mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-27 07:26:07 +00:00
2095 lines
83 KiB
C++
2095 lines
83 KiB
C++
![]() |
//===----------------------------------------------------------------------===//
|
||
|
//
|
||
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||
|
// See https://llvm.org/LICENSE.txt for license information.
|
||
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||
|
//
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
||
|
#include "mlir/Dialect/StandardOps/IR/Ops.h"
|
||
|
#include "mlir/Dialect/StandardOps/Utils/Utils.h"
|
||
|
#include "mlir/Dialect/Tensor/IR/Tensor.h"
|
||
|
#include "mlir/IR/AffineMap.h"
|
||
|
#include "mlir/IR/Builders.h"
|
||
|
#include "mlir/IR/BuiltinTypes.h"
|
||
|
#include "mlir/IR/Matchers.h"
|
||
|
#include "mlir/IR/PatternMatch.h"
|
||
|
#include "mlir/IR/TypeUtilities.h"
|
||
|
#include "llvm/ADT/STLExtras.h"
|
||
|
|
||
|
using namespace mlir;
|
||
|
using namespace mlir::memref;
|
||
|
|
||
|
/// Materialize a single constant operation from a given attribute value with
|
||
|
/// the desired resultant type.
|
||
|
Operation *MemRefDialect::materializeConstant(OpBuilder &builder,
|
||
|
Attribute value, Type type,
|
||
|
Location loc) {
|
||
|
return builder.create<mlir::ConstantOp>(loc, type, value);
|
||
|
}
|
||
|
|
||
|
/// Extract int64_t values from the assumed ArrayAttr of IntegerAttr.
|
||
|
static SmallVector<int64_t, 4> extractFromI64ArrayAttr(Attribute attr) {
|
||
|
return llvm::to_vector<4>(
|
||
|
llvm::map_range(attr.cast<ArrayAttr>(), [](Attribute a) -> int64_t {
|
||
|
return a.cast<IntegerAttr>().getInt();
|
||
|
}));
|
||
|
}
|
||
|
|
||
|
/// Helper function to dispatch an OpFoldResult into either the `dynamicVec` if
|
||
|
/// it is a Value or into `staticVec` if it is an IntegerAttr.
|
||
|
/// In the case of a Value, a copy of the `sentinel` value is also pushed to
|
||
|
/// `staticVec`. This is useful to extract mixed static and dynamic entries that
|
||
|
/// come from an AttrSizedOperandSegments trait.
|
||
|
static void dispatchIndexOpFoldResult(OpFoldResult ofr,
|
||
|
SmallVectorImpl<Value> &dynamicVec,
|
||
|
SmallVectorImpl<int64_t> &staticVec,
|
||
|
int64_t sentinel) {
|
||
|
if (auto v = ofr.dyn_cast<Value>()) {
|
||
|
dynamicVec.push_back(v);
|
||
|
staticVec.push_back(sentinel);
|
||
|
return;
|
||
|
}
|
||
|
APInt apInt = ofr.dyn_cast<Attribute>().cast<IntegerAttr>().getValue();
|
||
|
staticVec.push_back(apInt.getSExtValue());
|
||
|
}
|
||
|
|
||
|
static void dispatchIndexOpFoldResults(ArrayRef<OpFoldResult> ofrs,
|
||
|
SmallVectorImpl<Value> &dynamicVec,
|
||
|
SmallVectorImpl<int64_t> &staticVec,
|
||
|
int64_t sentinel) {
|
||
|
for (auto ofr : ofrs)
|
||
|
dispatchIndexOpFoldResult(ofr, dynamicVec, staticVec, sentinel);
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// Common canonicalization pattern support logic
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
/// This is a common class used for patterns of the form
|
||
|
/// "someop(memrefcast) -> someop". It folds the source of any memref.cast
|
||
|
/// into the root operation directly.
|
||
|
static LogicalResult foldMemRefCast(Operation *op) {
|
||
|
bool folded = false;
|
||
|
for (OpOperand &operand : op->getOpOperands()) {
|
||
|
auto cast = operand.get().getDefiningOp<CastOp>();
|
||
|
if (cast && !cast.getOperand().getType().isa<UnrankedMemRefType>()) {
|
||
|
operand.set(cast.getOperand());
|
||
|
folded = true;
|
||
|
}
|
||
|
}
|
||
|
return success(folded);
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// Helpers for GlobalOp
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
static Type getTensorTypeFromMemRefType(Type type) {
|
||
|
if (auto memref = type.dyn_cast<MemRefType>())
|
||
|
return RankedTensorType::get(memref.getShape(), memref.getElementType());
|
||
|
if (auto memref = type.dyn_cast<UnrankedMemRefType>())
|
||
|
return UnrankedTensorType::get(memref.getElementType());
|
||
|
return NoneType::get(type.getContext());
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// AllocOp / AllocaOp
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
template <typename AllocLikeOp>
|
||
|
static LogicalResult verifyAllocLikeOp(AllocLikeOp op) {
|
||
|
static_assert(llvm::is_one_of<AllocLikeOp, AllocOp, AllocaOp>::value,
|
||
|
"applies to only alloc or alloca");
|
||
|
auto memRefType = op.getResult().getType().template dyn_cast<MemRefType>();
|
||
|
if (!memRefType)
|
||
|
return op.emitOpError("result must be a memref");
|
||
|
|
||
|
if (static_cast<int64_t>(op.dynamicSizes().size()) !=
|
||
|
memRefType.getNumDynamicDims())
|
||
|
return op.emitOpError("dimension operand count does not equal memref "
|
||
|
"dynamic dimension count");
|
||
|
|
||
|
unsigned numSymbols = 0;
|
||
|
if (!memRefType.getAffineMaps().empty())
|
||
|
numSymbols = memRefType.getAffineMaps().front().getNumSymbols();
|
||
|
if (op.symbolOperands().size() != numSymbols)
|
||
|
return op.emitOpError(
|
||
|
"symbol operand count does not equal memref symbol count");
|
||
|
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
static LogicalResult verify(AllocOp op) { return verifyAllocLikeOp(op); }
|
||
|
|
||
|
static LogicalResult verify(AllocaOp op) {
|
||
|
// An alloca op needs to have an ancestor with an allocation scope trait.
|
||
|
if (!op->getParentWithTrait<OpTrait::AutomaticAllocationScope>())
|
||
|
return op.emitOpError(
|
||
|
"requires an ancestor op with AutomaticAllocationScope trait");
|
||
|
|
||
|
return verifyAllocLikeOp(op);
|
||
|
}
|
||
|
|
||
|
namespace {
|
||
|
/// Fold constant dimensions into an alloc like operation.
|
||
|
template <typename AllocLikeOp>
|
||
|
struct SimplifyAllocConst : public OpRewritePattern<AllocLikeOp> {
|
||
|
using OpRewritePattern<AllocLikeOp>::OpRewritePattern;
|
||
|
|
||
|
LogicalResult matchAndRewrite(AllocLikeOp alloc,
|
||
|
PatternRewriter &rewriter) const override {
|
||
|
// Check to see if any dimensions operands are constants. If so, we can
|
||
|
// substitute and drop them.
|
||
|
if (llvm::none_of(alloc.getOperands(), [](Value operand) {
|
||
|
return matchPattern(operand, matchConstantIndex());
|
||
|
}))
|
||
|
return failure();
|
||
|
|
||
|
auto memrefType = alloc.getType();
|
||
|
|
||
|
// Ok, we have one or more constant operands. Collect the non-constant ones
|
||
|
// and keep track of the resultant memref type to build.
|
||
|
SmallVector<int64_t, 4> newShapeConstants;
|
||
|
newShapeConstants.reserve(memrefType.getRank());
|
||
|
SmallVector<Value, 4> newOperands;
|
||
|
|
||
|
unsigned dynamicDimPos = 0;
|
||
|
for (unsigned dim = 0, e = memrefType.getRank(); dim < e; ++dim) {
|
||
|
int64_t dimSize = memrefType.getDimSize(dim);
|
||
|
// If this is already static dimension, keep it.
|
||
|
if (dimSize != -1) {
|
||
|
newShapeConstants.push_back(dimSize);
|
||
|
continue;
|
||
|
}
|
||
|
auto *defOp = alloc.getOperand(dynamicDimPos).getDefiningOp();
|
||
|
if (auto constantIndexOp = dyn_cast_or_null<ConstantIndexOp>(defOp)) {
|
||
|
// Dynamic shape dimension will be folded.
|
||
|
newShapeConstants.push_back(constantIndexOp.getValue());
|
||
|
} else {
|
||
|
// Dynamic shape dimension not folded; copy operand from old memref.
|
||
|
newShapeConstants.push_back(-1);
|
||
|
newOperands.push_back(alloc.getOperand(dynamicDimPos));
|
||
|
}
|
||
|
dynamicDimPos++;
|
||
|
}
|
||
|
|
||
|
// Create new memref type (which will have fewer dynamic dimensions).
|
||
|
MemRefType newMemRefType =
|
||
|
MemRefType::Builder(memrefType).setShape(newShapeConstants);
|
||
|
assert(static_cast<int64_t>(newOperands.size()) ==
|
||
|
newMemRefType.getNumDynamicDims());
|
||
|
|
||
|
// Create and insert the alloc op for the new memref.
|
||
|
auto newAlloc = rewriter.create<AllocLikeOp>(alloc.getLoc(), newMemRefType,
|
||
|
newOperands, IntegerAttr());
|
||
|
// Insert a cast so we have the same type as the old alloc.
|
||
|
auto resultCast =
|
||
|
rewriter.create<CastOp>(alloc.getLoc(), newAlloc, alloc.getType());
|
||
|
|
||
|
rewriter.replaceOp(alloc, {resultCast});
|
||
|
return success();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// Fold alloc operations with no uses. Alloc has side effects on the heap,
|
||
|
/// but can still be deleted if it has zero uses.
|
||
|
struct SimplifyDeadAlloc : public OpRewritePattern<AllocOp> {
|
||
|
using OpRewritePattern<AllocOp>::OpRewritePattern;
|
||
|
|
||
|
LogicalResult matchAndRewrite(AllocOp alloc,
|
||
|
PatternRewriter &rewriter) const override {
|
||
|
if (alloc.use_empty()) {
|
||
|
rewriter.eraseOp(alloc);
|
||
|
return success();
|
||
|
}
|
||
|
return failure();
|
||
|
}
|
||
|
};
|
||
|
} // end anonymous namespace.
|
||
|
|
||
|
void AllocOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
|
||
|
MLIRContext *context) {
|
||
|
results.insert<SimplifyAllocConst<AllocOp>, SimplifyDeadAlloc>(context);
|
||
|
}
|
||
|
|
||
|
void AllocaOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
|
||
|
MLIRContext *context) {
|
||
|
results.insert<SimplifyAllocConst<AllocaOp>>(context);
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// AssumeAlignmentOp
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
static LogicalResult verify(AssumeAlignmentOp op) {
|
||
|
unsigned alignment = op.alignment();
|
||
|
if (!llvm::isPowerOf2_32(alignment))
|
||
|
return op.emitOpError("alignment must be power of 2");
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// BufferCastOp
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
OpFoldResult BufferCastOp::fold(ArrayRef<Attribute>) {
|
||
|
if (auto tensorLoad = tensor().getDefiningOp<TensorLoadOp>())
|
||
|
if (tensorLoad.memref().getType() == getType())
|
||
|
return tensorLoad.memref();
|
||
|
return {};
|
||
|
}
|
||
|
|
||
|
namespace {
|
||
|
/// Replace tensor_cast + buffer_cast by buffer_cast + memref_cast.
|
||
|
struct BufferCast : public OpRewritePattern<BufferCastOp> {
|
||
|
using OpRewritePattern<BufferCastOp>::OpRewritePattern;
|
||
|
|
||
|
LogicalResult matchAndRewrite(BufferCastOp bufferCast,
|
||
|
PatternRewriter &rewriter) const final {
|
||
|
auto tensorCastOperand =
|
||
|
bufferCast.getOperand().getDefiningOp<tensor::CastOp>();
|
||
|
if (!tensorCastOperand)
|
||
|
return failure();
|
||
|
auto srcTensorType =
|
||
|
tensorCastOperand.getOperand().getType().dyn_cast<RankedTensorType>();
|
||
|
if (!srcTensorType)
|
||
|
return failure();
|
||
|
auto memrefType = MemRefType::get(srcTensorType.getShape(),
|
||
|
srcTensorType.getElementType());
|
||
|
Value memref = rewriter.create<BufferCastOp>(
|
||
|
bufferCast.getLoc(), memrefType, tensorCastOperand.getOperand());
|
||
|
rewriter.replaceOpWithNewOp<CastOp>(bufferCast, bufferCast.getType(),
|
||
|
memref);
|
||
|
return success();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// Canonicalize memref.tensor_load + memref.buffer_cast to memref.cast when
|
||
|
/// type mismatches prevent `BufferCastOp::fold` to kick in.
|
||
|
struct TensorLoadToMemRef : public OpRewritePattern<BufferCastOp> {
|
||
|
using OpRewritePattern<BufferCastOp>::OpRewritePattern;
|
||
|
|
||
|
LogicalResult matchAndRewrite(BufferCastOp bufferCast,
|
||
|
PatternRewriter &rewriter) const final {
|
||
|
auto tensorLoad = bufferCast.tensor().getDefiningOp<TensorLoadOp>();
|
||
|
// Bail unless we have a tensor_load + memref.buffer_cast with different
|
||
|
// types. `BufferCastOp::fold` handles the same type case.
|
||
|
if (!tensorLoad || tensorLoad.memref().getType() == bufferCast.getType())
|
||
|
return failure();
|
||
|
// If types are not cast-compatible, bail.
|
||
|
if (!CastOp::areCastCompatible(tensorLoad.memref().getType(),
|
||
|
bufferCast.getType()))
|
||
|
return failure();
|
||
|
rewriter.replaceOpWithNewOp<CastOp>(bufferCast, bufferCast.getType(),
|
||
|
tensorLoad.memref());
|
||
|
return success();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace
|
||
|
|
||
|
void BufferCastOp::getCanonicalizationPatterns(
|
||
|
OwningRewritePatternList &results, MLIRContext *context) {
|
||
|
results.insert<BufferCast, TensorLoadToMemRef>(context);
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// CastOp
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
/// Determines whether MemRef_CastOp casts to a more dynamic version of the
|
||
|
/// source memref. This is useful to to fold a memref.cast into a consuming op
|
||
|
/// and implement canonicalization patterns for ops in different dialects that
|
||
|
/// may consume the results of memref.cast operations. Such foldable memref.cast
|
||
|
/// operations are typically inserted as `view` and `subview` ops are
|
||
|
/// canonicalized, to preserve the type compatibility of their uses.
|
||
|
///
|
||
|
/// Returns true when all conditions are met:
|
||
|
/// 1. source and result are ranked memrefs with strided semantics and same
|
||
|
/// element type and rank.
|
||
|
/// 2. each of the source's size, offset or stride has more static information
|
||
|
/// than the corresponding result's size, offset or stride.
|
||
|
///
|
||
|
/// Example 1:
|
||
|
/// ```mlir
|
||
|
/// %1 = memref.cast %0 : memref<8x16xf32> to memref<?x?xf32>
|
||
|
/// %2 = consumer %1 ... : memref<?x?xf32> ...
|
||
|
/// ```
|
||
|
///
|
||
|
/// may fold into:
|
||
|
///
|
||
|
/// ```mlir
|
||
|
/// %2 = consumer %0 ... : memref<8x16xf32> ...
|
||
|
/// ```
|
||
|
///
|
||
|
/// Example 2:
|
||
|
/// ```
|
||
|
/// %1 = memref.cast %0 : memref<?x16xf32, affine_map<(i, j)->(16 * i + j)>>
|
||
|
/// to memref<?x?xf32>
|
||
|
/// consumer %1 : memref<?x?xf32> ...
|
||
|
/// ```
|
||
|
///
|
||
|
/// may fold into:
|
||
|
///
|
||
|
/// ```
|
||
|
/// consumer %0 ... : memref<?x16xf32, affine_map<(i, j)->(16 * i + j)>>
|
||
|
/// ```
|
||
|
bool CastOp::canFoldIntoConsumerOp(CastOp castOp) {
|
||
|
MemRefType sourceType = castOp.source().getType().dyn_cast<MemRefType>();
|
||
|
MemRefType resultType = castOp.getType().dyn_cast<MemRefType>();
|
||
|
|
||
|
// Requires ranked MemRefType.
|
||
|
if (!sourceType || !resultType)
|
||
|
return false;
|
||
|
|
||
|
// Requires same elemental type.
|
||
|
if (sourceType.getElementType() != resultType.getElementType())
|
||
|
return false;
|
||
|
|
||
|
// Requires same rank.
|
||
|
if (sourceType.getRank() != resultType.getRank())
|
||
|
return false;
|
||
|
|
||
|
// Only fold casts between strided memref forms.
|
||
|
int64_t sourceOffset, resultOffset;
|
||
|
SmallVector<int64_t, 4> sourceStrides, resultStrides;
|
||
|
if (failed(getStridesAndOffset(sourceType, sourceStrides, sourceOffset)) ||
|
||
|
failed(getStridesAndOffset(resultType, resultStrides, resultOffset)))
|
||
|
return false;
|
||
|
|
||
|
// If cast is towards more static sizes along any dimension, don't fold.
|
||
|
for (auto it : llvm::zip(sourceType.getShape(), resultType.getShape())) {
|
||
|
auto ss = std::get<0>(it), st = std::get<1>(it);
|
||
|
if (ss != st)
|
||
|
if (MemRefType::isDynamic(ss) && !MemRefType::isDynamic(st))
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// If cast is towards more static offset along any dimension, don't fold.
|
||
|
if (sourceOffset != resultOffset)
|
||
|
if (MemRefType::isDynamicStrideOrOffset(sourceOffset) &&
|
||
|
!MemRefType::isDynamicStrideOrOffset(resultOffset))
|
||
|
return false;
|
||
|
|
||
|
// If cast is towards more static strides along any dimension, don't fold.
|
||
|
for (auto it : llvm::zip(sourceStrides, resultStrides)) {
|
||
|
auto ss = std::get<0>(it), st = std::get<1>(it);
|
||
|
if (ss != st)
|
||
|
if (MemRefType::isDynamicStrideOrOffset(ss) &&
|
||
|
!MemRefType::isDynamicStrideOrOffset(st))
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool CastOp::areCastCompatible(TypeRange inputs, TypeRange outputs) {
|
||
|
if (inputs.size() != 1 || outputs.size() != 1)
|
||
|
return false;
|
||
|
Type a = inputs.front(), b = outputs.front();
|
||
|
auto aT = a.dyn_cast<MemRefType>();
|
||
|
auto bT = b.dyn_cast<MemRefType>();
|
||
|
|
||
|
auto uaT = a.dyn_cast<UnrankedMemRefType>();
|
||
|
auto ubT = b.dyn_cast<UnrankedMemRefType>();
|
||
|
|
||
|
if (aT && bT) {
|
||
|
if (aT.getElementType() != bT.getElementType())
|
||
|
return false;
|
||
|
if (aT.getAffineMaps() != bT.getAffineMaps()) {
|
||
|
int64_t aOffset, bOffset;
|
||
|
SmallVector<int64_t, 4> aStrides, bStrides;
|
||
|
if (failed(getStridesAndOffset(aT, aStrides, aOffset)) ||
|
||
|
failed(getStridesAndOffset(bT, bStrides, bOffset)) ||
|
||
|
aStrides.size() != bStrides.size())
|
||
|
return false;
|
||
|
|
||
|
// Strides along a dimension/offset are compatible if the value in the
|
||
|
// source memref is static and the value in the target memref is the
|
||
|
// same. They are also compatible if either one is dynamic (see
|
||
|
// description of MemRefCastOp for details).
|
||
|
auto checkCompatible = [](int64_t a, int64_t b) {
|
||
|
return (a == MemRefType::getDynamicStrideOrOffset() ||
|
||
|
b == MemRefType::getDynamicStrideOrOffset() || a == b);
|
||
|
};
|
||
|
if (!checkCompatible(aOffset, bOffset))
|
||
|
return false;
|
||
|
for (auto aStride : enumerate(aStrides))
|
||
|
if (!checkCompatible(aStride.value(), bStrides[aStride.index()]))
|
||
|
return false;
|
||
|
}
|
||
|
if (aT.getMemorySpaceAsInt() != bT.getMemorySpaceAsInt())
|
||
|
return false;
|
||
|
|
||
|
// They must have the same rank, and any specified dimensions must match.
|
||
|
if (aT.getRank() != bT.getRank())
|
||
|
return false;
|
||
|
|
||
|
for (unsigned i = 0, e = aT.getRank(); i != e; ++i) {
|
||
|
int64_t aDim = aT.getDimSize(i), bDim = bT.getDimSize(i);
|
||
|
if (aDim != -1 && bDim != -1 && aDim != bDim)
|
||
|
return false;
|
||
|
}
|
||
|
return true;
|
||
|
} else {
|
||
|
if (!aT && !uaT)
|
||
|
return false;
|
||
|
if (!bT && !ubT)
|
||
|
return false;
|
||
|
// Unranked to unranked casting is unsupported
|
||
|
if (uaT && ubT)
|
||
|
return false;
|
||
|
|
||
|
auto aEltType = (aT) ? aT.getElementType() : uaT.getElementType();
|
||
|
auto bEltType = (bT) ? bT.getElementType() : ubT.getElementType();
|
||
|
if (aEltType != bEltType)
|
||
|
return false;
|
||
|
|
||
|
auto aMemSpace =
|
||
|
(aT) ? aT.getMemorySpaceAsInt() : uaT.getMemorySpaceAsInt();
|
||
|
auto bMemSpace =
|
||
|
(bT) ? bT.getMemorySpaceAsInt() : ubT.getMemorySpaceAsInt();
|
||
|
if (aMemSpace != bMemSpace)
|
||
|
return false;
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
OpFoldResult CastOp::fold(ArrayRef<Attribute> operands) {
|
||
|
return succeeded(foldMemRefCast(*this)) ? getResult() : Value();
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// DeallocOp
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
namespace {
|
||
|
/// Fold Dealloc operations that are deallocating an AllocOp that is only used
|
||
|
/// by other Dealloc operations.
|
||
|
struct SimplifyDeadDealloc : public OpRewritePattern<DeallocOp> {
|
||
|
using OpRewritePattern<DeallocOp>::OpRewritePattern;
|
||
|
|
||
|
LogicalResult matchAndRewrite(DeallocOp dealloc,
|
||
|
PatternRewriter &rewriter) const override {
|
||
|
// Check that the memref operand's defining operation is an AllocOp.
|
||
|
Value memref = dealloc.memref();
|
||
|
if (!isa_and_nonnull<AllocOp>(memref.getDefiningOp()))
|
||
|
return failure();
|
||
|
|
||
|
// Check that all of the uses of the AllocOp are other DeallocOps.
|
||
|
for (auto *user : memref.getUsers())
|
||
|
if (!isa<DeallocOp>(user))
|
||
|
return failure();
|
||
|
|
||
|
// Erase the dealloc operation.
|
||
|
rewriter.eraseOp(dealloc);
|
||
|
return success();
|
||
|
}
|
||
|
};
|
||
|
} // end anonymous namespace.
|
||
|
|
||
|
static LogicalResult verify(DeallocOp op) {
|
||
|
if (!op.memref().getType().isa<MemRefType>())
|
||
|
return op.emitOpError("operand must be a memref");
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
void DeallocOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
|
||
|
MLIRContext *context) {
|
||
|
results.insert<SimplifyDeadDealloc>(context);
|
||
|
}
|
||
|
|
||
|
LogicalResult DeallocOp::fold(ArrayRef<Attribute> cstOperands,
|
||
|
SmallVectorImpl<OpFoldResult> &results) {
|
||
|
/// dealloc(memrefcast) -> dealloc
|
||
|
return foldMemRefCast(*this);
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// DimOp
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
void DimOp::build(OpBuilder &builder, OperationState &result, Value memref,
|
||
|
int64_t index) {
|
||
|
auto loc = result.location;
|
||
|
Value indexValue = builder.create<ConstantIndexOp>(loc, index);
|
||
|
build(builder, result, memref, indexValue);
|
||
|
}
|
||
|
|
||
|
void DimOp::build(OpBuilder &builder, OperationState &result, Value memref,
|
||
|
Value index) {
|
||
|
auto indexTy = builder.getIndexType();
|
||
|
build(builder, result, indexTy, memref, index);
|
||
|
}
|
||
|
|
||
|
Optional<int64_t> DimOp::getConstantIndex() {
|
||
|
if (auto constantOp = index().getDefiningOp<ConstantOp>())
|
||
|
return constantOp.getValue().cast<IntegerAttr>().getInt();
|
||
|
return {};
|
||
|
}
|
||
|
|
||
|
static LogicalResult verify(DimOp op) {
|
||
|
// Assume unknown index to be in range.
|
||
|
Optional<int64_t> index = op.getConstantIndex();
|
||
|
if (!index.hasValue())
|
||
|
return success();
|
||
|
|
||
|
// Check that constant index is not knowingly out of range.
|
||
|
auto type = op.memrefOrTensor().getType();
|
||
|
if (auto memrefType = type.dyn_cast<MemRefType>()) {
|
||
|
if (index.getValue() >= memrefType.getRank())
|
||
|
return op.emitOpError("index is out of range");
|
||
|
} else if (auto tensorType = type.dyn_cast<RankedTensorType>()) {
|
||
|
if (index.getValue() >= tensorType.getRank())
|
||
|
return op.emitOpError("index is out of range");
|
||
|
} else if (type.isa<UnrankedMemRefType>() || type.isa<UnrankedTensorType>()) {
|
||
|
// Assume index to be in range.
|
||
|
} else {
|
||
|
llvm_unreachable("expected operand with memref type");
|
||
|
}
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
OpFoldResult DimOp::fold(ArrayRef<Attribute> operands) {
|
||
|
auto index = operands[1].dyn_cast_or_null<IntegerAttr>();
|
||
|
|
||
|
// All forms of folding require a known index.
|
||
|
if (!index)
|
||
|
return {};
|
||
|
|
||
|
auto argTy = memrefOrTensor().getType();
|
||
|
// Fold if the shape extent along the given index is known.
|
||
|
if (auto shapedTy = argTy.dyn_cast<ShapedType>()) {
|
||
|
// Folding for unranked types (UnrankedMemRefType) is not supported.
|
||
|
if (!shapedTy.hasRank())
|
||
|
return {};
|
||
|
if (!shapedTy.isDynamicDim(index.getInt())) {
|
||
|
Builder builder(getContext());
|
||
|
return builder.getIndexAttr(shapedTy.getShape()[index.getInt()]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Operation *definingOp = memrefOrTensor().getDefiningOp();
|
||
|
|
||
|
// dim(memref.tensor_load(memref)) -> dim(memref)
|
||
|
if (auto tensorLoadOp = dyn_cast_or_null<TensorLoadOp>(definingOp)) {
|
||
|
setOperand(0, tensorLoadOp.memref());
|
||
|
return getResult();
|
||
|
}
|
||
|
|
||
|
// Fold dim to the operand of tensor.generate.
|
||
|
if (auto fromElements = dyn_cast_or_null<tensor::GenerateOp>(definingOp)) {
|
||
|
auto resultType =
|
||
|
fromElements.getResult().getType().cast<RankedTensorType>();
|
||
|
// The case where the type encodes the size of the dimension is handled
|
||
|
// above.
|
||
|
assert(resultType.getShape()[index.getInt()] ==
|
||
|
RankedTensorType::kDynamicSize);
|
||
|
|
||
|
// Find the operand of the fromElements that corresponds to this index.
|
||
|
auto dynExtents = fromElements.dynamicExtents().begin();
|
||
|
for (auto dim : resultType.getShape().take_front(index.getInt()))
|
||
|
if (dim == RankedTensorType::kDynamicSize)
|
||
|
dynExtents++;
|
||
|
|
||
|
return Value{*dynExtents};
|
||
|
}
|
||
|
|
||
|
// The size at the given index is now known to be a dynamic size.
|
||
|
unsigned unsignedIndex = index.getValue().getZExtValue();
|
||
|
|
||
|
if (auto subtensor = dyn_cast_or_null<mlir::SubTensorOp>(definingOp)) {
|
||
|
assert(subtensor.isDynamicSize(unsignedIndex) &&
|
||
|
"Expected dynamic subtensor size");
|
||
|
return subtensor.getDynamicSize(unsignedIndex);
|
||
|
}
|
||
|
|
||
|
// Fold dim to the size argument for an `AllocOp`, `ViewOp`, or `SubViewOp`.
|
||
|
auto memrefType = argTy.dyn_cast<MemRefType>();
|
||
|
if (!memrefType)
|
||
|
return {};
|
||
|
|
||
|
if (auto alloc = dyn_cast_or_null<AllocOp>(definingOp))
|
||
|
return *(alloc.getDynamicSizes().begin() +
|
||
|
memrefType.getDynamicDimIndex(unsignedIndex));
|
||
|
|
||
|
if (auto view = dyn_cast_or_null<ViewOp>(definingOp))
|
||
|
return *(view.getDynamicSizes().begin() +
|
||
|
memrefType.getDynamicDimIndex(unsignedIndex));
|
||
|
|
||
|
if (auto subview = dyn_cast_or_null<SubViewOp>(definingOp)) {
|
||
|
assert(subview.isDynamicSize(unsignedIndex) &&
|
||
|
"Expected dynamic subview size");
|
||
|
return subview.getDynamicSize(unsignedIndex);
|
||
|
}
|
||
|
|
||
|
// dim(memrefcast) -> dim
|
||
|
if (succeeded(foldMemRefCast(*this)))
|
||
|
return getResult();
|
||
|
|
||
|
return {};
|
||
|
}
|
||
|
|
||
|
namespace {
|
||
|
/// Fold dim of a memref reshape operation to a load into the reshape's shape
|
||
|
/// operand.
|
||
|
struct DimOfMemRefReshape : public OpRewritePattern<DimOp> {
|
||
|
using OpRewritePattern<DimOp>::OpRewritePattern;
|
||
|
|
||
|
LogicalResult matchAndRewrite(DimOp dim,
|
||
|
PatternRewriter &rewriter) const override {
|
||
|
auto reshape = dim.memrefOrTensor().getDefiningOp<ReshapeOp>();
|
||
|
|
||
|
if (!reshape)
|
||
|
return failure();
|
||
|
|
||
|
// Place the load directly after the reshape to ensure that the shape memref
|
||
|
// was not mutated.
|
||
|
rewriter.setInsertionPointAfter(reshape);
|
||
|
rewriter.replaceOpWithNewOp<LoadOp>(dim, reshape.shape(),
|
||
|
llvm::makeArrayRef({dim.index()}));
|
||
|
return success();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
/// Fold dim of a dim of a cast into the dim of the source of the tensor cast.
|
||
|
template <typename CastOpTy>
|
||
|
struct DimOfCastOp : public OpRewritePattern<DimOp> {
|
||
|
using OpRewritePattern<DimOp>::OpRewritePattern;
|
||
|
|
||
|
LogicalResult matchAndRewrite(DimOp dimOp,
|
||
|
PatternRewriter &rewriter) const override {
|
||
|
auto castOp = dimOp.memrefOrTensor().getDefiningOp<CastOpTy>();
|
||
|
if (!castOp)
|
||
|
return failure();
|
||
|
Value newSource = castOp.getOperand();
|
||
|
rewriter.replaceOpWithNewOp<DimOp>(dimOp, newSource, dimOp.index());
|
||
|
return success();
|
||
|
}
|
||
|
};
|
||
|
} // end anonymous namespace.
|
||
|
|
||
|
void DimOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
|
||
|
MLIRContext *context) {
|
||
|
results.insert<DimOfMemRefReshape, DimOfCastOp<BufferCastOp>,
|
||
|
DimOfCastOp<tensor::CastOp>>(context);
|
||
|
}
|
||
|
|
||
|
// ---------------------------------------------------------------------------
|
||
|
// DmaStartOp
|
||
|
// ---------------------------------------------------------------------------
|
||
|
|
||
|
void DmaStartOp::build(OpBuilder &builder, OperationState &result,
|
||
|
Value srcMemRef, ValueRange srcIndices, Value destMemRef,
|
||
|
ValueRange destIndices, Value numElements,
|
||
|
Value tagMemRef, ValueRange tagIndices, Value stride,
|
||
|
Value elementsPerStride) {
|
||
|
result.addOperands(srcMemRef);
|
||
|
result.addOperands(srcIndices);
|
||
|
result.addOperands(destMemRef);
|
||
|
result.addOperands(destIndices);
|
||
|
result.addOperands({numElements, tagMemRef});
|
||
|
result.addOperands(tagIndices);
|
||
|
if (stride)
|
||
|
result.addOperands({stride, elementsPerStride});
|
||
|
}
|
||
|
|
||
|
void DmaStartOp::print(OpAsmPrinter &p) {
|
||
|
p << getOperationName() << " " << getSrcMemRef() << '[' << getSrcIndices()
|
||
|
<< "], " << getDstMemRef() << '[' << getDstIndices() << "], "
|
||
|
<< getNumElements() << ", " << getTagMemRef() << '[' << getTagIndices()
|
||
|
<< ']';
|
||
|
if (isStrided())
|
||
|
p << ", " << getStride() << ", " << getNumElementsPerStride();
|
||
|
|
||
|
p.printOptionalAttrDict((*this)->getAttrs());
|
||
|
p << " : " << getSrcMemRef().getType() << ", " << getDstMemRef().getType()
|
||
|
<< ", " << getTagMemRef().getType();
|
||
|
}
|
||
|
|
||
|
// Parse DmaStartOp.
|
||
|
// Ex:
|
||
|
// %dma_id = dma_start %src[%i, %j], %dst[%k, %l], %size,
|
||
|
// %tag[%index], %stride, %num_elt_per_stride :
|
||
|
// : memref<3076 x f32, 0>,
|
||
|
// memref<1024 x f32, 2>,
|
||
|
// memref<1 x i32>
|
||
|
//
|
||
|
ParseResult DmaStartOp::parse(OpAsmParser &parser, OperationState &result) {
|
||
|
OpAsmParser::OperandType srcMemRefInfo;
|
||
|
SmallVector<OpAsmParser::OperandType, 4> srcIndexInfos;
|
||
|
OpAsmParser::OperandType dstMemRefInfo;
|
||
|
SmallVector<OpAsmParser::OperandType, 4> dstIndexInfos;
|
||
|
OpAsmParser::OperandType numElementsInfo;
|
||
|
OpAsmParser::OperandType tagMemrefInfo;
|
||
|
SmallVector<OpAsmParser::OperandType, 4> tagIndexInfos;
|
||
|
SmallVector<OpAsmParser::OperandType, 2> strideInfo;
|
||
|
|
||
|
SmallVector<Type, 3> types;
|
||
|
auto indexType = parser.getBuilder().getIndexType();
|
||
|
|
||
|
// Parse and resolve the following list of operands:
|
||
|
// *) source memref followed by its indices (in square brackets).
|
||
|
// *) destination memref followed by its indices (in square brackets).
|
||
|
// *) dma size in KiB.
|
||
|
if (parser.parseOperand(srcMemRefInfo) ||
|
||
|
parser.parseOperandList(srcIndexInfos, OpAsmParser::Delimiter::Square) ||
|
||
|
parser.parseComma() || parser.parseOperand(dstMemRefInfo) ||
|
||
|
parser.parseOperandList(dstIndexInfos, OpAsmParser::Delimiter::Square) ||
|
||
|
parser.parseComma() || parser.parseOperand(numElementsInfo) ||
|
||
|
parser.parseComma() || parser.parseOperand(tagMemrefInfo) ||
|
||
|
parser.parseOperandList(tagIndexInfos, OpAsmParser::Delimiter::Square))
|
||
|
return failure();
|
||
|
|
||
|
// Parse optional stride and elements per stride.
|
||
|
if (parser.parseTrailingOperandList(strideInfo))
|
||
|
return failure();
|
||
|
|
||
|
bool isStrided = strideInfo.size() == 2;
|
||
|
if (!strideInfo.empty() && !isStrided) {
|
||
|
return parser.emitError(parser.getNameLoc(),
|
||
|
"expected two stride related operands");
|
||
|
}
|
||
|
|
||
|
if (parser.parseColonTypeList(types))
|
||
|
return failure();
|
||
|
if (types.size() != 3)
|
||
|
return parser.emitError(parser.getNameLoc(), "fewer/more types expected");
|
||
|
|
||
|
if (parser.resolveOperand(srcMemRefInfo, types[0], result.operands) ||
|
||
|
parser.resolveOperands(srcIndexInfos, indexType, result.operands) ||
|
||
|
parser.resolveOperand(dstMemRefInfo, types[1], result.operands) ||
|
||
|
parser.resolveOperands(dstIndexInfos, indexType, result.operands) ||
|
||
|
// size should be an index.
|
||
|
parser.resolveOperand(numElementsInfo, indexType, result.operands) ||
|
||
|
parser.resolveOperand(tagMemrefInfo, types[2], result.operands) ||
|
||
|
// tag indices should be index.
|
||
|
parser.resolveOperands(tagIndexInfos, indexType, result.operands))
|
||
|
return failure();
|
||
|
|
||
|
if (isStrided) {
|
||
|
if (parser.resolveOperands(strideInfo, indexType, result.operands))
|
||
|
return failure();
|
||
|
}
|
||
|
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
LogicalResult DmaStartOp::verify() {
|
||
|
unsigned numOperands = getNumOperands();
|
||
|
|
||
|
// Mandatory non-variadic operands are: src memref, dst memref, tag memref and
|
||
|
// the number of elements.
|
||
|
if (numOperands < 4)
|
||
|
return emitOpError("expected at least 4 operands");
|
||
|
|
||
|
// Check types of operands. The order of these calls is important: the later
|
||
|
// calls rely on some type properties to compute the operand position.
|
||
|
// 1. Source memref.
|
||
|
if (!getSrcMemRef().getType().isa<MemRefType>())
|
||
|
return emitOpError("expected source to be of memref type");
|
||
|
if (numOperands < getSrcMemRefRank() + 4)
|
||
|
return emitOpError() << "expected at least " << getSrcMemRefRank() + 4
|
||
|
<< " operands";
|
||
|
if (!getSrcIndices().empty() &&
|
||
|
!llvm::all_of(getSrcIndices().getTypes(),
|
||
|
[](Type t) { return t.isIndex(); }))
|
||
|
return emitOpError("expected source indices to be of index type");
|
||
|
|
||
|
// 2. Destination memref.
|
||
|
if (!getDstMemRef().getType().isa<MemRefType>())
|
||
|
return emitOpError("expected destination to be of memref type");
|
||
|
unsigned numExpectedOperands = getSrcMemRefRank() + getDstMemRefRank() + 4;
|
||
|
if (numOperands < numExpectedOperands)
|
||
|
return emitOpError() << "expected at least " << numExpectedOperands
|
||
|
<< " operands";
|
||
|
if (!getDstIndices().empty() &&
|
||
|
!llvm::all_of(getDstIndices().getTypes(),
|
||
|
[](Type t) { return t.isIndex(); }))
|
||
|
return emitOpError("expected destination indices to be of index type");
|
||
|
|
||
|
// 3. Number of elements.
|
||
|
if (!getNumElements().getType().isIndex())
|
||
|
return emitOpError("expected num elements to be of index type");
|
||
|
|
||
|
// 4. Tag memref.
|
||
|
if (!getTagMemRef().getType().isa<MemRefType>())
|
||
|
return emitOpError("expected tag to be of memref type");
|
||
|
numExpectedOperands += getTagMemRefRank();
|
||
|
if (numOperands < numExpectedOperands)
|
||
|
return emitOpError() << "expected at least " << numExpectedOperands
|
||
|
<< " operands";
|
||
|
if (!getTagIndices().empty() &&
|
||
|
!llvm::all_of(getTagIndices().getTypes(),
|
||
|
[](Type t) { return t.isIndex(); }))
|
||
|
return emitOpError("expected tag indices to be of index type");
|
||
|
|
||
|
// DMAs from different memory spaces supported.
|
||
|
if (getSrcMemorySpace() == getDstMemorySpace())
|
||
|
return emitOpError("DMA should be between different memory spaces");
|
||
|
|
||
|
// Optional stride-related operands must be either both present or both
|
||
|
// absent.
|
||
|
if (numOperands != numExpectedOperands &&
|
||
|
numOperands != numExpectedOperands + 2)
|
||
|
return emitOpError("incorrect number of operands");
|
||
|
|
||
|
// 5. Strides.
|
||
|
if (isStrided()) {
|
||
|
if (!getStride().getType().isIndex() ||
|
||
|
!getNumElementsPerStride().getType().isIndex())
|
||
|
return emitOpError(
|
||
|
"expected stride and num elements per stride to be of type index");
|
||
|
}
|
||
|
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
LogicalResult DmaStartOp::fold(ArrayRef<Attribute> cstOperands,
|
||
|
SmallVectorImpl<OpFoldResult> &results) {
|
||
|
/// dma_start(memrefcast) -> dma_start
|
||
|
return foldMemRefCast(*this);
|
||
|
}
|
||
|
|
||
|
// ---------------------------------------------------------------------------
|
||
|
// DmaWaitOp
|
||
|
// ---------------------------------------------------------------------------
|
||
|
|
||
|
void DmaWaitOp::build(OpBuilder &builder, OperationState &result,
|
||
|
Value tagMemRef, ValueRange tagIndices,
|
||
|
Value numElements) {
|
||
|
result.addOperands(tagMemRef);
|
||
|
result.addOperands(tagIndices);
|
||
|
result.addOperands(numElements);
|
||
|
}
|
||
|
|
||
|
void DmaWaitOp::print(OpAsmPrinter &p) {
|
||
|
p << getOperationName() << " " << getTagMemRef() << '[' << getTagIndices()
|
||
|
<< "], " << getNumElements();
|
||
|
p.printOptionalAttrDict((*this)->getAttrs());
|
||
|
p << " : " << getTagMemRef().getType();
|
||
|
}
|
||
|
|
||
|
// Parse DmaWaitOp.
|
||
|
// Eg:
|
||
|
// dma_wait %tag[%index], %num_elements : memref<1 x i32, (d0) -> (d0), 4>
|
||
|
//
|
||
|
ParseResult DmaWaitOp::parse(OpAsmParser &parser, OperationState &result) {
|
||
|
OpAsmParser::OperandType tagMemrefInfo;
|
||
|
SmallVector<OpAsmParser::OperandType, 2> tagIndexInfos;
|
||
|
Type type;
|
||
|
auto indexType = parser.getBuilder().getIndexType();
|
||
|
OpAsmParser::OperandType numElementsInfo;
|
||
|
|
||
|
// Parse tag memref, its indices, and dma size.
|
||
|
if (parser.parseOperand(tagMemrefInfo) ||
|
||
|
parser.parseOperandList(tagIndexInfos, OpAsmParser::Delimiter::Square) ||
|
||
|
parser.parseComma() || parser.parseOperand(numElementsInfo) ||
|
||
|
parser.parseColonType(type) ||
|
||
|
parser.resolveOperand(tagMemrefInfo, type, result.operands) ||
|
||
|
parser.resolveOperands(tagIndexInfos, indexType, result.operands) ||
|
||
|
parser.resolveOperand(numElementsInfo, indexType, result.operands))
|
||
|
return failure();
|
||
|
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
LogicalResult DmaWaitOp::fold(ArrayRef<Attribute> cstOperands,
|
||
|
SmallVectorImpl<OpFoldResult> &results) {
|
||
|
/// dma_wait(memrefcast) -> dma_wait
|
||
|
return foldMemRefCast(*this);
|
||
|
}
|
||
|
|
||
|
LogicalResult DmaWaitOp::verify() {
|
||
|
// Mandatory non-variadic operands are tag and the number of elements.
|
||
|
if (getNumOperands() < 2)
|
||
|
return emitOpError() << "expected at least 2 operands";
|
||
|
|
||
|
// Check types of operands. The order of these calls is important: the later
|
||
|
// calls rely on some type properties to compute the operand position.
|
||
|
if (!getTagMemRef().getType().isa<MemRefType>())
|
||
|
return emitOpError() << "expected tag to be of memref type";
|
||
|
|
||
|
if (getNumOperands() != 2 + getTagMemRefRank())
|
||
|
return emitOpError() << "expected " << 2 + getTagMemRefRank()
|
||
|
<< " operands";
|
||
|
|
||
|
if (!getTagIndices().empty() &&
|
||
|
!llvm::all_of(getTagIndices().getTypes(),
|
||
|
[](Type t) { return t.isIndex(); }))
|
||
|
return emitOpError() << "expected tag indices to be of index type";
|
||
|
|
||
|
if (!getNumElements().getType().isIndex())
|
||
|
return emitOpError()
|
||
|
<< "expected the number of elements to be of index type";
|
||
|
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// GlobalOp
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
static void printGlobalMemrefOpTypeAndInitialValue(OpAsmPrinter &p, GlobalOp op,
|
||
|
TypeAttr type,
|
||
|
Attribute initialValue) {
|
||
|
p << type;
|
||
|
if (!op.isExternal()) {
|
||
|
p << " = ";
|
||
|
if (op.isUninitialized())
|
||
|
p << "uninitialized";
|
||
|
else
|
||
|
p.printAttributeWithoutType(initialValue);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
static ParseResult
|
||
|
parseGlobalMemrefOpTypeAndInitialValue(OpAsmParser &parser, TypeAttr &typeAttr,
|
||
|
Attribute &initialValue) {
|
||
|
Type type;
|
||
|
if (parser.parseType(type))
|
||
|
return failure();
|
||
|
|
||
|
auto memrefType = type.dyn_cast<MemRefType>();
|
||
|
if (!memrefType || !memrefType.hasStaticShape())
|
||
|
return parser.emitError(parser.getNameLoc())
|
||
|
<< "type should be static shaped memref, but got " << type;
|
||
|
typeAttr = TypeAttr::get(type);
|
||
|
|
||
|
if (parser.parseOptionalEqual())
|
||
|
return success();
|
||
|
|
||
|
if (succeeded(parser.parseOptionalKeyword("uninitialized"))) {
|
||
|
initialValue = UnitAttr::get(parser.getBuilder().getContext());
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
Type tensorType = getTensorTypeFromMemRefType(memrefType);
|
||
|
if (parser.parseAttribute(initialValue, tensorType))
|
||
|
return failure();
|
||
|
if (!initialValue.isa<ElementsAttr>())
|
||
|
return parser.emitError(parser.getNameLoc())
|
||
|
<< "initial value should be a unit or elements attribute";
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
static LogicalResult verify(GlobalOp op) {
|
||
|
auto memrefType = op.type().dyn_cast<MemRefType>();
|
||
|
if (!memrefType || !memrefType.hasStaticShape())
|
||
|
return op.emitOpError("type should be static shaped memref, but got ")
|
||
|
<< op.type();
|
||
|
|
||
|
// Verify that the initial value, if present, is either a unit attribute or
|
||
|
// an elements attribute.
|
||
|
if (op.initial_value().hasValue()) {
|
||
|
Attribute initValue = op.initial_value().getValue();
|
||
|
if (!initValue.isa<UnitAttr>() && !initValue.isa<ElementsAttr>())
|
||
|
return op.emitOpError("initial value should be a unit or elements "
|
||
|
"attribute, but got ")
|
||
|
<< initValue;
|
||
|
|
||
|
// Check that the type of the initial value is compatible with the type of
|
||
|
// the global variable.
|
||
|
if (initValue.isa<ElementsAttr>()) {
|
||
|
Type initType = initValue.getType();
|
||
|
Type tensorType = getTensorTypeFromMemRefType(memrefType);
|
||
|
if (initType != tensorType)
|
||
|
return op.emitOpError("initial value expected to be of type ")
|
||
|
<< tensorType << ", but was of type " << initType;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// TODO: verify visibility for declarations.
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// GetGlobalOp
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
LogicalResult
|
||
|
GetGlobalOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
|
||
|
// Verify that the result type is same as the type of the referenced
|
||
|
// memref.global op.
|
||
|
auto global =
|
||
|
symbolTable.lookupNearestSymbolFrom<GlobalOp>(*this, nameAttr());
|
||
|
if (!global)
|
||
|
return emitOpError("'")
|
||
|
<< name() << "' does not reference a valid global memref";
|
||
|
|
||
|
Type resultType = result().getType();
|
||
|
if (global.type() != resultType)
|
||
|
return emitOpError("result type ")
|
||
|
<< resultType << " does not match type " << global.type()
|
||
|
<< " of the global memref @" << name();
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// LoadOp
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
static LogicalResult verify(LoadOp op) {
|
||
|
if (op.getNumOperands() != 1 + op.getMemRefType().getRank())
|
||
|
return op.emitOpError("incorrect number of indices for load");
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
OpFoldResult LoadOp::fold(ArrayRef<Attribute> cstOperands) {
|
||
|
/// load(memrefcast) -> load
|
||
|
if (succeeded(foldMemRefCast(*this)))
|
||
|
return getResult();
|
||
|
return OpFoldResult();
|
||
|
}
|
||
|
|
||
|
namespace {
|
||
|
/// Fold a load on a buffer_cast operation into an tensor.extract on the
|
||
|
/// corresponding tensor.
|
||
|
struct LoadOfBufferCast : public OpRewritePattern<LoadOp> {
|
||
|
using OpRewritePattern<LoadOp>::OpRewritePattern;
|
||
|
|
||
|
LogicalResult matchAndRewrite(LoadOp load,
|
||
|
PatternRewriter &rewriter) const override {
|
||
|
auto buffercast = load.memref().getDefiningOp<BufferCastOp>();
|
||
|
if (!buffercast)
|
||
|
return failure();
|
||
|
|
||
|
rewriter.replaceOpWithNewOp<tensor::ExtractOp>(load, buffercast.tensor(),
|
||
|
load.indices());
|
||
|
return success();
|
||
|
}
|
||
|
};
|
||
|
} // end anonymous namespace.
|
||
|
|
||
|
void LoadOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
|
||
|
MLIRContext *context) {
|
||
|
results.insert<LoadOfBufferCast>(context);
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// PrefetchOp
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
static void print(OpAsmPrinter &p, PrefetchOp op) {
|
||
|
p << PrefetchOp::getOperationName() << " " << op.memref() << '[';
|
||
|
p.printOperands(op.indices());
|
||
|
p << ']' << ", " << (op.isWrite() ? "write" : "read");
|
||
|
p << ", locality<" << op.localityHint();
|
||
|
p << ">, " << (op.isDataCache() ? "data" : "instr");
|
||
|
p.printOptionalAttrDict(
|
||
|
op->getAttrs(),
|
||
|
/*elidedAttrs=*/{"localityHint", "isWrite", "isDataCache"});
|
||
|
p << " : " << op.getMemRefType();
|
||
|
}
|
||
|
|
||
|
static ParseResult parsePrefetchOp(OpAsmParser &parser,
|
||
|
OperationState &result) {
|
||
|
OpAsmParser::OperandType memrefInfo;
|
||
|
SmallVector<OpAsmParser::OperandType, 4> indexInfo;
|
||
|
IntegerAttr localityHint;
|
||
|
MemRefType type;
|
||
|
StringRef readOrWrite, cacheType;
|
||
|
|
||
|
auto indexTy = parser.getBuilder().getIndexType();
|
||
|
auto i32Type = parser.getBuilder().getIntegerType(32);
|
||
|
if (parser.parseOperand(memrefInfo) ||
|
||
|
parser.parseOperandList(indexInfo, OpAsmParser::Delimiter::Square) ||
|
||
|
parser.parseComma() || parser.parseKeyword(&readOrWrite) ||
|
||
|
parser.parseComma() || parser.parseKeyword("locality") ||
|
||
|
parser.parseLess() ||
|
||
|
parser.parseAttribute(localityHint, i32Type, "localityHint",
|
||
|
result.attributes) ||
|
||
|
parser.parseGreater() || parser.parseComma() ||
|
||
|
parser.parseKeyword(&cacheType) || parser.parseColonType(type) ||
|
||
|
parser.resolveOperand(memrefInfo, type, result.operands) ||
|
||
|
parser.resolveOperands(indexInfo, indexTy, result.operands))
|
||
|
return failure();
|
||
|
|
||
|
if (!readOrWrite.equals("read") && !readOrWrite.equals("write"))
|
||
|
return parser.emitError(parser.getNameLoc(),
|
||
|
"rw specifier has to be 'read' or 'write'");
|
||
|
result.addAttribute(
|
||
|
PrefetchOp::getIsWriteAttrName(),
|
||
|
parser.getBuilder().getBoolAttr(readOrWrite.equals("write")));
|
||
|
|
||
|
if (!cacheType.equals("data") && !cacheType.equals("instr"))
|
||
|
return parser.emitError(parser.getNameLoc(),
|
||
|
"cache type has to be 'data' or 'instr'");
|
||
|
|
||
|
result.addAttribute(
|
||
|
PrefetchOp::getIsDataCacheAttrName(),
|
||
|
parser.getBuilder().getBoolAttr(cacheType.equals("data")));
|
||
|
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
static LogicalResult verify(PrefetchOp op) {
|
||
|
if (op.getNumOperands() != 1 + op.getMemRefType().getRank())
|
||
|
return op.emitOpError("too few indices");
|
||
|
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
LogicalResult PrefetchOp::fold(ArrayRef<Attribute> cstOperands,
|
||
|
SmallVectorImpl<OpFoldResult> &results) {
|
||
|
// prefetch(memrefcast) -> prefetch
|
||
|
return foldMemRefCast(*this);
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// ReinterpretCastOp
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
/// Build a ReinterpretCastOp with all dynamic entries: `staticOffsets`,
|
||
|
/// `staticSizes` and `staticStrides` are automatically filled with
|
||
|
/// source-memref-rank sentinel values that encode dynamic entries.
|
||
|
void ReinterpretCastOp::build(OpBuilder &b, OperationState &result,
|
||
|
MemRefType resultType, Value source,
|
||
|
OpFoldResult offset, ArrayRef<OpFoldResult> sizes,
|
||
|
ArrayRef<OpFoldResult> strides,
|
||
|
ArrayRef<NamedAttribute> attrs) {
|
||
|
SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
|
||
|
SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
|
||
|
dispatchIndexOpFoldResults(offset, dynamicOffsets, staticOffsets,
|
||
|
ShapedType::kDynamicStrideOrOffset);
|
||
|
dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
|
||
|
ShapedType::kDynamicSize);
|
||
|
dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
|
||
|
ShapedType::kDynamicStrideOrOffset);
|
||
|
build(b, result, resultType, source, dynamicOffsets, dynamicSizes,
|
||
|
dynamicStrides, b.getI64ArrayAttr(staticOffsets),
|
||
|
b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides));
|
||
|
result.addAttributes(attrs);
|
||
|
}
|
||
|
|
||
|
void ReinterpretCastOp::build(OpBuilder &b, OperationState &result,
|
||
|
MemRefType resultType, Value source,
|
||
|
int64_t offset, ArrayRef<int64_t> sizes,
|
||
|
ArrayRef<int64_t> strides,
|
||
|
ArrayRef<NamedAttribute> attrs) {
|
||
|
SmallVector<OpFoldResult> sizeValues =
|
||
|
llvm::to_vector<4>(llvm::map_range(sizes, [&](int64_t v) -> OpFoldResult {
|
||
|
return b.getI64IntegerAttr(v);
|
||
|
}));
|
||
|
SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
|
||
|
llvm::map_range(strides, [&](int64_t v) -> OpFoldResult {
|
||
|
return b.getI64IntegerAttr(v);
|
||
|
}));
|
||
|
build(b, result, resultType, source, b.getI64IntegerAttr(offset), sizeValues,
|
||
|
strideValues, attrs);
|
||
|
}
|
||
|
|
||
|
void ReinterpretCastOp::build(OpBuilder &b, OperationState &result,
|
||
|
MemRefType resultType, Value source, Value offset,
|
||
|
ValueRange sizes, ValueRange strides,
|
||
|
ArrayRef<NamedAttribute> attrs) {
|
||
|
SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>(
|
||
|
llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
|
||
|
SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
|
||
|
llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
|
||
|
build(b, result, resultType, source, offset, sizeValues, strideValues, attrs);
|
||
|
}
|
||
|
|
||
|
// TODO: ponder whether we want to allow missing trailing sizes/strides that are
|
||
|
// completed automatically, like we have for subview and subtensor.
|
||
|
static LogicalResult verify(ReinterpretCastOp op) {
|
||
|
// The source and result memrefs should be in the same memory space.
|
||
|
auto srcType = op.source().getType().cast<BaseMemRefType>();
|
||
|
auto resultType = op.getType().cast<MemRefType>();
|
||
|
if (srcType.getMemorySpaceAsInt() != resultType.getMemorySpaceAsInt())
|
||
|
return op.emitError("different memory spaces specified for source type ")
|
||
|
<< srcType << " and result memref type " << resultType;
|
||
|
if (srcType.getElementType() != resultType.getElementType())
|
||
|
return op.emitError("different element types specified for source type ")
|
||
|
<< srcType << " and result memref type " << resultType;
|
||
|
|
||
|
// Match sizes in result memref type and in static_sizes attribute.
|
||
|
for (auto &en :
|
||
|
llvm::enumerate(llvm::zip(resultType.getShape(),
|
||
|
extractFromI64ArrayAttr(op.static_sizes())))) {
|
||
|
int64_t resultSize = std::get<0>(en.value());
|
||
|
int64_t expectedSize = std::get<1>(en.value());
|
||
|
if (resultSize != expectedSize)
|
||
|
return op.emitError("expected result type with size = ")
|
||
|
<< expectedSize << " instead of " << resultSize
|
||
|
<< " in dim = " << en.index();
|
||
|
}
|
||
|
|
||
|
// Match offset and strides in static_offset and static_strides attributes if
|
||
|
// result memref type has an affine map specified.
|
||
|
if (!resultType.getAffineMaps().empty()) {
|
||
|
int64_t resultOffset;
|
||
|
SmallVector<int64_t, 4> resultStrides;
|
||
|
if (failed(getStridesAndOffset(resultType, resultStrides, resultOffset)))
|
||
|
return failure();
|
||
|
|
||
|
// Match offset in result memref type and in static_offsets attribute.
|
||
|
int64_t expectedOffset =
|
||
|
extractFromI64ArrayAttr(op.static_offsets()).front();
|
||
|
if (resultOffset != expectedOffset)
|
||
|
return op.emitError("expected result type with offset = ")
|
||
|
<< resultOffset << " instead of " << expectedOffset;
|
||
|
|
||
|
// Match strides in result memref type and in static_strides attribute.
|
||
|
for (auto &en : llvm::enumerate(llvm::zip(
|
||
|
resultStrides, extractFromI64ArrayAttr(op.static_strides())))) {
|
||
|
int64_t resultStride = std::get<0>(en.value());
|
||
|
int64_t expectedStride = std::get<1>(en.value());
|
||
|
if (resultStride != expectedStride)
|
||
|
return op.emitError("expected result type with stride = ")
|
||
|
<< expectedStride << " instead of " << resultStride
|
||
|
<< " in dim = " << en.index();
|
||
|
}
|
||
|
}
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// ReshapeOp
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
static LogicalResult verify(ReshapeOp op) {
|
||
|
Type operandType = op.source().getType();
|
||
|
Type resultType = op.result().getType();
|
||
|
|
||
|
Type operandElementType = operandType.cast<ShapedType>().getElementType();
|
||
|
Type resultElementType = resultType.cast<ShapedType>().getElementType();
|
||
|
if (operandElementType != resultElementType)
|
||
|
return op.emitOpError("element types of source and destination memref "
|
||
|
"types should be the same");
|
||
|
|
||
|
if (auto operandMemRefType = operandType.dyn_cast<MemRefType>())
|
||
|
if (!operandMemRefType.getAffineMaps().empty())
|
||
|
return op.emitOpError(
|
||
|
"source memref type should have identity affine map");
|
||
|
|
||
|
int64_t shapeSize = op.shape().getType().cast<MemRefType>().getDimSize(0);
|
||
|
auto resultMemRefType = resultType.dyn_cast<MemRefType>();
|
||
|
if (resultMemRefType) {
|
||
|
if (!resultMemRefType.getAffineMaps().empty())
|
||
|
return op.emitOpError(
|
||
|
"result memref type should have identity affine map");
|
||
|
if (shapeSize == ShapedType::kDynamicSize)
|
||
|
return op.emitOpError("cannot use shape operand with dynamic length to "
|
||
|
"reshape to statically-ranked memref type");
|
||
|
if (shapeSize != resultMemRefType.getRank())
|
||
|
return op.emitOpError(
|
||
|
"length of shape operand differs from the result's memref rank");
|
||
|
}
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// StoreOp
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
static LogicalResult verify(StoreOp op) {
|
||
|
if (op.getNumOperands() != 2 + op.getMemRefType().getRank())
|
||
|
return op.emitOpError("store index operand count not equal to memref rank");
|
||
|
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
LogicalResult StoreOp::fold(ArrayRef<Attribute> cstOperands,
|
||
|
SmallVectorImpl<OpFoldResult> &results) {
|
||
|
/// store(memrefcast) -> store
|
||
|
return foldMemRefCast(*this);
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// SubViewOp
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
namespace {
|
||
|
/// Helpers to write more idiomatic operations.
|
||
|
namespace saturated_arith {
|
||
|
struct Wrapper {
|
||
|
explicit Wrapper(int64_t v) : v(v) {}
|
||
|
operator int64_t() { return v; }
|
||
|
int64_t v;
|
||
|
};
|
||
|
Wrapper operator+(Wrapper a, int64_t b) {
|
||
|
if (ShapedType::isDynamicStrideOrOffset(a) ||
|
||
|
ShapedType::isDynamicStrideOrOffset(b))
|
||
|
return Wrapper(ShapedType::kDynamicStrideOrOffset);
|
||
|
return Wrapper(a.v + b);
|
||
|
}
|
||
|
Wrapper operator*(Wrapper a, int64_t b) {
|
||
|
if (ShapedType::isDynamicStrideOrOffset(a) ||
|
||
|
ShapedType::isDynamicStrideOrOffset(b))
|
||
|
return Wrapper(ShapedType::kDynamicStrideOrOffset);
|
||
|
return Wrapper(a.v * b);
|
||
|
}
|
||
|
} // end namespace saturated_arith
|
||
|
} // end namespace
|
||
|
|
||
|
/// A subview result type can be fully inferred from the source type and the
|
||
|
/// static representation of offsets, sizes and strides. Special sentinels
|
||
|
/// encode the dynamic case.
|
||
|
Type SubViewOp::inferResultType(MemRefType sourceMemRefType,
|
||
|
ArrayRef<int64_t> leadingStaticOffsets,
|
||
|
ArrayRef<int64_t> leadingStaticSizes,
|
||
|
ArrayRef<int64_t> leadingStaticStrides) {
|
||
|
// A subview may specify only a leading subset of offset/sizes/strides in
|
||
|
// which case we complete with offset=0, sizes from memref type and strides=1.
|
||
|
unsigned rank = sourceMemRefType.getRank();
|
||
|
assert(leadingStaticOffsets.size() <= rank &&
|
||
|
"unexpected leadingStaticOffsets overflow");
|
||
|
assert(leadingStaticSizes.size() <= rank &&
|
||
|
"unexpected leadingStaticSizes overflow");
|
||
|
assert(leadingStaticStrides.size() <= rank &&
|
||
|
"unexpected leadingStaticStrides overflow");
|
||
|
auto staticOffsets = llvm::to_vector<4>(leadingStaticOffsets);
|
||
|
auto staticSizes = llvm::to_vector<4>(leadingStaticSizes);
|
||
|
auto staticStrides = llvm::to_vector<4>(leadingStaticStrides);
|
||
|
unsigned numTrailingOffsets = rank - staticOffsets.size();
|
||
|
unsigned numTrailingSizes = rank - staticSizes.size();
|
||
|
unsigned numTrailingStrides = rank - staticStrides.size();
|
||
|
staticOffsets.append(numTrailingOffsets, 0);
|
||
|
llvm::append_range(staticSizes,
|
||
|
sourceMemRefType.getShape().take_back(numTrailingSizes));
|
||
|
staticStrides.append(numTrailingStrides, 1);
|
||
|
|
||
|
// Extract source offset and strides.
|
||
|
int64_t sourceOffset;
|
||
|
SmallVector<int64_t, 4> sourceStrides;
|
||
|
auto res = getStridesAndOffset(sourceMemRefType, sourceStrides, sourceOffset);
|
||
|
assert(succeeded(res) && "SubViewOp expected strided memref type");
|
||
|
(void)res;
|
||
|
|
||
|
// Compute target offset whose value is:
|
||
|
// `sourceOffset + sum_i(staticOffset_i * sourceStrides_i)`.
|
||
|
int64_t targetOffset = sourceOffset;
|
||
|
for (auto it : llvm::zip(staticOffsets, sourceStrides)) {
|
||
|
auto staticOffset = std::get<0>(it), targetStride = std::get<1>(it);
|
||
|
using namespace saturated_arith;
|
||
|
targetOffset = Wrapper(targetOffset) + Wrapper(staticOffset) * targetStride;
|
||
|
}
|
||
|
|
||
|
// Compute target stride whose value is:
|
||
|
// `sourceStrides_i * staticStrides_i`.
|
||
|
SmallVector<int64_t, 4> targetStrides;
|
||
|
targetStrides.reserve(staticOffsets.size());
|
||
|
for (auto it : llvm::zip(sourceStrides, staticStrides)) {
|
||
|
auto sourceStride = std::get<0>(it), staticStride = std::get<1>(it);
|
||
|
using namespace saturated_arith;
|
||
|
targetStrides.push_back(Wrapper(sourceStride) * staticStride);
|
||
|
}
|
||
|
|
||
|
// The type is now known.
|
||
|
return MemRefType::get(
|
||
|
staticSizes, sourceMemRefType.getElementType(),
|
||
|
makeStridedLinearLayoutMap(targetStrides, targetOffset,
|
||
|
sourceMemRefType.getContext()),
|
||
|
sourceMemRefType.getMemorySpaceAsInt());
|
||
|
}
|
||
|
|
||
|
Type SubViewOp::inferResultType(MemRefType sourceMemRefType,
|
||
|
ArrayRef<OpFoldResult> leadingStaticOffsets,
|
||
|
ArrayRef<OpFoldResult> leadingStaticSizes,
|
||
|
ArrayRef<OpFoldResult> leadingStaticStrides) {
|
||
|
SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
|
||
|
SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
|
||
|
dispatchIndexOpFoldResults(leadingStaticOffsets, dynamicOffsets,
|
||
|
staticOffsets, ShapedType::kDynamicStrideOrOffset);
|
||
|
dispatchIndexOpFoldResults(leadingStaticSizes, dynamicSizes, staticSizes,
|
||
|
ShapedType::kDynamicSize);
|
||
|
dispatchIndexOpFoldResults(leadingStaticStrides, dynamicStrides,
|
||
|
staticStrides, ShapedType::kDynamicStrideOrOffset);
|
||
|
return SubViewOp::inferResultType(sourceMemRefType, staticOffsets,
|
||
|
staticSizes, staticStrides)
|
||
|
.cast<MemRefType>();
|
||
|
}
|
||
|
|
||
|
Type SubViewOp::inferRankReducedResultType(
|
||
|
unsigned resultRank, MemRefType sourceRankedTensorType,
|
||
|
ArrayRef<int64_t> leadingStaticOffsets,
|
||
|
ArrayRef<int64_t> leadingStaticSizes,
|
||
|
ArrayRef<int64_t> leadingStaticStrides) {
|
||
|
auto inferredType =
|
||
|
inferResultType(sourceRankedTensorType, leadingStaticOffsets,
|
||
|
leadingStaticSizes, leadingStaticStrides)
|
||
|
.cast<MemRefType>();
|
||
|
assert(inferredType.getRank() >= resultRank && "expected ");
|
||
|
int rankDiff = inferredType.getRank() - resultRank;
|
||
|
if (rankDiff > 0) {
|
||
|
auto shape = inferredType.getShape();
|
||
|
llvm::SmallDenseSet<unsigned> dimsToProject;
|
||
|
mlir::getPositionsOfShapeOne(rankDiff, shape, dimsToProject);
|
||
|
SmallVector<int64_t> projectedShape;
|
||
|
for (unsigned pos = 0, e = shape.size(); pos < e; ++pos)
|
||
|
if (!dimsToProject.contains(pos))
|
||
|
projectedShape.push_back(shape[pos]);
|
||
|
|
||
|
AffineMap map;
|
||
|
auto maps = inferredType.getAffineMaps();
|
||
|
if (!maps.empty() && maps.front())
|
||
|
map = getProjectedMap(maps.front(), dimsToProject);
|
||
|
inferredType =
|
||
|
MemRefType::get(projectedShape, inferredType.getElementType(), map,
|
||
|
inferredType.getMemorySpaceAsInt());
|
||
|
}
|
||
|
return inferredType;
|
||
|
}
|
||
|
|
||
|
Type SubViewOp::inferRankReducedResultType(
|
||
|
unsigned resultRank, MemRefType sourceRankedTensorType,
|
||
|
ArrayRef<OpFoldResult> leadingStaticOffsets,
|
||
|
ArrayRef<OpFoldResult> leadingStaticSizes,
|
||
|
ArrayRef<OpFoldResult> leadingStaticStrides) {
|
||
|
SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
|
||
|
SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
|
||
|
dispatchIndexOpFoldResults(leadingStaticOffsets, dynamicOffsets,
|
||
|
staticOffsets, ShapedType::kDynamicStrideOrOffset);
|
||
|
dispatchIndexOpFoldResults(leadingStaticSizes, dynamicSizes, staticSizes,
|
||
|
ShapedType::kDynamicSize);
|
||
|
dispatchIndexOpFoldResults(leadingStaticStrides, dynamicStrides,
|
||
|
staticStrides, ShapedType::kDynamicStrideOrOffset);
|
||
|
return SubViewOp::inferRankReducedResultType(
|
||
|
resultRank, sourceRankedTensorType, staticOffsets, staticSizes,
|
||
|
staticStrides);
|
||
|
}
|
||
|
// Build a SubViewOp with mixed static and dynamic entries and custom result
|
||
|
// type. If the type passed is nullptr, it is inferred.
|
||
|
void SubViewOp::build(OpBuilder &b, OperationState &result,
|
||
|
MemRefType resultType, Value source,
|
||
|
ArrayRef<OpFoldResult> offsets,
|
||
|
ArrayRef<OpFoldResult> sizes,
|
||
|
ArrayRef<OpFoldResult> strides,
|
||
|
ArrayRef<NamedAttribute> attrs) {
|
||
|
SmallVector<int64_t> staticOffsets, staticSizes, staticStrides;
|
||
|
SmallVector<Value> dynamicOffsets, dynamicSizes, dynamicStrides;
|
||
|
dispatchIndexOpFoldResults(offsets, dynamicOffsets, staticOffsets,
|
||
|
ShapedType::kDynamicStrideOrOffset);
|
||
|
dispatchIndexOpFoldResults(sizes, dynamicSizes, staticSizes,
|
||
|
ShapedType::kDynamicSize);
|
||
|
dispatchIndexOpFoldResults(strides, dynamicStrides, staticStrides,
|
||
|
ShapedType::kDynamicStrideOrOffset);
|
||
|
auto sourceMemRefType = source.getType().cast<MemRefType>();
|
||
|
// Structuring implementation this way avoids duplication between builders.
|
||
|
if (!resultType) {
|
||
|
resultType = SubViewOp::inferResultType(sourceMemRefType, staticOffsets,
|
||
|
staticSizes, staticStrides)
|
||
|
.cast<MemRefType>();
|
||
|
}
|
||
|
build(b, result, resultType, source, dynamicOffsets, dynamicSizes,
|
||
|
dynamicStrides, b.getI64ArrayAttr(staticOffsets),
|
||
|
b.getI64ArrayAttr(staticSizes), b.getI64ArrayAttr(staticStrides));
|
||
|
result.addAttributes(attrs);
|
||
|
}
|
||
|
|
||
|
// Build a SubViewOp with mixed static and dynamic entries and inferred result
|
||
|
// type.
|
||
|
void SubViewOp::build(OpBuilder &b, OperationState &result, Value source,
|
||
|
ArrayRef<OpFoldResult> offsets,
|
||
|
ArrayRef<OpFoldResult> sizes,
|
||
|
ArrayRef<OpFoldResult> strides,
|
||
|
ArrayRef<NamedAttribute> attrs) {
|
||
|
build(b, result, MemRefType(), source, offsets, sizes, strides, attrs);
|
||
|
}
|
||
|
|
||
|
// Build a SubViewOp with static entries and inferred result type.
|
||
|
void SubViewOp::build(OpBuilder &b, OperationState &result, Value source,
|
||
|
ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes,
|
||
|
ArrayRef<int64_t> strides,
|
||
|
ArrayRef<NamedAttribute> attrs) {
|
||
|
SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
|
||
|
llvm::map_range(offsets, [&](int64_t v) -> OpFoldResult {
|
||
|
return b.getI64IntegerAttr(v);
|
||
|
}));
|
||
|
SmallVector<OpFoldResult> sizeValues =
|
||
|
llvm::to_vector<4>(llvm::map_range(sizes, [&](int64_t v) -> OpFoldResult {
|
||
|
return b.getI64IntegerAttr(v);
|
||
|
}));
|
||
|
SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
|
||
|
llvm::map_range(strides, [&](int64_t v) -> OpFoldResult {
|
||
|
return b.getI64IntegerAttr(v);
|
||
|
}));
|
||
|
build(b, result, source, offsetValues, sizeValues, strideValues, attrs);
|
||
|
}
|
||
|
|
||
|
// Build a SubViewOp with dynamic entries and custom result type. If the
|
||
|
// type passed is nullptr, it is inferred.
|
||
|
void SubViewOp::build(OpBuilder &b, OperationState &result,
|
||
|
MemRefType resultType, Value source,
|
||
|
ArrayRef<int64_t> offsets, ArrayRef<int64_t> sizes,
|
||
|
ArrayRef<int64_t> strides,
|
||
|
ArrayRef<NamedAttribute> attrs) {
|
||
|
SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
|
||
|
llvm::map_range(offsets, [&](int64_t v) -> OpFoldResult {
|
||
|
return b.getI64IntegerAttr(v);
|
||
|
}));
|
||
|
SmallVector<OpFoldResult> sizeValues =
|
||
|
llvm::to_vector<4>(llvm::map_range(sizes, [&](int64_t v) -> OpFoldResult {
|
||
|
return b.getI64IntegerAttr(v);
|
||
|
}));
|
||
|
SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
|
||
|
llvm::map_range(strides, [&](int64_t v) -> OpFoldResult {
|
||
|
return b.getI64IntegerAttr(v);
|
||
|
}));
|
||
|
build(b, result, resultType, source, offsetValues, sizeValues, strideValues,
|
||
|
attrs);
|
||
|
}
|
||
|
|
||
|
// Build a SubViewOp with dynamic entries and custom result type. If the type
|
||
|
// passed is nullptr, it is inferred.
|
||
|
void SubViewOp::build(OpBuilder &b, OperationState &result,
|
||
|
MemRefType resultType, Value source, ValueRange offsets,
|
||
|
ValueRange sizes, ValueRange strides,
|
||
|
ArrayRef<NamedAttribute> attrs) {
|
||
|
SmallVector<OpFoldResult> offsetValues = llvm::to_vector<4>(
|
||
|
llvm::map_range(offsets, [](Value v) -> OpFoldResult { return v; }));
|
||
|
SmallVector<OpFoldResult> sizeValues = llvm::to_vector<4>(
|
||
|
llvm::map_range(sizes, [](Value v) -> OpFoldResult { return v; }));
|
||
|
SmallVector<OpFoldResult> strideValues = llvm::to_vector<4>(
|
||
|
llvm::map_range(strides, [](Value v) -> OpFoldResult { return v; }));
|
||
|
build(b, result, resultType, source, offsetValues, sizeValues, strideValues);
|
||
|
}
|
||
|
|
||
|
// Build a SubViewOp with dynamic entries and inferred result type.
|
||
|
void SubViewOp::build(OpBuilder &b, OperationState &result, Value source,
|
||
|
ValueRange offsets, ValueRange sizes, ValueRange strides,
|
||
|
ArrayRef<NamedAttribute> attrs) {
|
||
|
build(b, result, MemRefType(), source, offsets, sizes, strides, attrs);
|
||
|
}
|
||
|
|
||
|
/// For ViewLikeOpInterface.
|
||
|
Value SubViewOp::getViewSource() { return source(); }
|
||
|
|
||
|
enum SubViewVerificationResult {
|
||
|
Success,
|
||
|
RankTooLarge,
|
||
|
SizeMismatch,
|
||
|
ElemTypeMismatch,
|
||
|
MemSpaceMismatch,
|
||
|
AffineMapMismatch
|
||
|
};
|
||
|
|
||
|
/// Checks if `original` Type type can be rank reduced to `reduced` type.
|
||
|
/// This function is slight variant of `is subsequence` algorithm where
|
||
|
/// not matching dimension must be 1.
|
||
|
static SubViewVerificationResult
|
||
|
isRankReducedType(Type originalType, Type candidateReducedType,
|
||
|
std::string *errMsg = nullptr) {
|
||
|
if (originalType == candidateReducedType)
|
||
|
return SubViewVerificationResult::Success;
|
||
|
if (!originalType.isa<MemRefType>())
|
||
|
return SubViewVerificationResult::Success;
|
||
|
if (originalType.isa<MemRefType>() && !candidateReducedType.isa<MemRefType>())
|
||
|
return SubViewVerificationResult::Success;
|
||
|
|
||
|
ShapedType originalShapedType = originalType.cast<ShapedType>();
|
||
|
ShapedType candidateReducedShapedType =
|
||
|
candidateReducedType.cast<ShapedType>();
|
||
|
|
||
|
// Rank and size logic is valid for all ShapedTypes.
|
||
|
ArrayRef<int64_t> originalShape = originalShapedType.getShape();
|
||
|
ArrayRef<int64_t> candidateReducedShape =
|
||
|
candidateReducedShapedType.getShape();
|
||
|
unsigned originalRank = originalShape.size(),
|
||
|
candidateReducedRank = candidateReducedShape.size();
|
||
|
if (candidateReducedRank > originalRank)
|
||
|
return SubViewVerificationResult::RankTooLarge;
|
||
|
|
||
|
auto optionalUnusedDimsMask =
|
||
|
computeRankReductionMask(originalShape, candidateReducedShape);
|
||
|
|
||
|
// Sizes cannot be matched in case empty vector is returned.
|
||
|
if (!optionalUnusedDimsMask.hasValue())
|
||
|
return SubViewVerificationResult::SizeMismatch;
|
||
|
|
||
|
if (originalShapedType.getElementType() !=
|
||
|
candidateReducedShapedType.getElementType())
|
||
|
return SubViewVerificationResult::ElemTypeMismatch;
|
||
|
|
||
|
// Strided layout logic is relevant for MemRefType only.
|
||
|
MemRefType original = originalType.cast<MemRefType>();
|
||
|
MemRefType candidateReduced = candidateReducedType.cast<MemRefType>();
|
||
|
if (original.getMemorySpaceAsInt() != candidateReduced.getMemorySpaceAsInt())
|
||
|
return SubViewVerificationResult::MemSpaceMismatch;
|
||
|
|
||
|
llvm::SmallDenseSet<unsigned> unusedDims = optionalUnusedDimsMask.getValue();
|
||
|
auto inferredType =
|
||
|
getProjectedMap(getStridedLinearLayoutMap(original), unusedDims);
|
||
|
AffineMap candidateLayout;
|
||
|
if (candidateReduced.getAffineMaps().empty())
|
||
|
candidateLayout = getStridedLinearLayoutMap(candidateReduced);
|
||
|
else
|
||
|
candidateLayout = candidateReduced.getAffineMaps().front();
|
||
|
assert(inferredType.getNumResults() == 1 &&
|
||
|
candidateLayout.getNumResults() == 1);
|
||
|
if (inferredType.getNumSymbols() != candidateLayout.getNumSymbols() ||
|
||
|
inferredType.getNumDims() != candidateLayout.getNumDims()) {
|
||
|
if (errMsg) {
|
||
|
llvm::raw_string_ostream os(*errMsg);
|
||
|
os << "inferred type: " << inferredType;
|
||
|
}
|
||
|
return SubViewVerificationResult::AffineMapMismatch;
|
||
|
}
|
||
|
// Check that the difference of the affine maps simplifies to 0.
|
||
|
AffineExpr diffExpr =
|
||
|
inferredType.getResult(0) - candidateLayout.getResult(0);
|
||
|
diffExpr = simplifyAffineExpr(diffExpr, inferredType.getNumDims(),
|
||
|
inferredType.getNumSymbols());
|
||
|
auto cst = diffExpr.dyn_cast<AffineConstantExpr>();
|
||
|
if (!(cst && cst.getValue() == 0)) {
|
||
|
if (errMsg) {
|
||
|
llvm::raw_string_ostream os(*errMsg);
|
||
|
os << "inferred type: " << inferredType;
|
||
|
}
|
||
|
return SubViewVerificationResult::AffineMapMismatch;
|
||
|
}
|
||
|
return SubViewVerificationResult::Success;
|
||
|
}
|
||
|
|
||
|
template <typename OpTy>
|
||
|
static LogicalResult produceSubViewErrorMsg(SubViewVerificationResult result,
|
||
|
OpTy op, Type expectedType,
|
||
|
StringRef errMsg = "") {
|
||
|
auto memrefType = expectedType.cast<ShapedType>();
|
||
|
switch (result) {
|
||
|
case SubViewVerificationResult::Success:
|
||
|
return success();
|
||
|
case SubViewVerificationResult::RankTooLarge:
|
||
|
return op.emitError("expected result rank to be smaller or equal to ")
|
||
|
<< "the source rank. " << errMsg;
|
||
|
case SubViewVerificationResult::SizeMismatch:
|
||
|
return op.emitError("expected result type to be ")
|
||
|
<< expectedType
|
||
|
<< " or a rank-reduced version. (mismatch of result sizes) "
|
||
|
<< errMsg;
|
||
|
case SubViewVerificationResult::ElemTypeMismatch:
|
||
|
return op.emitError("expected result element type to be ")
|
||
|
<< memrefType.getElementType() << errMsg;
|
||
|
case SubViewVerificationResult::MemSpaceMismatch:
|
||
|
return op.emitError("expected result and source memory spaces to match.")
|
||
|
<< errMsg;
|
||
|
case SubViewVerificationResult::AffineMapMismatch:
|
||
|
return op.emitError("expected result type to be ")
|
||
|
<< expectedType
|
||
|
<< " or a rank-reduced version. (mismatch of result affine map) "
|
||
|
<< errMsg;
|
||
|
}
|
||
|
llvm_unreachable("unexpected subview verification result");
|
||
|
}
|
||
|
|
||
|
/// Verifier for SubViewOp.
|
||
|
static LogicalResult verify(SubViewOp op) {
|
||
|
MemRefType baseType = op.getSourceType();
|
||
|
MemRefType subViewType = op.getType();
|
||
|
|
||
|
// The base memref and the view memref should be in the same memory space.
|
||
|
if (baseType.getMemorySpaceAsInt() != subViewType.getMemorySpaceAsInt())
|
||
|
return op.emitError("different memory spaces specified for base memref "
|
||
|
"type ")
|
||
|
<< baseType << " and subview memref type " << subViewType;
|
||
|
|
||
|
// Verify that the base memref type has a strided layout map.
|
||
|
if (!isStrided(baseType))
|
||
|
return op.emitError("base type ") << baseType << " is not strided";
|
||
|
|
||
|
// Verify result type against inferred type.
|
||
|
auto expectedType = SubViewOp::inferResultType(
|
||
|
baseType, extractFromI64ArrayAttr(op.static_offsets()),
|
||
|
extractFromI64ArrayAttr(op.static_sizes()),
|
||
|
extractFromI64ArrayAttr(op.static_strides()));
|
||
|
|
||
|
std::string errMsg;
|
||
|
auto result = isRankReducedType(expectedType, subViewType, &errMsg);
|
||
|
return produceSubViewErrorMsg(result, op, expectedType, errMsg);
|
||
|
}
|
||
|
|
||
|
raw_ostream &mlir::operator<<(raw_ostream &os, Range &range) {
|
||
|
return os << "range " << range.offset << ":" << range.size << ":"
|
||
|
<< range.stride;
|
||
|
}
|
||
|
|
||
|
/// Return the list of Range (i.e. offset, size, stride). Each Range
|
||
|
/// entry contains either the dynamic value or a ConstantIndexOp constructed
|
||
|
/// with `b` at location `loc`.
|
||
|
SmallVector<Range, 8> mlir::getOrCreateRanges(OffsetSizeAndStrideOpInterface op,
|
||
|
OpBuilder &b, Location loc) {
|
||
|
std::array<unsigned, 3> ranks = op.getArrayAttrMaxRanks();
|
||
|
assert(ranks[0] == ranks[1] && "expected offset and sizes of equal ranks");
|
||
|
assert(ranks[1] == ranks[2] && "expected sizes and strides of equal ranks");
|
||
|
SmallVector<Range, 8> res;
|
||
|
unsigned rank = ranks[0];
|
||
|
res.reserve(rank);
|
||
|
for (unsigned idx = 0; idx < rank; ++idx) {
|
||
|
Value offset =
|
||
|
op.isDynamicOffset(idx)
|
||
|
? op.getDynamicOffset(idx)
|
||
|
: b.create<ConstantIndexOp>(loc, op.getStaticOffset(idx));
|
||
|
Value size = op.isDynamicSize(idx)
|
||
|
? op.getDynamicSize(idx)
|
||
|
: b.create<ConstantIndexOp>(loc, op.getStaticSize(idx));
|
||
|
Value stride =
|
||
|
op.isDynamicStride(idx)
|
||
|
? op.getDynamicStride(idx)
|
||
|
: b.create<ConstantIndexOp>(loc, op.getStaticStride(idx));
|
||
|
res.emplace_back(Range{offset, size, stride});
|
||
|
}
|
||
|
return res;
|
||
|
}
|
||
|
|
||
|
namespace {
|
||
|
/// Pattern to rewrite a subview op with MemRefCast arguments.
|
||
|
/// This essentially pushes memref.cast past its consuming subview when
|
||
|
/// `canFoldIntoConsumerOp` is true.
|
||
|
///
|
||
|
/// Example:
|
||
|
/// ```
|
||
|
/// %0 = memref.cast %V : memref<16x16xf32> to memref<?x?xf32>
|
||
|
/// %1 = memref.subview %0[0, 0][3, 4][1, 1] :
|
||
|
/// memref<?x?xf32> to memref<3x4xf32, offset:?, strides:[?, 1]>
|
||
|
/// ```
|
||
|
/// is rewritten into:
|
||
|
/// ```
|
||
|
/// %0 = memref.subview %V: memref<16x16xf32> to memref<3x4xf32, #[[map0]]>
|
||
|
/// %1 = memref.cast %0: memref<3x4xf32, offset:0, strides:[16, 1]> to
|
||
|
/// memref<3x4xf32, offset:?, strides:[?, 1]>
|
||
|
/// ```
|
||
|
class SubViewOpMemRefCastFolder final : public OpRewritePattern<SubViewOp> {
|
||
|
public:
|
||
|
using OpRewritePattern<SubViewOp>::OpRewritePattern;
|
||
|
|
||
|
LogicalResult matchAndRewrite(SubViewOp subViewOp,
|
||
|
PatternRewriter &rewriter) const override {
|
||
|
// Any constant operand, just return to let SubViewOpConstantFolder kick in.
|
||
|
if (llvm::any_of(subViewOp.getOperands(), [](Value operand) {
|
||
|
return matchPattern(operand, matchConstantIndex());
|
||
|
}))
|
||
|
return failure();
|
||
|
|
||
|
auto castOp = subViewOp.source().getDefiningOp<CastOp>();
|
||
|
if (!castOp)
|
||
|
return failure();
|
||
|
|
||
|
if (!CastOp::canFoldIntoConsumerOp(castOp))
|
||
|
return failure();
|
||
|
|
||
|
/// Deduce the resultType of the SubViewOp using `inferSubViewResultType` on
|
||
|
/// the cast source operand type and the SubViewOp static information. This
|
||
|
/// is the resulting type if the MemRefCastOp were folded.
|
||
|
auto resultType = SubViewOp::inferRankReducedResultType(
|
||
|
subViewOp.getType().getRank(),
|
||
|
castOp.source().getType().cast<MemRefType>(),
|
||
|
subViewOp.getMixedOffsets(), subViewOp.getMixedSizes(),
|
||
|
subViewOp.getMixedStrides());
|
||
|
Value newSubView = rewriter.create<SubViewOp>(
|
||
|
subViewOp.getLoc(), resultType, castOp.source(), subViewOp.offsets(),
|
||
|
subViewOp.sizes(), subViewOp.strides(), subViewOp.static_offsets(),
|
||
|
subViewOp.static_sizes(), subViewOp.static_strides());
|
||
|
rewriter.replaceOpWithNewOp<CastOp>(subViewOp, subViewOp.getType(),
|
||
|
newSubView);
|
||
|
return success();
|
||
|
}
|
||
|
};
|
||
|
} // namespace
|
||
|
|
||
|
/// A canonicalizer wrapper to replace SubViewOps.
|
||
|
struct SubViewCanonicalizer {
|
||
|
void operator()(PatternRewriter &rewriter, SubViewOp op, SubViewOp newOp) {
|
||
|
rewriter.replaceOpWithNewOp<CastOp>(op, newOp, op.getType());
|
||
|
}
|
||
|
};
|
||
|
|
||
|
void SubViewOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
|
||
|
MLIRContext *context) {
|
||
|
results.insert<OpWithOffsetSizesAndStridesConstantArgumentFolder<
|
||
|
SubViewOp, SubViewCanonicalizer>,
|
||
|
SubViewOpMemRefCastFolder>(context);
|
||
|
}
|
||
|
|
||
|
OpFoldResult SubViewOp::fold(ArrayRef<Attribute> operands) {
|
||
|
auto resultShapedType = getResult().getType().cast<ShapedType>();
|
||
|
auto sourceShapedType = source().getType().cast<ShapedType>();
|
||
|
|
||
|
if (resultShapedType.hasStaticShape() &&
|
||
|
resultShapedType == sourceShapedType) {
|
||
|
return getViewSource();
|
||
|
}
|
||
|
|
||
|
return {};
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// TensorLoadOp
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
OpFoldResult TensorLoadOp::fold(ArrayRef<Attribute>) {
|
||
|
if (auto bufferCast = memref().getDefiningOp<BufferCastOp>())
|
||
|
// Approximate alias analysis by conservatively folding only when no there
|
||
|
// is no interleaved operation.
|
||
|
if (bufferCast->getBlock() == this->getOperation()->getBlock() &&
|
||
|
bufferCast->getNextNode() == this->getOperation())
|
||
|
return bufferCast.tensor();
|
||
|
return {};
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// TransposeOp
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
/// Build a strided memref type by applying `permutationMap` tp `memRefType`.
|
||
|
static MemRefType inferTransposeResultType(MemRefType memRefType,
|
||
|
AffineMap permutationMap) {
|
||
|
auto rank = memRefType.getRank();
|
||
|
auto originalSizes = memRefType.getShape();
|
||
|
// Compute permuted sizes.
|
||
|
SmallVector<int64_t, 4> sizes(rank, 0);
|
||
|
for (auto en : llvm::enumerate(permutationMap.getResults()))
|
||
|
sizes[en.index()] =
|
||
|
originalSizes[en.value().cast<AffineDimExpr>().getPosition()];
|
||
|
|
||
|
// Compute permuted strides.
|
||
|
int64_t offset;
|
||
|
SmallVector<int64_t, 4> strides;
|
||
|
auto res = getStridesAndOffset(memRefType, strides, offset);
|
||
|
assert(succeeded(res) && strides.size() == static_cast<unsigned>(rank));
|
||
|
(void)res;
|
||
|
auto map =
|
||
|
makeStridedLinearLayoutMap(strides, offset, memRefType.getContext());
|
||
|
map = permutationMap ? map.compose(permutationMap) : map;
|
||
|
return MemRefType::Builder(memRefType).setShape(sizes).setAffineMaps(map);
|
||
|
}
|
||
|
|
||
|
void TransposeOp::build(OpBuilder &b, OperationState &result, Value in,
|
||
|
AffineMapAttr permutation,
|
||
|
ArrayRef<NamedAttribute> attrs) {
|
||
|
auto permutationMap = permutation.getValue();
|
||
|
assert(permutationMap);
|
||
|
|
||
|
auto memRefType = in.getType().cast<MemRefType>();
|
||
|
// Compute result type.
|
||
|
MemRefType resultType = inferTransposeResultType(memRefType, permutationMap);
|
||
|
|
||
|
build(b, result, resultType, in, attrs);
|
||
|
result.addAttribute(TransposeOp::getPermutationAttrName(), permutation);
|
||
|
}
|
||
|
|
||
|
// transpose $in $permutation attr-dict : type($in) `to` type(results)
|
||
|
static void print(OpAsmPrinter &p, TransposeOp op) {
|
||
|
p << "memref.transpose " << op.in() << " " << op.permutation();
|
||
|
p.printOptionalAttrDict(op->getAttrs(),
|
||
|
{TransposeOp::getPermutationAttrName()});
|
||
|
p << " : " << op.in().getType() << " to " << op.getType();
|
||
|
}
|
||
|
|
||
|
static ParseResult parseTransposeOp(OpAsmParser &parser,
|
||
|
OperationState &result) {
|
||
|
OpAsmParser::OperandType in;
|
||
|
AffineMap permutation;
|
||
|
MemRefType srcType, dstType;
|
||
|
if (parser.parseOperand(in) || parser.parseAffineMap(permutation) ||
|
||
|
parser.parseOptionalAttrDict(result.attributes) ||
|
||
|
parser.parseColonType(srcType) ||
|
||
|
parser.resolveOperand(in, srcType, result.operands) ||
|
||
|
parser.parseKeywordType("to", dstType) ||
|
||
|
parser.addTypeToList(dstType, result.types))
|
||
|
return failure();
|
||
|
|
||
|
result.addAttribute(TransposeOp::getPermutationAttrName(),
|
||
|
AffineMapAttr::get(permutation));
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
static LogicalResult verify(TransposeOp op) {
|
||
|
if (!op.permutation().isPermutation())
|
||
|
return op.emitOpError("expected a permutation map");
|
||
|
if (op.permutation().getNumDims() != op.getShapedType().getRank())
|
||
|
return op.emitOpError(
|
||
|
"expected a permutation map of same rank as the input");
|
||
|
|
||
|
auto srcType = op.in().getType().cast<MemRefType>();
|
||
|
auto dstType = op.getType().cast<MemRefType>();
|
||
|
auto transposedType = inferTransposeResultType(srcType, op.permutation());
|
||
|
if (dstType != transposedType)
|
||
|
return op.emitOpError("output type ")
|
||
|
<< dstType << " does not match transposed input type " << srcType
|
||
|
<< ", " << transposedType;
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
OpFoldResult TransposeOp::fold(ArrayRef<Attribute>) {
|
||
|
if (succeeded(foldMemRefCast(*this)))
|
||
|
return getResult();
|
||
|
return {};
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// ViewOp
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
static ParseResult parseViewOp(OpAsmParser &parser, OperationState &result) {
|
||
|
OpAsmParser::OperandType srcInfo;
|
||
|
SmallVector<OpAsmParser::OperandType, 1> offsetInfo;
|
||
|
SmallVector<OpAsmParser::OperandType, 4> sizesInfo;
|
||
|
auto indexType = parser.getBuilder().getIndexType();
|
||
|
Type srcType, dstType;
|
||
|
llvm::SMLoc offsetLoc;
|
||
|
if (parser.parseOperand(srcInfo) || parser.getCurrentLocation(&offsetLoc) ||
|
||
|
parser.parseOperandList(offsetInfo, OpAsmParser::Delimiter::Square))
|
||
|
return failure();
|
||
|
|
||
|
if (offsetInfo.size() != 1)
|
||
|
return parser.emitError(offsetLoc) << "expects 1 offset operand";
|
||
|
|
||
|
return failure(
|
||
|
parser.parseOperandList(sizesInfo, OpAsmParser::Delimiter::Square) ||
|
||
|
parser.parseOptionalAttrDict(result.attributes) ||
|
||
|
parser.parseColonType(srcType) ||
|
||
|
parser.resolveOperand(srcInfo, srcType, result.operands) ||
|
||
|
parser.resolveOperands(offsetInfo, indexType, result.operands) ||
|
||
|
parser.resolveOperands(sizesInfo, indexType, result.operands) ||
|
||
|
parser.parseKeywordType("to", dstType) ||
|
||
|
parser.addTypeToList(dstType, result.types));
|
||
|
}
|
||
|
|
||
|
static void print(OpAsmPrinter &p, ViewOp op) {
|
||
|
p << op.getOperationName() << ' ' << op.getOperand(0) << '[';
|
||
|
p.printOperand(op.byte_shift());
|
||
|
p << "][" << op.sizes() << ']';
|
||
|
p.printOptionalAttrDict(op->getAttrs());
|
||
|
p << " : " << op.getOperand(0).getType() << " to " << op.getType();
|
||
|
}
|
||
|
|
||
|
static LogicalResult verify(ViewOp op) {
|
||
|
auto baseType = op.getOperand(0).getType().cast<MemRefType>();
|
||
|
auto viewType = op.getType();
|
||
|
|
||
|
// The base memref should have identity layout map (or none).
|
||
|
if (baseType.getAffineMaps().size() > 1 ||
|
||
|
(baseType.getAffineMaps().size() == 1 &&
|
||
|
!baseType.getAffineMaps()[0].isIdentity()))
|
||
|
return op.emitError("unsupported map for base memref type ") << baseType;
|
||
|
|
||
|
// The result memref should have identity layout map (or none).
|
||
|
if (viewType.getAffineMaps().size() > 1 ||
|
||
|
(viewType.getAffineMaps().size() == 1 &&
|
||
|
!viewType.getAffineMaps()[0].isIdentity()))
|
||
|
return op.emitError("unsupported map for result memref type ") << viewType;
|
||
|
|
||
|
// The base memref and the view memref should be in the same memory space.
|
||
|
if (baseType.getMemorySpaceAsInt() != viewType.getMemorySpaceAsInt())
|
||
|
return op.emitError("different memory spaces specified for base memref "
|
||
|
"type ")
|
||
|
<< baseType << " and view memref type " << viewType;
|
||
|
|
||
|
// Verify that we have the correct number of sizes for the result type.
|
||
|
unsigned numDynamicDims = viewType.getNumDynamicDims();
|
||
|
if (op.sizes().size() != numDynamicDims)
|
||
|
return op.emitError("incorrect number of size operands for type ")
|
||
|
<< viewType;
|
||
|
|
||
|
return success();
|
||
|
}
|
||
|
|
||
|
Value ViewOp::getViewSource() { return source(); }
|
||
|
|
||
|
namespace {
|
||
|
|
||
|
struct ViewOpShapeFolder : public OpRewritePattern<ViewOp> {
|
||
|
using OpRewritePattern<ViewOp>::OpRewritePattern;
|
||
|
|
||
|
LogicalResult matchAndRewrite(ViewOp viewOp,
|
||
|
PatternRewriter &rewriter) const override {
|
||
|
// Return if none of the operands are constants.
|
||
|
if (llvm::none_of(viewOp.getOperands(), [](Value operand) {
|
||
|
return matchPattern(operand, matchConstantIndex());
|
||
|
}))
|
||
|
return failure();
|
||
|
|
||
|
// Get result memref type.
|
||
|
auto memrefType = viewOp.getType();
|
||
|
|
||
|
// Get offset from old memref view type 'memRefType'.
|
||
|
int64_t oldOffset;
|
||
|
SmallVector<int64_t, 4> oldStrides;
|
||
|
if (failed(getStridesAndOffset(memrefType, oldStrides, oldOffset)))
|
||
|
return failure();
|
||
|
assert(oldOffset == 0 && "Expected 0 offset");
|
||
|
|
||
|
SmallVector<Value, 4> newOperands;
|
||
|
|
||
|
// Offset cannot be folded into result type.
|
||
|
|
||
|
// Fold any dynamic dim operands which are produced by a constant.
|
||
|
SmallVector<int64_t, 4> newShapeConstants;
|
||
|
newShapeConstants.reserve(memrefType.getRank());
|
||
|
|
||
|
unsigned dynamicDimPos = 0;
|
||
|
unsigned rank = memrefType.getRank();
|
||
|
for (unsigned dim = 0, e = rank; dim < e; ++dim) {
|
||
|
int64_t dimSize = memrefType.getDimSize(dim);
|
||
|
// If this is already static dimension, keep it.
|
||
|
if (!ShapedType::isDynamic(dimSize)) {
|
||
|
newShapeConstants.push_back(dimSize);
|
||
|
continue;
|
||
|
}
|
||
|
auto *defOp = viewOp.sizes()[dynamicDimPos].getDefiningOp();
|
||
|
if (auto constantIndexOp = dyn_cast_or_null<ConstantIndexOp>(defOp)) {
|
||
|
// Dynamic shape dimension will be folded.
|
||
|
newShapeConstants.push_back(constantIndexOp.getValue());
|
||
|
} else {
|
||
|
// Dynamic shape dimension not folded; copy operand from old memref.
|
||
|
newShapeConstants.push_back(dimSize);
|
||
|
newOperands.push_back(viewOp.sizes()[dynamicDimPos]);
|
||
|
}
|
||
|
dynamicDimPos++;
|
||
|
}
|
||
|
|
||
|
// Create new memref type with constant folded dims.
|
||
|
MemRefType newMemRefType =
|
||
|
MemRefType::Builder(memrefType).setShape(newShapeConstants);
|
||
|
// Nothing new, don't fold.
|
||
|
if (newMemRefType == memrefType)
|
||
|
return failure();
|
||
|
|
||
|
// Create new ViewOp.
|
||
|
auto newViewOp = rewriter.create<ViewOp>(viewOp.getLoc(), newMemRefType,
|
||
|
viewOp.getOperand(0),
|
||
|
viewOp.byte_shift(), newOperands);
|
||
|
// Insert a cast so we have the same type as the old memref type.
|
||
|
rewriter.replaceOpWithNewOp<CastOp>(viewOp, newViewOp, viewOp.getType());
|
||
|
return success();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
struct ViewOpMemrefCastFolder : public OpRewritePattern<ViewOp> {
|
||
|
using OpRewritePattern<ViewOp>::OpRewritePattern;
|
||
|
|
||
|
LogicalResult matchAndRewrite(ViewOp viewOp,
|
||
|
PatternRewriter &rewriter) const override {
|
||
|
Value memrefOperand = viewOp.getOperand(0);
|
||
|
CastOp memrefCastOp = memrefOperand.getDefiningOp<CastOp>();
|
||
|
if (!memrefCastOp)
|
||
|
return failure();
|
||
|
Value allocOperand = memrefCastOp.getOperand();
|
||
|
AllocOp allocOp = allocOperand.getDefiningOp<AllocOp>();
|
||
|
if (!allocOp)
|
||
|
return failure();
|
||
|
rewriter.replaceOpWithNewOp<ViewOp>(viewOp, viewOp.getType(), allocOperand,
|
||
|
viewOp.byte_shift(), viewOp.sizes());
|
||
|
return success();
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // end anonymous namespace
|
||
|
|
||
|
void ViewOp::getCanonicalizationPatterns(OwningRewritePatternList &results,
|
||
|
MLIRContext *context) {
|
||
|
results.insert<ViewOpShapeFolder, ViewOpMemrefCastFolder>(context);
|
||
|
}
|
||
|
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
// TableGen'd op method definitions
|
||
|
//===----------------------------------------------------------------------===//
|
||
|
|
||
|
#define GET_OP_CLASSES
|
||
|
#include "mlir/Dialect/MemRef/IR/MemRefOps.cpp.inc"
|