
|
|
|
|
return IntegerSet(res);
|
2018-08-07 14:24:38 -07:00
|
|
|
}
|