llvm-project/clang/lib/AST/TextNodeDumper.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

3115 lines
87 KiB
C++
Raw Normal View History

//===--- TextNodeDumper.cpp - Printing of AST nodes -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements AST dumping of components of individual AST nodes.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/TextNodeDumper.h"
[clang] Rework how and when APValues are dumped Currently APValues are dumped as a single string. This becomes quickly completely unreadable since APValue is a tree-like structure. Even a simple example is not pretty: struct S { int arr[4]; float f; }; constexpr S s = { .arr = {1,2}, .f = 3.1415f }; // Struct fields: Array: Int: 1, Int: 2, 2 x Int: 0, Float: 3.141500e+00 With this patch this becomes: -Struct |-field: Array size=4 | |-elements: Int 1, Int 2 | `-filler: 2 x Int 0 `-field: Float 3.141500e+00 Additionally APValues are currently only dumped as part of visiting a ConstantExpr. This patch also dump the value of the initializer of constexpr variable declarations: constexpr int foo(int a, int b) { return a + b - 42; } constexpr int a = 1, b = 2; constexpr int c = foo(a, b) > 0 ? foo(a, b) : foo(b, a); // VarDecl 0x62100008aec8 <col:3, col:57> col:17 c 'const int' constexpr cinit // |-value: Int -39 // `-ConditionalOperator 0x62100008b4d0 <col:21, col:57> 'int' // <snip> Do the above by moving the dump functions to TextNodeDumper which already has the machinery to display trees. The cases APValue::LValue, APValue::MemberPointer and APValue::AddrLabelDiff are left as they were before (unimplemented). We try to display multiple elements on the same line if they are considered to be "simple". This is to avoid wasting large amounts of vertical space in an example like: constexpr int arr[8] = {0,1,2,3,4,5,6,7}; // VarDecl 0x62100008bb78 <col:3, col:42> col:17 arr 'int const[8]' constexpr cinit // |-value: Array size=8 // | |-elements: Int 0, Int 1, Int 2, Int 3 // | `-elements: Int 4, Int 5, Int 6, Int 7 Differential Revision: https://reviews.llvm.org/D83183 Reviewed By: aaron.ballman
2020-07-06 21:50:23 +01:00
#include "clang/AST/APValue.h"
#include "clang/AST/DeclFriend.h"
#include "clang/AST/DeclOpenMP.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/LocInfoType.h"
#include "clang/AST/NestedNameSpecifier.h"
[clang] Rework how and when APValues are dumped Currently APValues are dumped as a single string. This becomes quickly completely unreadable since APValue is a tree-like structure. Even a simple example is not pretty: struct S { int arr[4]; float f; }; constexpr S s = { .arr = {1,2}, .f = 3.1415f }; // Struct fields: Array: Int: 1, Int: 2, 2 x Int: 0, Float: 3.141500e+00 With this patch this becomes: -Struct |-field: Array size=4 | |-elements: Int 1, Int 2 | `-filler: 2 x Int 0 `-field: Float 3.141500e+00 Additionally APValues are currently only dumped as part of visiting a ConstantExpr. This patch also dump the value of the initializer of constexpr variable declarations: constexpr int foo(int a, int b) { return a + b - 42; } constexpr int a = 1, b = 2; constexpr int c = foo(a, b) > 0 ? foo(a, b) : foo(b, a); // VarDecl 0x62100008aec8 <col:3, col:57> col:17 c 'const int' constexpr cinit // |-value: Int -39 // `-ConditionalOperator 0x62100008b4d0 <col:21, col:57> 'int' // <snip> Do the above by moving the dump functions to TextNodeDumper which already has the machinery to display trees. The cases APValue::LValue, APValue::MemberPointer and APValue::AddrLabelDiff are left as they were before (unimplemented). We try to display multiple elements on the same line if they are considered to be "simple". This is to avoid wasting large amounts of vertical space in an example like: constexpr int arr[8] = {0,1,2,3,4,5,6,7}; // VarDecl 0x62100008bb78 <col:3, col:42> col:17 arr 'int const[8]' constexpr cinit // |-value: Array size=8 // | |-elements: Int 0, Int 1, Int 2, Int 3 // | `-elements: Int 4, Int 5, Int 6, Int 7 Differential Revision: https://reviews.llvm.org/D83183 Reviewed By: aaron.ballman
2020-07-06 21:50:23 +01:00
#include "clang/AST/Type.h"
[AST] Add dump() method to TypeLoc (#65484) The ability to dump AST nodes is important to ad-hoc debugging, and the fact this doesn't work with TypeLoc nodes is an obvious missing feature in e.g. clang-query (`set output dump` simply does nothing). Having TypeLoc::dump(), and enabling DynTypedNode::dump() for such nodes seems like a clear win. It looks like this: ``` int main(int argc, char **argv); FunctionProtoTypeLoc <test.cc:3:1, col:31> 'int (int, char **)' cdecl |-ParmVarDecl 0x30071a8 <col:10, col:14> col:14 argc 'int' | `-BuiltinTypeLoc <col:10> 'int' |-ParmVarDecl 0x3007250 <col:20, col:27> col:27 argv 'char **' | `-PointerTypeLoc <col:20, col:26> 'char **' | `-PointerTypeLoc <col:20, col:25> 'char *' | `-BuiltinTypeLoc <col:20> 'char' `-BuiltinTypeLoc <col:1> 'int' ``` It dumps the lexically nested tree of type locs. This often looks similar to how types are dumped, but unlike types we don't look at desugaring e.g. typedefs, as their underlying types are not lexically spelled here. --- Less clear is exactly when to include these nodes in existing text AST dumps rooted at (TranslationUnit)Decls. These already omit supported nodes sometimes, e.g. NestedNameSpecifiers are often mentioned but not recursively dumped. TypeLocs are a more extreme case: they're ~always more verbose than the current AST dump. So this patch punts on that, TypeLocs are only ever printed recursively as part of a TypeLoc::dump() call. It would also be nice to be able to invoke `clang` to dump a typeloc somehow, like `clang -cc1 -ast-dump`. But I don't know exactly what the best verison of that is, so this patch doesn't do it. --- There are similar (less critical!) nodes: TemplateArgumentLoc etc, these also don't have dump() functions today and are obvious extensions. I suspect that we should add these, and Loc nodes should dump each other (e.g. the ElaboratedTypeLoc `vector<int>::iterator` should dump the NestedNameSpecifierLoc `vector<int>::`, which dumps the TemplateSpecializationTypeLoc `vector<int>::` etc). Maybe this generalizes further to a "full syntactic dump" mode, where even Decls and Stmts would print the TypeLocs they lexically contain. But this may be more complex than useful. --- While here, ConceptReference JSON dumping must be implemented. It's not totally clear to me why this implementation wasn't required before but is now...
2024-01-31 16:40:29 +01:00
#include "clang/AST/TypeLocVisitor.h"
#include "clang/Basic/Module.h"
Avoid SourceManager.h include in RawCommentList.h, add missing incs SourceManager.h includes FileManager.h, which is expensive due to dependencies on LLVM FS headers. Remove dead BeforeThanCompare specialization. Sink ASTContext::addComment to cpp file. This reduces the time to compile a file that does nothing but include ASTContext.h from ~3.4s to ~2.8s for me. Saves these includes: 219 - ../clang/include/clang/Basic/SourceManager.h 204 - ../clang/include/clang/Basic/FileSystemOptions.h 204 - ../clang/include/clang/Basic/FileManager.h 165 - ../llvm/include/llvm/Support/VirtualFileSystem.h 164 - ../llvm/include/llvm/Support/SourceMgr.h 164 - ../llvm/include/llvm/Support/SMLoc.h 161 - ../llvm/include/llvm/Support/Path.h 141 - ../llvm/include/llvm/ADT/BitVector.h 128 - ../llvm/include/llvm/Support/MemoryBuffer.h 124 - ../llvm/include/llvm/Support/FileSystem.h 124 - ../llvm/include/llvm/Support/Chrono.h 124 - .../MSVCSTL/include/stack 122 - ../llvm/include/llvm-c/Types.h 122 - ../llvm/include/llvm/Support/NativeFormatting.h 122 - ../llvm/include/llvm/Support/FormatProviders.h 122 - ../llvm/include/llvm/Support/CBindingWrapping.h 122 - .../MSVCSTL/include/xtimec.h 122 - .../MSVCSTL/include/ratio 122 - .../MSVCSTL/include/chrono 121 - ../llvm/include/llvm/Support/FormatVariadicDetails.h 118 - ../llvm/include/llvm/Support/MD5.h 109 - .../MSVCSTL/include/deque 105 - ../llvm/include/llvm/Support/Host.h 105 - ../llvm/include/llvm/Support/Endian.h Reviewed By: aaron.ballman, hans Differential Revision: https://reviews.llvm.org/D75279
2020-02-27 11:01:58 -08:00
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Specifiers.h"
#include "clang/Basic/TypeTraits.h"
#include "llvm/ADT/StringExtras.h"
[clang] Rework how and when APValues are dumped Currently APValues are dumped as a single string. This becomes quickly completely unreadable since APValue is a tree-like structure. Even a simple example is not pretty: struct S { int arr[4]; float f; }; constexpr S s = { .arr = {1,2}, .f = 3.1415f }; // Struct fields: Array: Int: 1, Int: 2, 2 x Int: 0, Float: 3.141500e+00 With this patch this becomes: -Struct |-field: Array size=4 | |-elements: Int 1, Int 2 | `-filler: 2 x Int 0 `-field: Float 3.141500e+00 Additionally APValues are currently only dumped as part of visiting a ConstantExpr. This patch also dump the value of the initializer of constexpr variable declarations: constexpr int foo(int a, int b) { return a + b - 42; } constexpr int a = 1, b = 2; constexpr int c = foo(a, b) > 0 ? foo(a, b) : foo(b, a); // VarDecl 0x62100008aec8 <col:3, col:57> col:17 c 'const int' constexpr cinit // |-value: Int -39 // `-ConditionalOperator 0x62100008b4d0 <col:21, col:57> 'int' // <snip> Do the above by moving the dump functions to TextNodeDumper which already has the machinery to display trees. The cases APValue::LValue, APValue::MemberPointer and APValue::AddrLabelDiff are left as they were before (unimplemented). We try to display multiple elements on the same line if they are considered to be "simple". This is to avoid wasting large amounts of vertical space in an example like: constexpr int arr[8] = {0,1,2,3,4,5,6,7}; // VarDecl 0x62100008bb78 <col:3, col:42> col:17 arr 'int const[8]' constexpr cinit // |-value: Array size=8 // | |-elements: Int 0, Int 1, Int 2, Int 3 // | `-elements: Int 4, Int 5, Int 6, Int 7 Differential Revision: https://reviews.llvm.org/D83183 Reviewed By: aaron.ballman
2020-07-06 21:50:23 +01:00
#include <algorithm>
#include <utility>
using namespace clang;
static void dumpPreviousDeclImpl(raw_ostream &OS, ...) {}
template <typename T>
static void dumpPreviousDeclImpl(raw_ostream &OS, const Mergeable<T> *D) {
const T *First = D->getFirstDecl();
if (First != D)
OS << " first " << First;
}
template <typename T>
static void dumpPreviousDeclImpl(raw_ostream &OS, const Redeclarable<T> *D) {
const T *Prev = D->getPreviousDecl();
if (Prev)
OS << " prev " << Prev;
}
/// Dump the previous declaration in the redeclaration chain for a declaration,
/// if any.
static void dumpPreviousDecl(raw_ostream &OS, const Decl *D) {
switch (D->getKind()) {
#define DECL(DERIVED, BASE) \
case Decl::DERIVED: \
return dumpPreviousDeclImpl(OS, cast<DERIVED##Decl>(D));
#define ABSTRACT_DECL(DECL)
#include "clang/AST/DeclNodes.inc"
}
llvm_unreachable("Decl that isn't part of DeclNodes.inc!");
}
TextNodeDumper::TextNodeDumper(raw_ostream &OS, const ASTContext &Context,
bool ShowColors)
: TextTreeStructure(OS, ShowColors), OS(OS), ShowColors(ShowColors),
Context(&Context), SM(&Context.getSourceManager()),
PrintPolicy(Context.getPrintingPolicy()),
Traits(&Context.getCommentCommandTraits()) {}
TextNodeDumper::TextNodeDumper(raw_ostream &OS, bool ShowColors)
: TextTreeStructure(OS, ShowColors), OS(OS), ShowColors(ShowColors) {}
void TextNodeDumper::Visit(const comments::Comment *C,
const comments::FullComment *FC) {
if (!C) {
ColorScope Color(OS, ShowColors, NullColor);
OS << "<<<NULL>>>";
return;
}
{
ColorScope Color(OS, ShowColors, CommentColor);
OS << C->getCommentKindName();
}
dumpPointer(C);
dumpSourceRange(C->getSourceRange());
ConstCommentVisitor<TextNodeDumper, void,
const comments::FullComment *>::visit(C, FC);
}
void TextNodeDumper::Visit(const Attr *A) {
{
ColorScope Color(OS, ShowColors, AttrColor);
switch (A->getKind()) {
#define ATTR(X) \
case attr::X: \
OS << #X; \
break;
#include "clang/Basic/AttrList.inc"
}
OS << "Attr";
}
dumpPointer(A);
dumpSourceRange(A->getRange());
if (A->isInherited())
OS << " Inherited";
if (A->isImplicit())
OS << " Implicit";
ConstAttrVisitor<TextNodeDumper>::Visit(A);
}
void TextNodeDumper::Visit(const TemplateArgument &TA, SourceRange R,
const Decl *From, StringRef Label) {
OS << "TemplateArgument";
if (R.isValid())
dumpSourceRange(R);
if (From)
dumpDeclRef(From, Label);
ConstTemplateArgumentVisitor<TextNodeDumper>::Visit(TA);
}
void TextNodeDumper::Visit(const Stmt *Node) {
if (!Node) {
ColorScope Color(OS, ShowColors, NullColor);
OS << "<<<NULL>>>";
return;
}
{
ColorScope Color(OS, ShowColors, StmtColor);
OS << Node->getStmtClassName();
}
dumpPointer(Node);
dumpSourceRange(Node->getSourceRange());
if (const auto *E = dyn_cast<Expr>(Node)) {
dumpType(E->getType());
if (E->containsErrors()) {
ColorScope Color(OS, ShowColors, ErrorsColor);
OS << " contains-errors";
}
{
ColorScope Color(OS, ShowColors, ValueKindColor);
switch (E->getValueKind()) {
case VK_PRValue:
break;
case VK_LValue:
OS << " lvalue";
break;
case VK_XValue:
OS << " xvalue";
break;
}
}
{
ColorScope Color(OS, ShowColors, ObjectKindColor);
switch (E->getObjectKind()) {
case OK_Ordinary:
break;
case OK_BitField:
OS << " bitfield";
break;
case OK_ObjCProperty:
OS << " objcproperty";
break;
case OK_ObjCSubscript:
OS << " objcsubscript";
break;
case OK_VectorComponent:
OS << " vectorcomponent";
break;
case OK_MatrixComponent:
OS << " matrixcomponent";
break;
}
}
}
ConstStmtVisitor<TextNodeDumper>::Visit(Node);
}
void TextNodeDumper::Visit(const Type *T) {
if (!T) {
ColorScope Color(OS, ShowColors, NullColor);
OS << "<<<NULL>>>";
return;
}
if (isa<LocInfoType>(T)) {
{
ColorScope Color(OS, ShowColors, TypeColor);
OS << "LocInfo Type";
}
dumpPointer(T);
return;
}
{
ColorScope Color(OS, ShowColors, TypeColor);
OS << T->getTypeClassName() << "Type";
}
dumpPointer(T);
OS << " ";
dumpBareType(QualType(T, 0), false);
QualType SingleStepDesugar =
T->getLocallyUnqualifiedSingleStepDesugaredType();
if (SingleStepDesugar != QualType(T, 0))
OS << " sugar";
if (T->containsErrors()) {
ColorScope Color(OS, ShowColors, ErrorsColor);
OS << " contains-errors";
}
if (T->isDependentType())
OS << " dependent";
else if (T->isInstantiationDependentType())
OS << " instantiation_dependent";
if (T->isVariablyModifiedType())
OS << " variably_modified";
if (T->containsUnexpandedParameterPack())
OS << " contains_unexpanded_pack";
if (T->isFromAST())
OS << " imported";
TypeVisitor<TextNodeDumper>::Visit(T);
}
void TextNodeDumper::Visit(QualType T) {
OS << "QualType";
dumpPointer(T.getAsOpaquePtr());
OS << " ";
dumpBareType(T, false);
OS << " " << T.split().Quals.getAsString();
}
[AST] Add dump() method to TypeLoc (#65484) The ability to dump AST nodes is important to ad-hoc debugging, and the fact this doesn't work with TypeLoc nodes is an obvious missing feature in e.g. clang-query (`set output dump` simply does nothing). Having TypeLoc::dump(), and enabling DynTypedNode::dump() for such nodes seems like a clear win. It looks like this: ``` int main(int argc, char **argv); FunctionProtoTypeLoc <test.cc:3:1, col:31> 'int (int, char **)' cdecl |-ParmVarDecl 0x30071a8 <col:10, col:14> col:14 argc 'int' | `-BuiltinTypeLoc <col:10> 'int' |-ParmVarDecl 0x3007250 <col:20, col:27> col:27 argv 'char **' | `-PointerTypeLoc <col:20, col:26> 'char **' | `-PointerTypeLoc <col:20, col:25> 'char *' | `-BuiltinTypeLoc <col:20> 'char' `-BuiltinTypeLoc <col:1> 'int' ``` It dumps the lexically nested tree of type locs. This often looks similar to how types are dumped, but unlike types we don't look at desugaring e.g. typedefs, as their underlying types are not lexically spelled here. --- Less clear is exactly when to include these nodes in existing text AST dumps rooted at (TranslationUnit)Decls. These already omit supported nodes sometimes, e.g. NestedNameSpecifiers are often mentioned but not recursively dumped. TypeLocs are a more extreme case: they're ~always more verbose than the current AST dump. So this patch punts on that, TypeLocs are only ever printed recursively as part of a TypeLoc::dump() call. It would also be nice to be able to invoke `clang` to dump a typeloc somehow, like `clang -cc1 -ast-dump`. But I don't know exactly what the best verison of that is, so this patch doesn't do it. --- There are similar (less critical!) nodes: TemplateArgumentLoc etc, these also don't have dump() functions today and are obvious extensions. I suspect that we should add these, and Loc nodes should dump each other (e.g. the ElaboratedTypeLoc `vector<int>::iterator` should dump the NestedNameSpecifierLoc `vector<int>::`, which dumps the TemplateSpecializationTypeLoc `vector<int>::` etc). Maybe this generalizes further to a "full syntactic dump" mode, where even Decls and Stmts would print the TypeLocs they lexically contain. But this may be more complex than useful. --- While here, ConceptReference JSON dumping must be implemented. It's not totally clear to me why this implementation wasn't required before but is now...
2024-01-31 16:40:29 +01:00
void TextNodeDumper::Visit(TypeLoc TL) {
if (!TL) {
ColorScope Color(OS, ShowColors, NullColor);
OS << "<<<NULL>>>";
return;
}
{
ColorScope Color(OS, ShowColors, TypeColor);
OS << (TL.getTypeLocClass() == TypeLoc::Qualified
? "Qualified"
: TL.getType()->getTypeClassName())
<< "TypeLoc";
}
dumpSourceRange(TL.getSourceRange());
OS << ' ';
dumpBareType(TL.getType(), /*Desugar=*/false);
TypeLocVisitor<TextNodeDumper>::Visit(TL);
}
void TextNodeDumper::Visit(const Decl *D) {
if (!D) {
ColorScope Color(OS, ShowColors, NullColor);
OS << "<<<NULL>>>";
return;
}
{
ColorScope Color(OS, ShowColors, DeclKindNameColor);
OS << D->getDeclKindName() << "Decl";
}
dumpPointer(D);
if (D->getLexicalDeclContext() != D->getDeclContext())
OS << " parent " << cast<Decl>(D->getDeclContext());
dumpPreviousDecl(OS, D);
dumpSourceRange(D->getSourceRange());
OS << ' ';
dumpLocation(D->getLocation());
if (D->isFromASTFile())
OS << " imported";
if (Module *M = D->getOwningModule())
OS << " in " << M->getFullModuleName();
if (auto *ND = dyn_cast<NamedDecl>(D))
for (Module *M : D->getASTContext().getModulesWithMergedDefinition(
const_cast<NamedDecl *>(ND)))
AddChild([=] { OS << "also in " << M->getFullModuleName(); });
if (const NamedDecl *ND = dyn_cast<NamedDecl>(D))
if (!ND->isUnconditionallyVisible())
OS << " hidden";
if (D->isImplicit())
OS << " implicit";
if (D->isUsed())
OS << " used";
else if (D->isThisDeclarationReferenced())
OS << " referenced";
if (D->isInvalidDecl())
OS << " invalid";
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
if (FD->isConstexprSpecified())
OS << " constexpr";
if (FD->isConsteval())
OS << " consteval";
else if (FD->isImmediateFunction())
OS << " immediate";
if (FD->isMultiVersion())
OS << " multiversion";
}
if (!isa<FunctionDecl>(*D)) {
const auto *MD = dyn_cast<ObjCMethodDecl>(D);
if (!MD || !MD->isThisDeclarationADefinition()) {
const auto *DC = dyn_cast<DeclContext>(D);
if (DC && DC->hasExternalLexicalStorage()) {
ColorScope Color(OS, ShowColors, UndeserializedColor);
OS << " <undeserialized declarations>";
}
}
}
switch (D->getFriendObjectKind()) {
case Decl::FOK_None:
break;
case Decl::FOK_Declared:
OS << " friend";
break;
case Decl::FOK_Undeclared:
OS << " friend_undeclared";
break;
}
ConstDeclVisitor<TextNodeDumper>::Visit(D);
}
void TextNodeDumper::Visit(const CXXCtorInitializer *Init) {
OS << "CXXCtorInitializer";
if (Init->isAnyMemberInitializer()) {
OS << ' ';
dumpBareDeclRef(Init->getAnyMember());
} else if (Init->isBaseInitializer()) {
dumpType(QualType(Init->getBaseClass(), 0));
} else if (Init->isDelegatingInitializer()) {
dumpType(Init->getTypeSourceInfo()->getType());
} else {
llvm_unreachable("Unknown initializer type");
}
}
void TextNodeDumper::Visit(const BlockDecl::Capture &C) {
OS << "capture";
if (C.isByRef())
OS << " byref";
if (C.isNested())
OS << " nested";
if (C.getVariable()) {
OS << ' ';
dumpBareDeclRef(C.getVariable());
}
}
void TextNodeDumper::Visit(const OMPClause *C) {
if (!C) {
ColorScope Color(OS, ShowColors, NullColor);
OS << "<<<NULL>>> OMPClause";
return;
}
{
ColorScope Color(OS, ShowColors, AttrColor);
StringRef ClauseName(llvm::omp::getOpenMPClauseName(C->getClauseKind()));
OS << "OMP" << ClauseName.substr(/*Start=*/0, /*N=*/1).upper()
<< ClauseName.drop_front() << "Clause";
}
dumpPointer(C);
dumpSourceRange(SourceRange(C->getBeginLoc(), C->getEndLoc()));
if (C->isImplicit())
OS << " <implicit>";
}
void TextNodeDumper::VisitOpenACCAsteriskSizeExpr(
const OpenACCAsteriskSizeExpr *E) {
// Nothing to do here, only location exists, and that is printed elsewhere.
}
void TextNodeDumper::Visit(const OpenACCClause *C) {
if (!C) {
ColorScope Color(OS, ShowColors, NullColor);
OS << "<<<NULL>>> OpenACCClause";
return;
}
{
ColorScope Color(OS, ShowColors, AttrColor);
OS << C->getClauseKind();
// Handle clauses with parens for types that have no children, likely
// because there is no sub expression.
switch (C->getClauseKind()) {
case OpenACCClauseKind::Default:
OS << '(' << cast<OpenACCDefaultClause>(C)->getDefaultClauseKind() << ')';
break;
case OpenACCClauseKind::Async:
case OpenACCClauseKind::Auto:
case OpenACCClauseKind::Attach:
case OpenACCClauseKind::Copy:
case OpenACCClauseKind::PCopy:
case OpenACCClauseKind::PresentOrCopy:
case OpenACCClauseKind::Host:
case OpenACCClauseKind::If:
case OpenACCClauseKind::IfPresent:
case OpenACCClauseKind::Independent:
case OpenACCClauseKind::Detach:
case OpenACCClauseKind::Delete:
case OpenACCClauseKind::Device:
case OpenACCClauseKind::DeviceNum:
case OpenACCClauseKind::DefaultAsync:
case OpenACCClauseKind::DeviceResident:
case OpenACCClauseKind::DevicePtr:
case OpenACCClauseKind::Finalize:
case OpenACCClauseKind::FirstPrivate:
case OpenACCClauseKind::Link:
case OpenACCClauseKind::NoCreate:
case OpenACCClauseKind::NoHost:
case OpenACCClauseKind::NumGangs:
case OpenACCClauseKind::NumWorkers:
case OpenACCClauseKind::Present:
case OpenACCClauseKind::Private:
case OpenACCClauseKind::Self:
case OpenACCClauseKind::Seq:
case OpenACCClauseKind::Tile:
case OpenACCClauseKind::Worker:
case OpenACCClauseKind::UseDevice:
case OpenACCClauseKind::Vector:
case OpenACCClauseKind::VectorLength:
// The condition expression will be printed as a part of the 'children',
// but print 'clause' here so it is clear what is happening from the dump.
OS << " clause";
break;
case OpenACCClauseKind::Gang: {
OS << " clause";
// print the list of all GangKinds, so that there is some sort of
// relationship to the expressions listed afterwards.
auto *GC = cast<OpenACCGangClause>(C);
for (unsigned I = 0; I < GC->getNumExprs(); ++I) {
OS << " " << GC->getExpr(I).first;
}
break;
}
case OpenACCClauseKind::Collapse:
OS << " clause";
if (cast<OpenACCCollapseClause>(C)->hasForce())
OS << ": force";
break;
case OpenACCClauseKind::CopyIn:
case OpenACCClauseKind::PCopyIn:
case OpenACCClauseKind::PresentOrCopyIn:
OS << " clause";
if (cast<OpenACCCopyInClause>(C)->isReadOnly())
OS << " : readonly";
break;
case OpenACCClauseKind::CopyOut:
case OpenACCClauseKind::PCopyOut:
case OpenACCClauseKind::PresentOrCopyOut:
OS << " clause";
if (cast<OpenACCCopyOutClause>(C)->isZero())
OS << " : zero";
break;
case OpenACCClauseKind::Create:
case OpenACCClauseKind::PCreate:
case OpenACCClauseKind::PresentOrCreate:
OS << " clause";
if (cast<OpenACCCreateClause>(C)->isZero())
OS << " : zero";
break;
case OpenACCClauseKind::Wait:
OS << " clause";
if (cast<OpenACCWaitClause>(C)->hasDevNumExpr())
OS << " has devnum";
if (cast<OpenACCWaitClause>(C)->hasQueuesTag())
OS << " has queues tag";
break;
case OpenACCClauseKind::DeviceType:
case OpenACCClauseKind::DType:
OS << "(";
llvm::interleaveComma(
cast<OpenACCDeviceTypeClause>(C)->getArchitectures(), OS,
[&](const DeviceTypeArgument &Arch) {
if (Arch.first == nullptr)
OS << "*";
else
OS << Arch.first->getName();
});
OS << ")";
break;
case OpenACCClauseKind::Reduction:
OS << " clause Operator: "
<< cast<OpenACCReductionClause>(C)->getReductionOp();
break;
default:
// Nothing to do here.
break;
}
}
dumpPointer(C);
dumpSourceRange(SourceRange(C->getBeginLoc(), C->getEndLoc()));
}
void TextNodeDumper::Visit(const GenericSelectionExpr::ConstAssociation &A) {
const TypeSourceInfo *TSI = A.getTypeSourceInfo();
if (TSI) {
OS << "case ";
dumpType(TSI->getType());
} else {
OS << "default";
}
if (A.isSelected())
OS << " selected";
}
void TextNodeDumper::Visit(const ConceptReference *R) {
if (!R) {
ColorScope Color(OS, ShowColors, NullColor);
OS << "<<<NULL>>> ConceptReference";
return;
}
OS << "ConceptReference";
dumpPointer(R);
dumpSourceRange(R->getSourceRange());
OS << ' ';
dumpBareDeclRef(R->getNamedConcept());
}
void TextNodeDumper::Visit(const concepts::Requirement *R) {
if (!R) {
ColorScope Color(OS, ShowColors, NullColor);
OS << "<<<NULL>>> Requirement";
return;
}
{
ColorScope Color(OS, ShowColors, StmtColor);
switch (R->getKind()) {
case concepts::Requirement::RK_Type:
OS << "TypeRequirement";
break;
case concepts::Requirement::RK_Simple:
OS << "SimpleRequirement";
break;
case concepts::Requirement::RK_Compound:
OS << "CompoundRequirement";
break;
case concepts::Requirement::RK_Nested:
OS << "NestedRequirement";
break;
}
}
dumpPointer(R);
if (auto *ER = dyn_cast<concepts::ExprRequirement>(R)) {
if (ER->hasNoexceptRequirement())
OS << " noexcept";
}
if (R->isDependent())
OS << " dependent";
else
OS << (R->isSatisfied() ? " satisfied" : " unsatisfied");
if (R->containsUnexpandedParameterPack())
OS << " contains_unexpanded_pack";
}
[clang] Rework how and when APValues are dumped Currently APValues are dumped as a single string. This becomes quickly completely unreadable since APValue is a tree-like structure. Even a simple example is not pretty: struct S { int arr[4]; float f; }; constexpr S s = { .arr = {1,2}, .f = 3.1415f }; // Struct fields: Array: Int: 1, Int: 2, 2 x Int: 0, Float: 3.141500e+00 With this patch this becomes: -Struct |-field: Array size=4 | |-elements: Int 1, Int 2 | `-filler: 2 x Int 0 `-field: Float 3.141500e+00 Additionally APValues are currently only dumped as part of visiting a ConstantExpr. This patch also dump the value of the initializer of constexpr variable declarations: constexpr int foo(int a, int b) { return a + b - 42; } constexpr int a = 1, b = 2; constexpr int c = foo(a, b) > 0 ? foo(a, b) : foo(b, a); // VarDecl 0x62100008aec8 <col:3, col:57> col:17 c 'const int' constexpr cinit // |-value: Int -39 // `-ConditionalOperator 0x62100008b4d0 <col:21, col:57> 'int' // <snip> Do the above by moving the dump functions to TextNodeDumper which already has the machinery to display trees. The cases APValue::LValue, APValue::MemberPointer and APValue::AddrLabelDiff are left as they were before (unimplemented). We try to display multiple elements on the same line if they are considered to be "simple". This is to avoid wasting large amounts of vertical space in an example like: constexpr int arr[8] = {0,1,2,3,4,5,6,7}; // VarDecl 0x62100008bb78 <col:3, col:42> col:17 arr 'int const[8]' constexpr cinit // |-value: Array size=8 // | |-elements: Int 0, Int 1, Int 2, Int 3 // | `-elements: Int 4, Int 5, Int 6, Int 7 Differential Revision: https://reviews.llvm.org/D83183 Reviewed By: aaron.ballman
2020-07-06 21:50:23 +01:00
static double GetApproxValue(const llvm::APFloat &F) {
llvm::APFloat V = F;
bool ignored;
V.convert(llvm::APFloat::IEEEdouble(), llvm::APFloat::rmNearestTiesToEven,
&ignored);
return V.convertToDouble();
}
/// True if the \p APValue \p Value can be folded onto the current line.
static bool isSimpleAPValue(const APValue &Value) {
switch (Value.getKind()) {
case APValue::None:
case APValue::Indeterminate:
case APValue::Int:
case APValue::Float:
case APValue::FixedPoint:
case APValue::ComplexInt:
case APValue::ComplexFloat:
case APValue::LValue:
case APValue::MemberPointer:
case APValue::AddrLabelDiff:
return true;
case APValue::Vector:
case APValue::Array:
case APValue::Struct:
return false;
case APValue::Union:
return isSimpleAPValue(Value.getUnionValue());
}
llvm_unreachable("unexpected APValue kind!");
}
/// Dump the children of the \p APValue \p Value.
///
/// \param[in] Value The \p APValue to visit
/// \param[in] Ty The \p QualType passed to \p Visit
///
/// \param[in] IdxToChildFun A function mapping an \p APValue and an index
/// to one of the child of the \p APValue
///
/// \param[in] NumChildren \p IdxToChildFun will be called on \p Value with
/// the indices in the range \p [0,NumChildren(
///
/// \param[in] LabelSingular The label to use on a line with a single child
/// \param[in] LabelPlurial The label to use on a line with multiple children
void TextNodeDumper::dumpAPValueChildren(
const APValue &Value, QualType Ty,
const APValue &(*IdxToChildFun)(const APValue &, unsigned),
unsigned NumChildren, StringRef LabelSingular, StringRef LabelPlurial) {
// To save some vertical space we print up to MaxChildrenPerLine APValues
// considered to be simple (by isSimpleAPValue) on a single line.
constexpr unsigned MaxChildrenPerLine = 4;
unsigned I = 0;
while (I < NumChildren) {
unsigned J = I;
while (J < NumChildren) {
if (isSimpleAPValue(IdxToChildFun(Value, J)) &&
(J - I < MaxChildrenPerLine)) {
++J;
continue;
}
break;
}
J = std::max(I + 1, J);
// Print [I,J) on a single line.
AddChild(J - I > 1 ? LabelPlurial : LabelSingular, [=]() {
for (unsigned X = I; X < J; ++X) {
Visit(IdxToChildFun(Value, X), Ty);
if (X + 1 != J)
OS << ", ";
}
});
I = J;
}
}
void TextNodeDumper::Visit(const APValue &Value, QualType Ty) {
ColorScope Color(OS, ShowColors, ValueKindColor);
switch (Value.getKind()) {
case APValue::None:
OS << "None";
return;
case APValue::Indeterminate:
OS << "Indeterminate";
return;
case APValue::Int:
OS << "Int ";
{
ColorScope Color(OS, ShowColors, ValueColor);
OS << Value.getInt();
}
return;
case APValue::Float:
OS << "Float ";
{
ColorScope Color(OS, ShowColors, ValueColor);
OS << GetApproxValue(Value.getFloat());
}
return;
case APValue::FixedPoint:
OS << "FixedPoint ";
{
ColorScope Color(OS, ShowColors, ValueColor);
OS << Value.getFixedPoint();
}
return;
case APValue::Vector: {
unsigned VectorLength = Value.getVectorLength();
OS << "Vector length=" << VectorLength;
dumpAPValueChildren(
Value, Ty,
[](const APValue &Value, unsigned Index) -> const APValue & {
return Value.getVectorElt(Index);
},
VectorLength, "element", "elements");
return;
}
case APValue::ComplexInt:
OS << "ComplexInt ";
{
ColorScope Color(OS, ShowColors, ValueColor);
OS << Value.getComplexIntReal() << " + " << Value.getComplexIntImag()
<< 'i';
}
return;
case APValue::ComplexFloat:
OS << "ComplexFloat ";
{
ColorScope Color(OS, ShowColors, ValueColor);
OS << GetApproxValue(Value.getComplexFloatReal()) << " + "
<< GetApproxValue(Value.getComplexFloatImag()) << 'i';
}
return;
case APValue::LValue: {
[clang] Rework how and when APValues are dumped Currently APValues are dumped as a single string. This becomes quickly completely unreadable since APValue is a tree-like structure. Even a simple example is not pretty: struct S { int arr[4]; float f; }; constexpr S s = { .arr = {1,2}, .f = 3.1415f }; // Struct fields: Array: Int: 1, Int: 2, 2 x Int: 0, Float: 3.141500e+00 With this patch this becomes: -Struct |-field: Array size=4 | |-elements: Int 1, Int 2 | `-filler: 2 x Int 0 `-field: Float 3.141500e+00 Additionally APValues are currently only dumped as part of visiting a ConstantExpr. This patch also dump the value of the initializer of constexpr variable declarations: constexpr int foo(int a, int b) { return a + b - 42; } constexpr int a = 1, b = 2; constexpr int c = foo(a, b) > 0 ? foo(a, b) : foo(b, a); // VarDecl 0x62100008aec8 <col:3, col:57> col:17 c 'const int' constexpr cinit // |-value: Int -39 // `-ConditionalOperator 0x62100008b4d0 <col:21, col:57> 'int' // <snip> Do the above by moving the dump functions to TextNodeDumper which already has the machinery to display trees. The cases APValue::LValue, APValue::MemberPointer and APValue::AddrLabelDiff are left as they were before (unimplemented). We try to display multiple elements on the same line if they are considered to be "simple". This is to avoid wasting large amounts of vertical space in an example like: constexpr int arr[8] = {0,1,2,3,4,5,6,7}; // VarDecl 0x62100008bb78 <col:3, col:42> col:17 arr 'int const[8]' constexpr cinit // |-value: Array size=8 // | |-elements: Int 0, Int 1, Int 2, Int 3 // | `-elements: Int 4, Int 5, Int 6, Int 7 Differential Revision: https://reviews.llvm.org/D83183 Reviewed By: aaron.ballman
2020-07-06 21:50:23 +01:00
(void)Context;
OS << "LValue Base=";
APValue::LValueBase B = Value.getLValueBase();
if (B.isNull())
OS << "null";
else if (const auto *BE = B.dyn_cast<const Expr *>()) {
OS << BE->getStmtClassName() << ' ';
dumpPointer(BE);
} else {
const auto *VDB = B.get<const ValueDecl *>();
OS << VDB->getDeclKindName() << "Decl";
dumpPointer(VDB);
}
OS << ", Null=" << Value.isNullPointer()
<< ", Offset=" << Value.getLValueOffset().getQuantity()
<< ", HasPath=" << Value.hasLValuePath();
if (Value.hasLValuePath()) {
OS << ", PathLength=" << Value.getLValuePath().size();
OS << ", Path=(";
llvm::ListSeparator Sep;
for (const auto &PathEntry : Value.getLValuePath()) {
// We're printing all entries as array indices because don't have the
// type information here to do anything else.
OS << Sep << PathEntry.getAsArrayIndex();
}
OS << ")";
}
[clang] Rework how and when APValues are dumped Currently APValues are dumped as a single string. This becomes quickly completely unreadable since APValue is a tree-like structure. Even a simple example is not pretty: struct S { int arr[4]; float f; }; constexpr S s = { .arr = {1,2}, .f = 3.1415f }; // Struct fields: Array: Int: 1, Int: 2, 2 x Int: 0, Float: 3.141500e+00 With this patch this becomes: -Struct |-field: Array size=4 | |-elements: Int 1, Int 2 | `-filler: 2 x Int 0 `-field: Float 3.141500e+00 Additionally APValues are currently only dumped as part of visiting a ConstantExpr. This patch also dump the value of the initializer of constexpr variable declarations: constexpr int foo(int a, int b) { return a + b - 42; } constexpr int a = 1, b = 2; constexpr int c = foo(a, b) > 0 ? foo(a, b) : foo(b, a); // VarDecl 0x62100008aec8 <col:3, col:57> col:17 c 'const int' constexpr cinit // |-value: Int -39 // `-ConditionalOperator 0x62100008b4d0 <col:21, col:57> 'int' // <snip> Do the above by moving the dump functions to TextNodeDumper which already has the machinery to display trees. The cases APValue::LValue, APValue::MemberPointer and APValue::AddrLabelDiff are left as they were before (unimplemented). We try to display multiple elements on the same line if they are considered to be "simple". This is to avoid wasting large amounts of vertical space in an example like: constexpr int arr[8] = {0,1,2,3,4,5,6,7}; // VarDecl 0x62100008bb78 <col:3, col:42> col:17 arr 'int const[8]' constexpr cinit // |-value: Array size=8 // | |-elements: Int 0, Int 1, Int 2, Int 3 // | `-elements: Int 4, Int 5, Int 6, Int 7 Differential Revision: https://reviews.llvm.org/D83183 Reviewed By: aaron.ballman
2020-07-06 21:50:23 +01:00
return;
}
[clang] Rework how and when APValues are dumped Currently APValues are dumped as a single string. This becomes quickly completely unreadable since APValue is a tree-like structure. Even a simple example is not pretty: struct S { int arr[4]; float f; }; constexpr S s = { .arr = {1,2}, .f = 3.1415f }; // Struct fields: Array: Int: 1, Int: 2, 2 x Int: 0, Float: 3.141500e+00 With this patch this becomes: -Struct |-field: Array size=4 | |-elements: Int 1, Int 2 | `-filler: 2 x Int 0 `-field: Float 3.141500e+00 Additionally APValues are currently only dumped as part of visiting a ConstantExpr. This patch also dump the value of the initializer of constexpr variable declarations: constexpr int foo(int a, int b) { return a + b - 42; } constexpr int a = 1, b = 2; constexpr int c = foo(a, b) > 0 ? foo(a, b) : foo(b, a); // VarDecl 0x62100008aec8 <col:3, col:57> col:17 c 'const int' constexpr cinit // |-value: Int -39 // `-ConditionalOperator 0x62100008b4d0 <col:21, col:57> 'int' // <snip> Do the above by moving the dump functions to TextNodeDumper which already has the machinery to display trees. The cases APValue::LValue, APValue::MemberPointer and APValue::AddrLabelDiff are left as they were before (unimplemented). We try to display multiple elements on the same line if they are considered to be "simple". This is to avoid wasting large amounts of vertical space in an example like: constexpr int arr[8] = {0,1,2,3,4,5,6,7}; // VarDecl 0x62100008bb78 <col:3, col:42> col:17 arr 'int const[8]' constexpr cinit // |-value: Array size=8 // | |-elements: Int 0, Int 1, Int 2, Int 3 // | `-elements: Int 4, Int 5, Int 6, Int 7 Differential Revision: https://reviews.llvm.org/D83183 Reviewed By: aaron.ballman
2020-07-06 21:50:23 +01:00
case APValue::Array: {
unsigned ArraySize = Value.getArraySize();
unsigned NumInitializedElements = Value.getArrayInitializedElts();
OS << "Array size=" << ArraySize;
dumpAPValueChildren(
Value, Ty,
[](const APValue &Value, unsigned Index) -> const APValue & {
return Value.getArrayInitializedElt(Index);
},
NumInitializedElements, "element", "elements");
if (Value.hasArrayFiller()) {
AddChild("filler", [=] {
{
ColorScope Color(OS, ShowColors, ValueColor);
OS << ArraySize - NumInitializedElements << " x ";
}
Visit(Value.getArrayFiller(), Ty);
});
}
return;
}
case APValue::Struct: {
OS << "Struct";
dumpAPValueChildren(
Value, Ty,
[](const APValue &Value, unsigned Index) -> const APValue & {
return Value.getStructBase(Index);
},
Value.getStructNumBases(), "base", "bases");
dumpAPValueChildren(
Value, Ty,
[](const APValue &Value, unsigned Index) -> const APValue & {
return Value.getStructField(Index);
},
Value.getStructNumFields(), "field", "fields");
return;
}
case APValue::Union: {
OS << "Union";
{
ColorScope Color(OS, ShowColors, ValueColor);
if (const FieldDecl *FD = Value.getUnionField())
OS << " ." << *cast<NamedDecl>(FD);
}
// If the union value is considered to be simple, fold it into the
// current line to save some vertical space.
const APValue &UnionValue = Value.getUnionValue();
if (isSimpleAPValue(UnionValue)) {
OS << ' ';
Visit(UnionValue, Ty);
} else {
AddChild([=] { Visit(UnionValue, Ty); });
}
return;
}
case APValue::MemberPointer:
OS << "MemberPointer <todo>";
return;
case APValue::AddrLabelDiff:
OS << "AddrLabelDiff <todo>";
return;
}
llvm_unreachable("Unknown APValue kind!");
}
void TextNodeDumper::dumpPointer(const void *Ptr) {
ColorScope Color(OS, ShowColors, AddressColor);
OS << ' ' << Ptr;
}
void TextNodeDumper::dumpLocation(SourceLocation Loc) {
if (!SM)
return;
ColorScope Color(OS, ShowColors, LocationColor);
SourceLocation SpellingLoc = SM->getSpellingLoc(Loc);
// The general format we print out is filename:line:col, but we drop pieces
// that haven't changed since the last loc printed.
PresumedLoc PLoc = SM->getPresumedLoc(SpellingLoc);
if (PLoc.isInvalid()) {
OS << "<invalid sloc>";
return;
}
if (strcmp(PLoc.getFilename(), LastLocFilename) != 0) {
OS << PLoc.getFilename() << ':' << PLoc.getLine() << ':'
<< PLoc.getColumn();
LastLocFilename = PLoc.getFilename();
LastLocLine = PLoc.getLine();
} else if (PLoc.getLine() != LastLocLine) {
OS << "line" << ':' << PLoc.getLine() << ':' << PLoc.getColumn();
LastLocLine = PLoc.getLine();
} else {
OS << "col" << ':' << PLoc.getColumn();
}
}
void TextNodeDumper::dumpSourceRange(SourceRange R) {
// Can't translate locations if a SourceManager isn't available.
if (!SM)
return;
OS << " <";
dumpLocation(R.getBegin());
if (R.getBegin() != R.getEnd()) {
OS << ", ";
dumpLocation(R.getEnd());
}
OS << ">";
// <t2.c:123:421[blah], t2.c:412:321>
}
void TextNodeDumper::dumpBareType(QualType T, bool Desugar) {
ColorScope Color(OS, ShowColors, TypeColor);
SplitQualType T_split = T.split();
std::string T_str = QualType::getAsString(T_split, PrintPolicy);
OS << "'" << T_str << "'";
if (Desugar && !T.isNull()) {
// If the type is sugared, also dump a (shallow) desugared type when
// it is visibly different.
SplitQualType D_split = T.getSplitDesugaredType();
if (T_split != D_split) {
std::string D_str = QualType::getAsString(D_split, PrintPolicy);
if (T_str != D_str)
OS << ":'" << QualType::getAsString(D_split, PrintPolicy) << "'";
}
}
}
void TextNodeDumper::dumpType(QualType T) {
OS << ' ';
dumpBareType(T);
}
void TextNodeDumper::dumpBareDeclRef(const Decl *D) {
if (!D) {
ColorScope Color(OS, ShowColors, NullColor);
OS << "<<<NULL>>>";
return;
}
{
ColorScope Color(OS, ShowColors, DeclKindNameColor);
OS << D->getDeclKindName();
}
dumpPointer(D);
if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) {
ColorScope Color(OS, ShowColors, DeclNameColor);
if (DeclarationName Name = ND->getDeclName())
OS << " '" << Name << '\'';
else
switch (ND->getKind()) {
case Decl::Decomposition: {
auto *DD = cast<DecompositionDecl>(ND);
OS << " first_binding '" << DD->bindings()[0]->getDeclName() << '\'';
break;
}
case Decl::Field: {
auto *FD = cast<FieldDecl>(ND);
OS << " field_index " << FD->getFieldIndex();
break;
}
case Decl::ParmVar: {
auto *PD = cast<ParmVarDecl>(ND);
OS << " depth " << PD->getFunctionScopeDepth() << " index "
<< PD->getFunctionScopeIndex();
break;
}
case Decl::TemplateTypeParm: {
auto *TD = cast<TemplateTypeParmDecl>(ND);
OS << " depth " << TD->getDepth() << " index " << TD->getIndex();
break;
}
case Decl::NonTypeTemplateParm: {
auto *TD = cast<NonTypeTemplateParmDecl>(ND);
OS << " depth " << TD->getDepth() << " index " << TD->getIndex();
break;
}
default:
// Var, Namespace, (CXX)Record: Nothing else besides source location.
dumpSourceRange(ND->getSourceRange());
break;
}
}
if (const ValueDecl *VD = dyn_cast<ValueDecl>(D))
dumpType(VD->getType());
}
void TextNodeDumper::dumpName(const NamedDecl *ND) {
if (ND->getDeclName()) {
ColorScope Color(OS, ShowColors, DeclNameColor);
OS << ' ' << ND->getDeclName();
}
}
void TextNodeDumper::dumpAccessSpecifier(AccessSpecifier AS) {
const auto AccessSpelling = getAccessSpelling(AS);
if (AccessSpelling.empty())
return;
OS << AccessSpelling;
}
void TextNodeDumper::dumpCleanupObject(
const ExprWithCleanups::CleanupObject &C) {
if (auto *BD = dyn_cast<BlockDecl *>(C))
dumpDeclRef(BD, "cleanup");
else if (auto *CLE = dyn_cast<CompoundLiteralExpr *>(C))
AddChild([=] {
OS << "cleanup ";
{
ColorScope Color(OS, ShowColors, StmtColor);
OS << CLE->getStmtClassName();
}
dumpPointer(CLE);
});
else
llvm_unreachable("unexpected cleanup type");
}
void clang::TextNodeDumper::dumpTemplateSpecializationKind(
TemplateSpecializationKind TSK) {
switch (TSK) {
case TSK_Undeclared:
break;
case TSK_ImplicitInstantiation:
OS << " implicit_instantiation";
break;
case TSK_ExplicitSpecialization:
OS << " explicit_specialization";
break;
case TSK_ExplicitInstantiationDeclaration:
OS << " explicit_instantiation_declaration";
break;
case TSK_ExplicitInstantiationDefinition:
OS << " explicit_instantiation_definition";
break;
}
}
void clang::TextNodeDumper::dumpNestedNameSpecifier(const NestedNameSpecifier *NNS) {
if (!NNS)
return;
AddChild([=] {
OS << "NestedNameSpecifier";
switch (NNS->getKind()) {
case NestedNameSpecifier::Identifier:
OS << " Identifier";
OS << " '" << NNS->getAsIdentifier()->getName() << "'";
break;
case NestedNameSpecifier::Namespace:
OS << " "; // "Namespace" is printed as the decl kind.
dumpBareDeclRef(NNS->getAsNamespace());
break;
case NestedNameSpecifier::NamespaceAlias:
OS << " "; // "NamespaceAlias" is printed as the decl kind.
dumpBareDeclRef(NNS->getAsNamespaceAlias());
break;
case NestedNameSpecifier::TypeSpec:
OS << " TypeSpec";
dumpType(QualType(NNS->getAsType(), 0));
break;
case NestedNameSpecifier::TypeSpecWithTemplate:
OS << " TypeSpecWithTemplate";
dumpType(QualType(NNS->getAsType(), 0));
break;
case NestedNameSpecifier::Global:
OS << " Global";
break;
case NestedNameSpecifier::Super:
OS << " Super";
break;
}
dumpNestedNameSpecifier(NNS->getPrefix());
});
}
void TextNodeDumper::dumpDeclRef(const Decl *D, StringRef Label) {
if (!D)
return;
AddChild([=] {
if (!Label.empty())
OS << Label << ' ';
dumpBareDeclRef(D);
});
}
void TextNodeDumper::dumpTemplateArgument(const TemplateArgument &TA) {
llvm::SmallString<128> Str;
{
llvm::raw_svector_ostream SS(Str);
TA.print(PrintPolicy, SS, /*IncludeType=*/true);
}
OS << " '" << Str << "'";
if (!Context)
return;
if (TemplateArgument CanonTA = Context->getCanonicalTemplateArgument(TA);
!CanonTA.structurallyEquals(TA)) {
llvm::SmallString<128> CanonStr;
{
llvm::raw_svector_ostream SS(CanonStr);
CanonTA.print(PrintPolicy, SS, /*IncludeType=*/true);
}
if (CanonStr != Str)
OS << ":'" << CanonStr << "'";
}
}
const char *TextNodeDumper::getCommandName(unsigned CommandID) {
if (Traits)
return Traits->getCommandInfo(CommandID)->Name;
const comments::CommandInfo *Info =
comments::CommandTraits::getBuiltinCommandInfo(CommandID);
if (Info)
return Info->Name;
return "<not a builtin command>";
}
void TextNodeDumper::printFPOptions(FPOptionsOverride FPO) {
#define OPTION(NAME, TYPE, WIDTH, PREVIOUS) \
if (FPO.has##NAME##Override()) \
OS << " " #NAME "=" << FPO.get##NAME##Override();
#include "clang/Basic/FPOptions.def"
}
void TextNodeDumper::visitTextComment(const comments::TextComment *C,
const comments::FullComment *) {
OS << " Text=\"" << C->getText() << "\"";
}
void TextNodeDumper::visitInlineCommandComment(
const comments::InlineCommandComment *C, const comments::FullComment *) {
OS << " Name=\"" << getCommandName(C->getCommandID()) << "\"";
switch (C->getRenderKind()) {
case comments::InlineCommandRenderKind::Normal:
OS << " RenderNormal";
break;
case comments::InlineCommandRenderKind::Bold:
OS << " RenderBold";
break;
case comments::InlineCommandRenderKind::Monospaced:
OS << " RenderMonospaced";
break;
case comments::InlineCommandRenderKind::Emphasized:
OS << " RenderEmphasized";
break;
case comments::InlineCommandRenderKind::Anchor:
OS << " RenderAnchor";
break;
}
for (unsigned i = 0, e = C->getNumArgs(); i != e; ++i)
OS << " Arg[" << i << "]=\"" << C->getArgText(i) << "\"";
}
void TextNodeDumper::visitHTMLStartTagComment(
const comments::HTMLStartTagComment *C, const comments::FullComment *) {
OS << " Name=\"" << C->getTagName() << "\"";
if (C->getNumAttrs() != 0) {
OS << " Attrs: ";
for (unsigned i = 0, e = C->getNumAttrs(); i != e; ++i) {
const comments::HTMLStartTagComment::Attribute &Attr = C->getAttr(i);
OS << " \"" << Attr.Name << "=\"" << Attr.Value << "\"";
}
}
if (C->isSelfClosing())
OS << " SelfClosing";
}
void TextNodeDumper::visitHTMLEndTagComment(
const comments::HTMLEndTagComment *C, const comments::FullComment *) {
OS << " Name=\"" << C->getTagName() << "\"";
}
void TextNodeDumper::visitBlockCommandComment(
const comments::BlockCommandComment *C, const comments::FullComment *) {
OS << " Name=\"" << getCommandName(C->getCommandID()) << "\"";
for (unsigned i = 0, e = C->getNumArgs(); i != e; ++i)
OS << " Arg[" << i << "]=\"" << C->getArgText(i) << "\"";
}
void TextNodeDumper::visitParamCommandComment(
const comments::ParamCommandComment *C, const comments::FullComment *FC) {
OS << " "
<< comments::ParamCommandComment::getDirectionAsString(C->getDirection());
if (C->isDirectionExplicit())
OS << " explicitly";
else
OS << " implicitly";
if (C->hasParamName()) {
if (C->isParamIndexValid())
OS << " Param=\"" << C->getParamName(FC) << "\"";
else
OS << " Param=\"" << C->getParamNameAsWritten() << "\"";
}
if (C->isParamIndexValid() && !C->isVarArgParam())
OS << " ParamIndex=" << C->getParamIndex();
}
void TextNodeDumper::visitTParamCommandComment(
const comments::TParamCommandComment *C, const comments::FullComment *FC) {
if (C->hasParamName()) {
if (C->isPositionValid())
OS << " Param=\"" << C->getParamName(FC) << "\"";
else
OS << " Param=\"" << C->getParamNameAsWritten() << "\"";
}
if (C->isPositionValid()) {
OS << " Position=<";
for (unsigned i = 0, e = C->getDepth(); i != e; ++i) {
OS << C->getIndex(i);
if (i != e - 1)
OS << ", ";
}
OS << ">";
}
}
void TextNodeDumper::visitVerbatimBlockComment(
const comments::VerbatimBlockComment *C, const comments::FullComment *) {
OS << " Name=\"" << getCommandName(C->getCommandID())
<< "\""
" CloseName=\""
<< C->getCloseName() << "\"";
}
void TextNodeDumper::visitVerbatimBlockLineComment(
const comments::VerbatimBlockLineComment *C,
const comments::FullComment *) {
OS << " Text=\"" << C->getText() << "\"";
}
void TextNodeDumper::visitVerbatimLineComment(
const comments::VerbatimLineComment *C, const comments::FullComment *) {
OS << " Text=\"" << C->getText() << "\"";
}
void TextNodeDumper::VisitNullTemplateArgument(const TemplateArgument &) {
OS << " null";
}
void TextNodeDumper::VisitTypeTemplateArgument(const TemplateArgument &TA) {
OS << " type";
dumpTemplateArgument(TA);
}
void TextNodeDumper::VisitDeclarationTemplateArgument(
const TemplateArgument &TA) {
OS << " decl";
dumpTemplateArgument(TA);
dumpDeclRef(TA.getAsDecl());
}
void TextNodeDumper::VisitNullPtrTemplateArgument(const TemplateArgument &TA) {
OS << " nullptr";
dumpTemplateArgument(TA);
}
void TextNodeDumper::VisitIntegralTemplateArgument(const TemplateArgument &TA) {
OS << " integral";
dumpTemplateArgument(TA);
}
void TextNodeDumper::VisitStructuralValueTemplateArgument(
const TemplateArgument &TA) {
OS << " structural value";
dumpTemplateArgument(TA);
}
void TextNodeDumper::dumpTemplateName(TemplateName TN, StringRef Label) {
AddChild(Label, [=] {
{
llvm::SmallString<128> Str;
{
llvm::raw_svector_ostream SS(Str);
TN.print(SS, PrintPolicy);
}
OS << "'" << Str << "'";
if (Context) {
if (TemplateName CanonTN = Context->getCanonicalTemplateName(TN);
CanonTN != TN) {
llvm::SmallString<128> CanonStr;
{
llvm::raw_svector_ostream SS(CanonStr);
CanonTN.print(SS, PrintPolicy);
}
if (CanonStr != Str)
OS << ":'" << CanonStr << "'";
}
}
}
dumpBareTemplateName(TN);
});
}
void TextNodeDumper::dumpBareTemplateName(TemplateName TN) {
switch (TN.getKind()) {
case TemplateName::Template:
AddChild([=] { Visit(TN.getAsTemplateDecl()); });
return;
case TemplateName::UsingTemplate: {
const UsingShadowDecl *USD = TN.getAsUsingShadowDecl();
AddChild([=] { Visit(USD); });
AddChild("target", [=] { Visit(USD->getTargetDecl()); });
return;
}
case TemplateName::QualifiedTemplate: {
OS << " qualified";
const QualifiedTemplateName *QTN = TN.getAsQualifiedTemplateName();
if (QTN->hasTemplateKeyword())
OS << " keyword";
dumpNestedNameSpecifier(QTN->getQualifier());
dumpBareTemplateName(QTN->getUnderlyingTemplate());
return;
}
case TemplateName::DependentTemplate: {
OS << " dependent";
const DependentTemplateName *DTN = TN.getAsDependentTemplateName();
dumpNestedNameSpecifier(DTN->getQualifier());
return;
}
case TemplateName::SubstTemplateTemplateParm: {
OS << " subst";
const SubstTemplateTemplateParmStorage *STS =
TN.getAsSubstTemplateTemplateParm();
OS << " index " << STS->getIndex();
if (std::optional<unsigned int> PackIndex = STS->getPackIndex())
OS << " pack_index " << *PackIndex;
if (const TemplateTemplateParmDecl *P = STS->getParameter())
AddChild("parameter", [=] { Visit(P); });
dumpDeclRef(STS->getAssociatedDecl(), "associated");
dumpTemplateName(STS->getReplacement(), "replacement");
return;
}
case TemplateName::DeducedTemplate: {
OS << " deduced";
const DeducedTemplateStorage *DTS = TN.getAsDeducedTemplateName();
dumpTemplateName(DTS->getUnderlying(), "underlying");
AddChild("defaults", [=] {
auto [StartPos, Args] = DTS->getDefaultArguments();
OS << " start " << StartPos;
for (const TemplateArgument &Arg : Args)
AddChild([=] { Visit(Arg, SourceRange()); });
});
return;
}
// FIXME: Implement these.
case TemplateName::OverloadedTemplate:
OS << " overloaded";
return;
case TemplateName::AssumedTemplate:
OS << " assumed";
return;
case TemplateName::SubstTemplateTemplateParmPack:
OS << " subst_pack";
return;
}
llvm_unreachable("Unexpected TemplateName Kind");
}
void TextNodeDumper::VisitTemplateTemplateArgument(const TemplateArgument &TA) {
OS << " template";
dumpTemplateArgument(TA);
dumpBareTemplateName(TA.getAsTemplate());
}
void TextNodeDumper::VisitTemplateExpansionTemplateArgument(
const TemplateArgument &TA) {
OS << " template expansion";
dumpTemplateArgument(TA);
dumpBareTemplateName(TA.getAsTemplateOrTemplatePattern());
}
void TextNodeDumper::VisitExpressionTemplateArgument(
const TemplateArgument &TA) {
OS << " expr";
dumpTemplateArgument(TA);
}
void TextNodeDumper::VisitPackTemplateArgument(const TemplateArgument &TA) {
OS << " pack";
dumpTemplateArgument(TA);
}
static void dumpBasePath(raw_ostream &OS, const CastExpr *Node) {
if (Node->path_empty())
return;
OS << " (";
bool First = true;
for (CastExpr::path_const_iterator I = Node->path_begin(),
E = Node->path_end();
I != E; ++I) {
const CXXBaseSpecifier *Base = *I;
if (!First)
OS << " -> ";
const auto *RD =
cast<CXXRecordDecl>(Base->getType()->castAs<RecordType>()->getDecl());
if (Base->isVirtual())
OS << "virtual ";
OS << RD->getName();
First = false;
}
OS << ')';
}
void TextNodeDumper::VisitIfStmt(const IfStmt *Node) {
if (Node->hasInitStorage())
OS << " has_init";
if (Node->hasVarStorage())
OS << " has_var";
if (Node->hasElseStorage())
OS << " has_else";
if (Node->isConstexpr())
OS << " constexpr";
if (Node->isConsteval()) {
OS << " ";
if (Node->isNegatedConsteval())
OS << "!";
OS << "consteval";
}
}
void TextNodeDumper::VisitSwitchStmt(const SwitchStmt *Node) {
if (Node->hasInitStorage())
OS << " has_init";
if (Node->hasVarStorage())
OS << " has_var";
}
void TextNodeDumper::VisitWhileStmt(const WhileStmt *Node) {
if (Node->hasVarStorage())
OS << " has_var";
}
void TextNodeDumper::VisitLabelStmt(const LabelStmt *Node) {
OS << " '" << Node->getName() << "'";
[Windows SEH]: HARDWARE EXCEPTION HANDLING (MSVC -EHa) - Part 1 This patch is the Part-1 (FE Clang) implementation of HW Exception handling. This new feature adds the support of Hardware Exception for Microsoft Windows SEH (Structured Exception Handling). This is the first step of this project; only X86_64 target is enabled in this patch. Compiler options: For clang-cl.exe, the option is -EHa, the same as MSVC. For clang.exe, the extra option is -fasync-exceptions, plus -triple x86_64-windows -fexceptions and -fcxx-exceptions as usual. NOTE:: Without the -EHa or -fasync-exceptions, this patch is a NO-DIFF change. The rules for C code: For C-code, one way (MSVC approach) to achieve SEH -EHa semantic is to follow three rules: * First, no exception can move in or out of _try region., i.e., no "potential faulty instruction can be moved across _try boundary. * Second, the order of exceptions for instructions 'directly' under a _try must be preserved (not applied to those in callees). * Finally, global states (local/global/heap variables) that can be read outside of _try region must be updated in memory (not just in register) before the subsequent exception occurs. The impact to C++ code: Although SEH is a feature for C code, -EHa does have a profound effect on C++ side. When a C++ function (in the same compilation unit with option -EHa ) is called by a SEH C function, a hardware exception occurs in C++ code can also be handled properly by an upstream SEH _try-handler or a C++ catch(...). As such, when that happens in the middle of an object's life scope, the dtor must be invoked the same way as C++ Synchronous Exception during unwinding process. Design: A natural way to achieve the rules above in LLVM today is to allow an EH edge added on memory/computation instruction (previous iload/istore idea) so that exception path is modeled in Flow graph preciously. However, tracking every single memory instruction and potential faulty instruction can create many Invokes, complicate flow graph and possibly result in negative performance impact for downstream optimization and code generation. Making all optimizations be aware of the new semantic is also substantial. This design does not intend to model exception path at instruction level. Instead, the proposed design tracks and reports EH state at BLOCK-level to reduce the complexity of flow graph and minimize the performance-impact on CPP code under -EHa option. One key element of this design is the ability to compute State number at block-level. Our algorithm is based on the following rationales: A _try scope is always a SEME (Single Entry Multiple Exits) region as jumping into a _try is not allowed. The single entry must start with a seh_try_begin() invoke with a correct State number that is the initial state of the SEME. Through control-flow, state number is propagated into all blocks. Side exits marked by seh_try_end() will unwind to parent state based on existing SEHUnwindMap[]. Note side exits can ONLY jump into parent scopes (lower state number). Thus, when a block succeeds various states from its predecessors, the lowest State triumphs others. If some exits flow to unreachable, propagation on those paths terminate, not affecting remaining blocks. For CPP code, object lifetime region is usually a SEME as SEH _try. However there is one rare exception: jumping into a lifetime that has Dtor but has no Ctor is warned, but allowed: Warning: jump bypasses variable with a non-trivial destructor In that case, the region is actually a MEME (multiple entry multiple exits). Our solution is to inject a eha_scope_begin() invoke in the side entry block to ensure a correct State. Implementation: Part-1: Clang implementation described below. Two intrinsic are created to track CPP object scopes; eha_scope_begin() and eha_scope_end(). _scope_begin() is immediately added after ctor() is called and EHStack is pushed. So it must be an invoke, not a call. With that it's also guaranteed an EH-cleanup-pad is created regardless whether there exists a call in this scope. _scope_end is added before dtor(). These two intrinsics make the computation of Block-State possible in downstream code gen pass, even in the presence of ctor/dtor inlining. Two intrinsic, seh_try_begin() and seh_try_end(), are added for C-code to mark _try boundary and to prevent from exceptions being moved across _try boundary. All memory instructions inside a _try are considered as 'volatile' to assure 2nd and 3rd rules for C-code above. This is a little sub-optimized. But it's acceptable as the amount of code directly under _try is very small. Part-2 (will be in Part-2 patch): LLVM implementation described below. For both C++ & C-code, the state of each block is computed at the same place in BE (WinEHPreparing pass) where all other EH tables/maps are calculated. In addition to _scope_begin & _scope_end, the computation of block state also rely on the existing State tracking code (UnwindMap and InvokeStateMap). For both C++ & C-code, the state of each block with potential trap instruction is marked and reported in DAG Instruction Selection pass, the same place where the state for -EHsc (synchronous exceptions) is done. If the first instruction in a reported block scope can trap, a Nop is injected before this instruction. This nop is needed to accommodate LLVM Windows EH implementation, in which the address in IPToState table is offset by +1. (note the purpose of that is to ensure the return address of a call is in the same scope as the call address. The handler for catch(...) for -EHa must handle HW exception. So it is 'adjective' flag is reset (it cannot be IsStdDotDot (0x40) that only catches C++ exceptions). Suppress push/popTerminate() scope (from noexcept/noTHrow) so that HW exceptions can be passed through. Original llvm-dev [RFC] discussions can be found in these two threads below: https://lists.llvm.org/pipermail/llvm-dev/2020-March/140541.html https://lists.llvm.org/pipermail/llvm-dev/2020-April/141338.html Differential Revision: https://reviews.llvm.org/D80344/new/
2021-05-17 22:06:32 -07:00
if (Node->isSideEntry())
OS << " side_entry";
}
void TextNodeDumper::VisitGotoStmt(const GotoStmt *Node) {
OS << " '" << Node->getLabel()->getName() << "'";
dumpPointer(Node->getLabel());
}
void TextNodeDumper::VisitCaseStmt(const CaseStmt *Node) {
if (Node->caseStmtIsGNURange())
OS << " gnu_range";
}
void clang::TextNodeDumper::VisitReturnStmt(const ReturnStmt *Node) {
if (const VarDecl *Cand = Node->getNRVOCandidate()) {
OS << " nrvo_candidate(";
dumpBareDeclRef(Cand);
OS << ")";
}
}
void clang::TextNodeDumper::VisitCoawaitExpr(const CoawaitExpr *Node) {
if (Node->isImplicit())
OS << " implicit";
}
void clang::TextNodeDumper::VisitCoreturnStmt(const CoreturnStmt *Node) {
if (Node->isImplicit())
OS << " implicit";
}
void TextNodeDumper::VisitConstantExpr(const ConstantExpr *Node) {
[clang] Rework how and when APValues are dumped Currently APValues are dumped as a single string. This becomes quickly completely unreadable since APValue is a tree-like structure. Even a simple example is not pretty: struct S { int arr[4]; float f; }; constexpr S s = { .arr = {1,2}, .f = 3.1415f }; // Struct fields: Array: Int: 1, Int: 2, 2 x Int: 0, Float: 3.141500e+00 With this patch this becomes: -Struct |-field: Array size=4 | |-elements: Int 1, Int 2 | `-filler: 2 x Int 0 `-field: Float 3.141500e+00 Additionally APValues are currently only dumped as part of visiting a ConstantExpr. This patch also dump the value of the initializer of constexpr variable declarations: constexpr int foo(int a, int b) { return a + b - 42; } constexpr int a = 1, b = 2; constexpr int c = foo(a, b) > 0 ? foo(a, b) : foo(b, a); // VarDecl 0x62100008aec8 <col:3, col:57> col:17 c 'const int' constexpr cinit // |-value: Int -39 // `-ConditionalOperator 0x62100008b4d0 <col:21, col:57> 'int' // <snip> Do the above by moving the dump functions to TextNodeDumper which already has the machinery to display trees. The cases APValue::LValue, APValue::MemberPointer and APValue::AddrLabelDiff are left as they were before (unimplemented). We try to display multiple elements on the same line if they are considered to be "simple". This is to avoid wasting large amounts of vertical space in an example like: constexpr int arr[8] = {0,1,2,3,4,5,6,7}; // VarDecl 0x62100008bb78 <col:3, col:42> col:17 arr 'int const[8]' constexpr cinit // |-value: Array size=8 // | |-elements: Int 0, Int 1, Int 2, Int 3 // | `-elements: Int 4, Int 5, Int 6, Int 7 Differential Revision: https://reviews.llvm.org/D83183 Reviewed By: aaron.ballman
2020-07-06 21:50:23 +01:00
if (Node->hasAPValueResult())
AddChild("value",
[=] { Visit(Node->getAPValueResult(), Node->getType()); });
}
void TextNodeDumper::VisitCallExpr(const CallExpr *Node) {
if (Node->usesADL())
OS << " adl";
if (Node->hasStoredFPFeatures())
printFPOptions(Node->getFPFeatures());
}
void TextNodeDumper::VisitCXXOperatorCallExpr(const CXXOperatorCallExpr *Node) {
const char *OperatorSpelling = clang::getOperatorSpelling(Node->getOperator());
if (OperatorSpelling)
OS << " '" << OperatorSpelling << "'";
VisitCallExpr(Node);
}
void TextNodeDumper::VisitCastExpr(const CastExpr *Node) {
OS << " <";
{
ColorScope Color(OS, ShowColors, CastColor);
OS << Node->getCastKindName();
}
dumpBasePath(OS, Node);
OS << ">";
if (Node->hasStoredFPFeatures())
printFPOptions(Node->getFPFeatures());
}
void TextNodeDumper::VisitImplicitCastExpr(const ImplicitCastExpr *Node) {
VisitCastExpr(Node);
if (Node->isPartOfExplicitCast())
OS << " part_of_explicit_cast";
}
void TextNodeDumper::VisitDeclRefExpr(const DeclRefExpr *Node) {
OS << " ";
dumpBareDeclRef(Node->getDecl());
dumpNestedNameSpecifier(Node->getQualifier());
if (Node->getDecl() != Node->getFoundDecl()) {
OS << " (";
dumpBareDeclRef(Node->getFoundDecl());
OS << ")";
}
switch (Node->isNonOdrUse()) {
case NOUR_None: break;
case NOUR_Unevaluated: OS << " non_odr_use_unevaluated"; break;
case NOUR_Constant: OS << " non_odr_use_constant"; break;
case NOUR_Discarded: OS << " non_odr_use_discarded"; break;
}
if (Node->isCapturedByCopyInLambdaWithExplicitObjectParameter())
OS << " dependent_capture";
else if (Node->refersToEnclosingVariableOrCapture())
OS << " refers_to_enclosing_variable_or_capture";
if (Node->isImmediateEscalating())
OS << " immediate-escalating";
}
void clang::TextNodeDumper::VisitDependentScopeDeclRefExpr(
const DependentScopeDeclRefExpr *Node) {
dumpNestedNameSpecifier(Node->getQualifier());
}
void TextNodeDumper::VisitUnresolvedLookupExpr(
const UnresolvedLookupExpr *Node) {
OS << " (";
if (!Node->requiresADL())
OS << "no ";
OS << "ADL) = '" << Node->getName() << '\'';
UnresolvedLookupExpr::decls_iterator I = Node->decls_begin(),
E = Node->decls_end();
if (I == E)
OS << " empty";
for (; I != E; ++I)
dumpPointer(*I);
}
void TextNodeDumper::VisitObjCIvarRefExpr(const ObjCIvarRefExpr *Node) {
{
ColorScope Color(OS, ShowColors, DeclKindNameColor);
OS << " " << Node->getDecl()->getDeclKindName() << "Decl";
}
OS << "='" << *Node->getDecl() << "'";
dumpPointer(Node->getDecl());
if (Node->isFreeIvar())
OS << " isFreeIvar";
}
void TextNodeDumper::VisitSYCLUniqueStableNameExpr(
const SYCLUniqueStableNameExpr *Node) {
dumpType(Node->getTypeSourceInfo()->getType());
}
void TextNodeDumper::VisitPredefinedExpr(const PredefinedExpr *Node) {
OS << " " << PredefinedExpr::getIdentKindName(Node->getIdentKind());
}
void TextNodeDumper::VisitCharacterLiteral(const CharacterLiteral *Node) {
ColorScope Color(OS, ShowColors, ValueColor);
OS << " " << Node->getValue();
}
void TextNodeDumper::VisitIntegerLiteral(const IntegerLiteral *Node) {
bool isSigned = Node->getType()->isSignedIntegerType();
ColorScope Color(OS, ShowColors, ValueColor);
OS << " " << toString(Node->getValue(), 10, isSigned);
}
void TextNodeDumper::VisitFixedPointLiteral(const FixedPointLiteral *Node) {
ColorScope Color(OS, ShowColors, ValueColor);
OS << " " << Node->getValueAsString(/*Radix=*/10);
}
void TextNodeDumper::VisitFloatingLiteral(const FloatingLiteral *Node) {
ColorScope Color(OS, ShowColors, ValueColor);
OS << " " << Node->getValueAsApproximateDouble();
}
void TextNodeDumper::VisitStringLiteral(const StringLiteral *Str) {
ColorScope Color(OS, ShowColors, ValueColor);
OS << " ";
Str->outputString(OS);
}
void TextNodeDumper::VisitInitListExpr(const InitListExpr *ILE) {
if (auto *Field = ILE->getInitializedFieldInUnion()) {
OS << " field ";
dumpBareDeclRef(Field);
}
}
void TextNodeDumper::VisitGenericSelectionExpr(const GenericSelectionExpr *E) {
if (E->isResultDependent())
OS << " result_dependent";
}
void TextNodeDumper::VisitUnaryOperator(const UnaryOperator *Node) {
OS << " " << (Node->isPostfix() ? "postfix" : "prefix") << " '"
<< UnaryOperator::getOpcodeStr(Node->getOpcode()) << "'";
if (!Node->canOverflow())
OS << " cannot overflow";
if (Node->hasStoredFPFeatures())
printFPOptions(Node->getStoredFPFeatures());
}
void TextNodeDumper::VisitUnaryExprOrTypeTraitExpr(
const UnaryExprOrTypeTraitExpr *Node) {
OS << " " << getTraitSpelling(Node->getKind());
if (Node->isArgumentType())
dumpType(Node->getArgumentType());
}
void TextNodeDumper::VisitMemberExpr(const MemberExpr *Node) {
OS << " " << (Node->isArrow() ? "->" : ".") << *Node->getMemberDecl();
dumpPointer(Node->getMemberDecl());
dumpNestedNameSpecifier(Node->getQualifier());
switch (Node->isNonOdrUse()) {
case NOUR_None: break;
case NOUR_Unevaluated: OS << " non_odr_use_unevaluated"; break;
case NOUR_Constant: OS << " non_odr_use_constant"; break;
case NOUR_Discarded: OS << " non_odr_use_discarded"; break;
}
}
void TextNodeDumper::VisitExtVectorElementExpr(
const ExtVectorElementExpr *Node) {
OS << " " << Node->getAccessor().getNameStart();
}
void TextNodeDumper::VisitBinaryOperator(const BinaryOperator *Node) {
OS << " '" << BinaryOperator::getOpcodeStr(Node->getOpcode()) << "'";
if (Node->hasStoredFPFeatures())
printFPOptions(Node->getStoredFPFeatures());
}
void TextNodeDumper::VisitCompoundAssignOperator(
const CompoundAssignOperator *Node) {
OS << " '" << BinaryOperator::getOpcodeStr(Node->getOpcode())
<< "' ComputeLHSTy=";
dumpBareType(Node->getComputationLHSType());
OS << " ComputeResultTy=";
dumpBareType(Node->getComputationResultType());
if (Node->hasStoredFPFeatures())
printFPOptions(Node->getStoredFPFeatures());
}
void TextNodeDumper::VisitAddrLabelExpr(const AddrLabelExpr *Node) {
OS << " " << Node->getLabel()->getName();
dumpPointer(Node->getLabel());
}
void TextNodeDumper::VisitCXXNamedCastExpr(const CXXNamedCastExpr *Node) {
OS << " " << Node->getCastName() << "<"
<< Node->getTypeAsWritten().getAsString() << ">"
<< " <" << Node->getCastKindName();
dumpBasePath(OS, Node);
OS << ">";
}
void TextNodeDumper::VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *Node) {
OS << " " << (Node->getValue() ? "true" : "false");
}
void TextNodeDumper::VisitCXXThisExpr(const CXXThisExpr *Node) {
if (Node->isImplicit())
OS << " implicit";
if (Node->isCapturedByCopyInLambdaWithExplicitObjectParameter())
OS << " dependent_capture";
OS << " this";
}
void TextNodeDumper::VisitCXXFunctionalCastExpr(
const CXXFunctionalCastExpr *Node) {
OS << " functional cast to " << Node->getTypeAsWritten().getAsString() << " <"
<< Node->getCastKindName() << ">";
if (Node->hasStoredFPFeatures())
printFPOptions(Node->getFPFeatures());
}
void TextNodeDumper::VisitCXXStaticCastExpr(const CXXStaticCastExpr *Node) {
VisitCXXNamedCastExpr(Node);
if (Node->hasStoredFPFeatures())
printFPOptions(Node->getFPFeatures());
}
void TextNodeDumper::VisitCXXUnresolvedConstructExpr(
const CXXUnresolvedConstructExpr *Node) {
dumpType(Node->getTypeAsWritten());
if (Node->isListInitialization())
OS << " list";
}
void TextNodeDumper::VisitCXXConstructExpr(const CXXConstructExpr *Node) {
CXXConstructorDecl *Ctor = Node->getConstructor();
dumpType(Ctor->getType());
if (Node->isElidable())
OS << " elidable";
if (Node->isListInitialization())
OS << " list";
if (Node->isStdInitListInitialization())
OS << " std::initializer_list";
if (Node->requiresZeroInitialization())
OS << " zeroing";
if (Node->isImmediateEscalating())
OS << " immediate-escalating";
}
void TextNodeDumper::VisitCXXBindTemporaryExpr(
const CXXBindTemporaryExpr *Node) {
OS << " (CXXTemporary";
dumpPointer(Node);
OS << ")";
}
void TextNodeDumper::VisitCXXNewExpr(const CXXNewExpr *Node) {
if (Node->isGlobalNew())
OS << " global";
if (Node->isArray())
OS << " array";
if (Node->getOperatorNew()) {
OS << ' ';
dumpBareDeclRef(Node->getOperatorNew());
}
// We could dump the deallocation function used in case of error, but it's
// usually not that interesting.
}
void TextNodeDumper::VisitCXXDeleteExpr(const CXXDeleteExpr *Node) {
if (Node->isGlobalDelete())
OS << " global";
if (Node->isArrayForm())
OS << " array";
if (Node->getOperatorDelete()) {
OS << ' ';
dumpBareDeclRef(Node->getOperatorDelete());
}
}
void TextNodeDumper::VisitTypeTraitExpr(const TypeTraitExpr *Node) {
OS << " " << getTraitSpelling(Node->getTrait());
}
void TextNodeDumper::VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *Node) {
OS << " " << getTraitSpelling(Node->getTrait());
}
void TextNodeDumper::VisitExpressionTraitExpr(const ExpressionTraitExpr *Node) {
OS << " " << getTraitSpelling(Node->getTrait());
}
void TextNodeDumper::VisitCXXDefaultArgExpr(const CXXDefaultArgExpr *Node) {
[Clang] Fix AST dump for {CXXDefaultArgExpr, CXXDefaultInitExpr} (#88269) This PR fix a AST dump issue since https://github.com/llvm/llvm-project/pull/80001 When Clang dumps `CXXDefaultArgExpr`/`CXXDefaultInitExpr`, there has no recursively dump the complete `CXXDefaultArgExpr`/`CXXDefaultInitExpr`. Since this PR, Clang will recursively dump a `CXXDefaultArgExpr`/`CXXDefaultInitExpr` node, even if the node has no rewritten init. *Consider*: ``` struct A { int arr[1]; }; struct B { const A &a = A{{0}}; }; void test() { B b{}; } ``` *Before*: ``` `-FunctionDecl <line:9:1, line:11:1> line:9:6 test 'void ()' `-CompoundStmt <col:13, line:11:1> `-DeclStmt <line:10:3, col:8> `-VarDecl <col:3, col:7> col:5 b 'B' listinit `-InitListExpr <col:6, col:7> 'B' `-CXXDefaultInitExpr <col:7> 'const A' lvalue has rewritten init `-ExprWithCleanups <line:6:16, col:21> 'const A' lvalue ``` *After*: ``` `-FunctionDecl 0x15a9455a8 <line:9:1, line:11:1> line:9:6 test 'void ()' `-CompoundStmt 0x15a945850 <col:13, line:11:1> `-DeclStmt 0x15a945838 <line:10:3, col:8> `-VarDecl 0x15a945708 <col:3, col:7> col:5 b 'B' listinit `-InitListExpr 0x15a9457b0 <col:6, col:7> 'B' `-CXXDefaultInitExpr 0x15a9457f8 <col:7> 'const A' lvalue has rewritten init `-ExprWithCleanups 0x15a945568 <line:6:16, col:21> 'const A' lvalue `-MaterializeTemporaryExpr 0x15a945500 <col:16, col:21> 'const A' lvalue extended by Field 0x15a945160 'a' 'const A &' `-ImplicitCastExpr 0x15a9454e8 <col:16, col:21> 'const A' <NoOp> `-CXXFunctionalCastExpr 0x15a9454c0 <col:16, col:21> 'A' functional cast to A <NoOp> `-InitListExpr 0x15a9452c0 <col:17, col:21> 'A' `-InitListExpr 0x15a945308 <col:18, col:20> 'int[1]' `-IntegerLiteral 0x15a945210 <col:19> 'int' 0 ``` --------- Signed-off-by: yronglin <yronglin777@gmail.com>
2024-04-12 22:39:40 +08:00
if (Node->hasRewrittenInit())
OS << " has rewritten init";
}
void TextNodeDumper::VisitCXXDefaultInitExpr(const CXXDefaultInitExpr *Node) {
[Clang] Fix AST dump for {CXXDefaultArgExpr, CXXDefaultInitExpr} (#88269) This PR fix a AST dump issue since https://github.com/llvm/llvm-project/pull/80001 When Clang dumps `CXXDefaultArgExpr`/`CXXDefaultInitExpr`, there has no recursively dump the complete `CXXDefaultArgExpr`/`CXXDefaultInitExpr`. Since this PR, Clang will recursively dump a `CXXDefaultArgExpr`/`CXXDefaultInitExpr` node, even if the node has no rewritten init. *Consider*: ``` struct A { int arr[1]; }; struct B { const A &a = A{{0}}; }; void test() { B b{}; } ``` *Before*: ``` `-FunctionDecl <line:9:1, line:11:1> line:9:6 test 'void ()' `-CompoundStmt <col:13, line:11:1> `-DeclStmt <line:10:3, col:8> `-VarDecl <col:3, col:7> col:5 b 'B' listinit `-InitListExpr <col:6, col:7> 'B' `-CXXDefaultInitExpr <col:7> 'const A' lvalue has rewritten init `-ExprWithCleanups <line:6:16, col:21> 'const A' lvalue ``` *After*: ``` `-FunctionDecl 0x15a9455a8 <line:9:1, line:11:1> line:9:6 test 'void ()' `-CompoundStmt 0x15a945850 <col:13, line:11:1> `-DeclStmt 0x15a945838 <line:10:3, col:8> `-VarDecl 0x15a945708 <col:3, col:7> col:5 b 'B' listinit `-InitListExpr 0x15a9457b0 <col:6, col:7> 'B' `-CXXDefaultInitExpr 0x15a9457f8 <col:7> 'const A' lvalue has rewritten init `-ExprWithCleanups 0x15a945568 <line:6:16, col:21> 'const A' lvalue `-MaterializeTemporaryExpr 0x15a945500 <col:16, col:21> 'const A' lvalue extended by Field 0x15a945160 'a' 'const A &' `-ImplicitCastExpr 0x15a9454e8 <col:16, col:21> 'const A' <NoOp> `-CXXFunctionalCastExpr 0x15a9454c0 <col:16, col:21> 'A' functional cast to A <NoOp> `-InitListExpr 0x15a9452c0 <col:17, col:21> 'A' `-InitListExpr 0x15a945308 <col:18, col:20> 'int[1]' `-IntegerLiteral 0x15a945210 <col:19> 'int' 0 ``` --------- Signed-off-by: yronglin <yronglin777@gmail.com>
2024-04-12 22:39:40 +08:00
if (Node->hasRewrittenInit())
OS << " has rewritten init";
}
void TextNodeDumper::VisitMaterializeTemporaryExpr(
const MaterializeTemporaryExpr *Node) {
if (const ValueDecl *VD = Node->getExtendingDecl()) {
OS << " extended by ";
dumpBareDeclRef(VD);
}
}
void TextNodeDumper::VisitExprWithCleanups(const ExprWithCleanups *Node) {
for (unsigned i = 0, e = Node->getNumObjects(); i != e; ++i)
dumpCleanupObject(Node->getObject(i));
}
void TextNodeDumper::VisitSizeOfPackExpr(const SizeOfPackExpr *Node) {
dumpPointer(Node->getPack());
dumpName(Node->getPack());
}
void TextNodeDumper::VisitCXXDependentScopeMemberExpr(
const CXXDependentScopeMemberExpr *Node) {
OS << " " << (Node->isArrow() ? "->" : ".") << Node->getMember();
}
void TextNodeDumper::VisitObjCMessageExpr(const ObjCMessageExpr *Node) {
OS << " selector=";
Node->getSelector().print(OS);
switch (Node->getReceiverKind()) {
case ObjCMessageExpr::Instance:
break;
case ObjCMessageExpr::Class:
OS << " class=";
dumpBareType(Node->getClassReceiver());
break;
case ObjCMessageExpr::SuperInstance:
OS << " super (instance)";
break;
case ObjCMessageExpr::SuperClass:
OS << " super (class)";
break;
}
}
void TextNodeDumper::VisitObjCBoxedExpr(const ObjCBoxedExpr *Node) {
if (auto *BoxingMethod = Node->getBoxingMethod()) {
OS << " selector=";
BoxingMethod->getSelector().print(OS);
}
}
void TextNodeDumper::VisitObjCAtCatchStmt(const ObjCAtCatchStmt *Node) {
if (!Node->getCatchParamDecl())
OS << " catch all";
}
void TextNodeDumper::VisitObjCEncodeExpr(const ObjCEncodeExpr *Node) {
dumpType(Node->getEncodedType());
}
void TextNodeDumper::VisitObjCSelectorExpr(const ObjCSelectorExpr *Node) {
OS << " ";
Node->getSelector().print(OS);
}
void TextNodeDumper::VisitObjCProtocolExpr(const ObjCProtocolExpr *Node) {
OS << ' ' << *Node->getProtocol();
}
void TextNodeDumper::VisitObjCPropertyRefExpr(const ObjCPropertyRefExpr *Node) {
if (Node->isImplicitProperty()) {
OS << " Kind=MethodRef Getter=\"";
if (Node->getImplicitPropertyGetter())
Node->getImplicitPropertyGetter()->getSelector().print(OS);
else
OS << "(null)";
OS << "\" Setter=\"";
if (ObjCMethodDecl *Setter = Node->getImplicitPropertySetter())
Setter->getSelector().print(OS);
else
OS << "(null)";
OS << "\"";
} else {
OS << " Kind=PropertyRef Property=\"" << *Node->getExplicitProperty()
<< '"';
}
if (Node->isSuperReceiver())
OS << " super";
OS << " Messaging=";
if (Node->isMessagingGetter() && Node->isMessagingSetter())
OS << "Getter&Setter";
else if (Node->isMessagingGetter())
OS << "Getter";
else if (Node->isMessagingSetter())
OS << "Setter";
}
void TextNodeDumper::VisitObjCSubscriptRefExpr(
const ObjCSubscriptRefExpr *Node) {
if (Node->isArraySubscriptRefExpr())
OS << " Kind=ArraySubscript GetterForArray=\"";
else
OS << " Kind=DictionarySubscript GetterForDictionary=\"";
if (Node->getAtIndexMethodDecl())
Node->getAtIndexMethodDecl()->getSelector().print(OS);
else
OS << "(null)";
if (Node->isArraySubscriptRefExpr())
OS << "\" SetterForArray=\"";
else
OS << "\" SetterForDictionary=\"";
if (Node->setAtIndexMethodDecl())
Node->setAtIndexMethodDecl()->getSelector().print(OS);
else
OS << "(null)";
}
void TextNodeDumper::VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *Node) {
OS << " " << (Node->getValue() ? "__objc_yes" : "__objc_no");
}
void TextNodeDumper::VisitOMPIteratorExpr(const OMPIteratorExpr *Node) {
OS << " ";
for (unsigned I = 0, E = Node->numOfIterators(); I < E; ++I) {
Visit(Node->getIteratorDecl(I));
OS << " = ";
const OMPIteratorExpr::IteratorRange Range = Node->getIteratorRange(I);
OS << " begin ";
Visit(Range.Begin);
OS << " end ";
Visit(Range.End);
if (Range.Step) {
OS << " step ";
Visit(Range.Step);
}
}
}
void TextNodeDumper::VisitConceptSpecializationExpr(
const ConceptSpecializationExpr *Node) {
OS << " ";
dumpBareDeclRef(Node->getFoundDecl());
}
void TextNodeDumper::VisitRequiresExpr(
const RequiresExpr *Node) {
if (!Node->isValueDependent())
OS << (Node->isSatisfied() ? " satisfied" : " unsatisfied");
}
void TextNodeDumper::VisitRValueReferenceType(const ReferenceType *T) {
if (T->isSpelledAsLValue())
OS << " written as lvalue reference";
}
void TextNodeDumper::VisitArrayType(const ArrayType *T) {
switch (T->getSizeModifier()) {
case ArraySizeModifier::Normal:
break;
case ArraySizeModifier::Static:
OS << " static";
break;
case ArraySizeModifier::Star:
OS << " *";
break;
}
OS << " " << T->getIndexTypeQualifiers().getAsString();
}
void TextNodeDumper::VisitConstantArrayType(const ConstantArrayType *T) {
OS << " " << T->getSize();
VisitArrayType(T);
}
void TextNodeDumper::VisitVariableArrayType(const VariableArrayType *T) {
OS << " ";
dumpSourceRange(T->getBracketsRange());
VisitArrayType(T);
}
void TextNodeDumper::VisitDependentSizedArrayType(
const DependentSizedArrayType *T) {
VisitArrayType(T);
OS << " ";
dumpSourceRange(T->getBracketsRange());
}
void TextNodeDumper::VisitDependentSizedExtVectorType(
const DependentSizedExtVectorType *T) {
OS << " ";
dumpLocation(T->getAttributeLoc());
}
void TextNodeDumper::VisitVectorType(const VectorType *T) {
switch (T->getVectorKind()) {
case VectorKind::Generic:
break;
case VectorKind::AltiVecVector:
OS << " altivec";
break;
case VectorKind::AltiVecPixel:
OS << " altivec pixel";
break;
case VectorKind::AltiVecBool:
OS << " altivec bool";
break;
case VectorKind::Neon:
OS << " neon";
break;
case VectorKind::NeonPoly:
OS << " neon poly";
break;
case VectorKind::SveFixedLengthData:
[Sema][AArch64] Support arm_sve_vector_bits attribute This patch implements the semantics for the 'arm_sve_vector_bits' type attribute, defined by the Arm C Language Extensions (ACLE) for SVE [1]. The purpose of this attribute is to define vector-length-specific (VLS) versions of existing vector-length-agnostic (VLA) types. The semantics were already implemented by D83551, although the implementation approach has since changed to represent VLSTs as VectorType in the AST and fixed-length vectors in the IR everywhere except in function args/returns. This is described in the prototype patch D85128 demonstrating the new approach. The semantic changes added in D83551 are changed since the AttributedType is replaced by VectorType in the AST. Minimal changes were necessary in the previous patch as the canonical type for both VLA and VLS was the same (i.e. sizeless), except in constructs such as globals and structs where sizeless types are unsupported. This patch reverts the changes that permitted VLS types that were represented as sizeless types in such circumstances, and adds support for implicit casting between VLA <-> VLS types as described in section 3.7.3.2 of the ACLE. Since the SVE builtin types for bool and uint8 are both represented as BuiltinType::UChar in VLSTs, two new vector kinds are implemented to distinguish predicate and data vectors. [1] https://developer.arm.com/documentation/100987/latest Reviewed By: aaron.ballman Differential Revision: https://reviews.llvm.org/D85736
2020-08-11 13:04:21 +00:00
OS << " fixed-length sve data vector";
break;
case VectorKind::SveFixedLengthPredicate:
[Sema][AArch64] Support arm_sve_vector_bits attribute This patch implements the semantics for the 'arm_sve_vector_bits' type attribute, defined by the Arm C Language Extensions (ACLE) for SVE [1]. The purpose of this attribute is to define vector-length-specific (VLS) versions of existing vector-length-agnostic (VLA) types. The semantics were already implemented by D83551, although the implementation approach has since changed to represent VLSTs as VectorType in the AST and fixed-length vectors in the IR everywhere except in function args/returns. This is described in the prototype patch D85128 demonstrating the new approach. The semantic changes added in D83551 are changed since the AttributedType is replaced by VectorType in the AST. Minimal changes were necessary in the previous patch as the canonical type for both VLA and VLS was the same (i.e. sizeless), except in constructs such as globals and structs where sizeless types are unsupported. This patch reverts the changes that permitted VLS types that were represented as sizeless types in such circumstances, and adds support for implicit casting between VLA <-> VLS types as described in section 3.7.3.2 of the ACLE. Since the SVE builtin types for bool and uint8 are both represented as BuiltinType::UChar in VLSTs, two new vector kinds are implemented to distinguish predicate and data vectors. [1] https://developer.arm.com/documentation/100987/latest Reviewed By: aaron.ballman Differential Revision: https://reviews.llvm.org/D85736
2020-08-11 13:04:21 +00:00
OS << " fixed-length sve predicate vector";
break;
case VectorKind::RVVFixedLengthData:
OS << " fixed-length rvv data vector";
break;
case VectorKind::RVVFixedLengthMask:
case VectorKind::RVVFixedLengthMask_1:
case VectorKind::RVVFixedLengthMask_2:
case VectorKind::RVVFixedLengthMask_4:
OS << " fixed-length rvv mask vector";
break;
}
OS << " " << T->getNumElements();
}
void TextNodeDumper::VisitFunctionType(const FunctionType *T) {
auto EI = T->getExtInfo();
if (EI.getNoReturn())
OS << " noreturn";
if (EI.getProducesResult())
OS << " produces_result";
if (EI.getHasRegParm())
OS << " regparm " << EI.getRegParm();
OS << " " << FunctionType::getNameForCallConv(EI.getCC());
}
void TextNodeDumper::VisitFunctionProtoType(const FunctionProtoType *T) {
auto EPI = T->getExtProtoInfo();
if (EPI.HasTrailingReturn)
OS << " trailing_return";
if (T->isConst())
OS << " const";
if (T->isVolatile())
OS << " volatile";
if (T->isRestrict())
OS << " restrict";
if (T->getExtProtoInfo().Variadic)
OS << " variadic";
switch (EPI.RefQualifier) {
case RQ_None:
break;
case RQ_LValue:
OS << " &";
break;
case RQ_RValue:
OS << " &&";
break;
}
switch (EPI.ExceptionSpec.Type) {
case EST_None:
break;
case EST_DynamicNone:
OS << " exceptionspec_dynamic_none";
break;
case EST_Dynamic:
OS << " exceptionspec_dynamic";
break;
case EST_MSAny:
OS << " exceptionspec_ms_any";
break;
case EST_NoThrow:
OS << " exceptionspec_nothrow";
break;
case EST_BasicNoexcept:
OS << " exceptionspec_basic_noexcept";
break;
case EST_DependentNoexcept:
OS << " exceptionspec_dependent_noexcept";
break;
case EST_NoexceptFalse:
OS << " exceptionspec_noexcept_false";
break;
case EST_NoexceptTrue:
OS << " exceptionspec_noexcept_true";
break;
case EST_Unevaluated:
OS << " exceptionspec_unevaluated";
break;
case EST_Uninstantiated:
OS << " exceptionspec_uninstantiated";
break;
case EST_Unparsed:
OS << " exceptionspec_unparsed";
break;
}
if (!EPI.ExceptionSpec.Exceptions.empty()) {
AddChild([=] {
OS << "Exceptions:";
for (unsigned I = 0, N = EPI.ExceptionSpec.Exceptions.size(); I != N;
++I) {
if (I)
OS << ",";
dumpType(EPI.ExceptionSpec.Exceptions[I]);
}
});
}
if (EPI.ExceptionSpec.NoexceptExpr) {
AddChild([=] {
OS << "NoexceptExpr: ";
Visit(EPI.ExceptionSpec.NoexceptExpr);
});
}
dumpDeclRef(EPI.ExceptionSpec.SourceDecl, "ExceptionSourceDecl");
dumpDeclRef(EPI.ExceptionSpec.SourceTemplate, "ExceptionSourceTemplate");
// FIXME: Consumed parameters.
VisitFunctionType(T);
}
void TextNodeDumper::VisitUnresolvedUsingType(const UnresolvedUsingType *T) {
dumpDeclRef(T->getDecl());
}
void TextNodeDumper::VisitUsingType(const UsingType *T) {
dumpDeclRef(T->getFoundDecl());
if (!T->typeMatchesDecl())
OS << " divergent";
}
void TextNodeDumper::VisitTypedefType(const TypedefType *T) {
dumpDeclRef(T->getDecl());
if (!T->typeMatchesDecl())
OS << " divergent";
}
void TextNodeDumper::VisitUnaryTransformType(const UnaryTransformType *T) {
switch (T->getUTTKind()) {
#define TRANSFORM_TYPE_TRAIT_DEF(Enum, Trait) \
case UnaryTransformType::Enum: \
OS << " " #Trait; \
break;
#include "clang/Basic/TransformTypeTraits.def"
}
}
void TextNodeDumper::VisitTagType(const TagType *T) {
dumpDeclRef(T->getDecl());
}
void TextNodeDumper::VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
OS << " depth " << T->getDepth() << " index " << T->getIndex();
if (T->isParameterPack())
OS << " pack";
dumpDeclRef(T->getDecl());
}
void TextNodeDumper::VisitSubstTemplateTypeParmType(
const SubstTemplateTypeParmType *T) {
dumpDeclRef(T->getAssociatedDecl());
VisitTemplateTypeParmDecl(T->getReplacedParameter());
if (auto PackIndex = T->getPackIndex())
OS << " pack_index " << *PackIndex;
}
void TextNodeDumper::VisitSubstTemplateTypeParmPackType(
const SubstTemplateTypeParmPackType *T) {
dumpDeclRef(T->getAssociatedDecl());
VisitTemplateTypeParmDecl(T->getReplacedParameter());
}
void TextNodeDumper::VisitAutoType(const AutoType *T) {
if (T->isDecltypeAuto())
OS << " decltype(auto)";
if (!T->isDeduced())
OS << " undeduced";
[AST] Add dump() method to TypeLoc (#65484) The ability to dump AST nodes is important to ad-hoc debugging, and the fact this doesn't work with TypeLoc nodes is an obvious missing feature in e.g. clang-query (`set output dump` simply does nothing). Having TypeLoc::dump(), and enabling DynTypedNode::dump() for such nodes seems like a clear win. It looks like this: ``` int main(int argc, char **argv); FunctionProtoTypeLoc <test.cc:3:1, col:31> 'int (int, char **)' cdecl |-ParmVarDecl 0x30071a8 <col:10, col:14> col:14 argc 'int' | `-BuiltinTypeLoc <col:10> 'int' |-ParmVarDecl 0x3007250 <col:20, col:27> col:27 argv 'char **' | `-PointerTypeLoc <col:20, col:26> 'char **' | `-PointerTypeLoc <col:20, col:25> 'char *' | `-BuiltinTypeLoc <col:20> 'char' `-BuiltinTypeLoc <col:1> 'int' ``` It dumps the lexically nested tree of type locs. This often looks similar to how types are dumped, but unlike types we don't look at desugaring e.g. typedefs, as their underlying types are not lexically spelled here. --- Less clear is exactly when to include these nodes in existing text AST dumps rooted at (TranslationUnit)Decls. These already omit supported nodes sometimes, e.g. NestedNameSpecifiers are often mentioned but not recursively dumped. TypeLocs are a more extreme case: they're ~always more verbose than the current AST dump. So this patch punts on that, TypeLocs are only ever printed recursively as part of a TypeLoc::dump() call. It would also be nice to be able to invoke `clang` to dump a typeloc somehow, like `clang -cc1 -ast-dump`. But I don't know exactly what the best verison of that is, so this patch doesn't do it. --- There are similar (less critical!) nodes: TemplateArgumentLoc etc, these also don't have dump() functions today and are obvious extensions. I suspect that we should add these, and Loc nodes should dump each other (e.g. the ElaboratedTypeLoc `vector<int>::iterator` should dump the NestedNameSpecifierLoc `vector<int>::`, which dumps the TemplateSpecializationTypeLoc `vector<int>::` etc). Maybe this generalizes further to a "full syntactic dump" mode, where even Decls and Stmts would print the TypeLocs they lexically contain. But this may be more complex than useful. --- While here, ConceptReference JSON dumping must be implemented. It's not totally clear to me why this implementation wasn't required before but is now...
2024-01-31 16:40:29 +01:00
if (T->isConstrained())
dumpDeclRef(T->getTypeConstraintConcept());
}
void TextNodeDumper::VisitDeducedTemplateSpecializationType(
const DeducedTemplateSpecializationType *T) {
dumpTemplateName(T->getTemplateName(), "name");
}
void TextNodeDumper::VisitTemplateSpecializationType(
const TemplateSpecializationType *T) {
if (T->isTypeAlias())
OS << " alias";
dumpTemplateName(T->getTemplateName(), "name");
}
void TextNodeDumper::VisitInjectedClassNameType(
const InjectedClassNameType *T) {
dumpDeclRef(T->getDecl());
}
void TextNodeDumper::VisitObjCInterfaceType(const ObjCInterfaceType *T) {
dumpDeclRef(T->getDecl());
}
void TextNodeDumper::VisitPackExpansionType(const PackExpansionType *T) {
if (auto N = T->getNumExpansions())
OS << " expansions " << *N;
}
[AST] Add dump() method to TypeLoc (#65484) The ability to dump AST nodes is important to ad-hoc debugging, and the fact this doesn't work with TypeLoc nodes is an obvious missing feature in e.g. clang-query (`set output dump` simply does nothing). Having TypeLoc::dump(), and enabling DynTypedNode::dump() for such nodes seems like a clear win. It looks like this: ``` int main(int argc, char **argv); FunctionProtoTypeLoc <test.cc:3:1, col:31> 'int (int, char **)' cdecl |-ParmVarDecl 0x30071a8 <col:10, col:14> col:14 argc 'int' | `-BuiltinTypeLoc <col:10> 'int' |-ParmVarDecl 0x3007250 <col:20, col:27> col:27 argv 'char **' | `-PointerTypeLoc <col:20, col:26> 'char **' | `-PointerTypeLoc <col:20, col:25> 'char *' | `-BuiltinTypeLoc <col:20> 'char' `-BuiltinTypeLoc <col:1> 'int' ``` It dumps the lexically nested tree of type locs. This often looks similar to how types are dumped, but unlike types we don't look at desugaring e.g. typedefs, as their underlying types are not lexically spelled here. --- Less clear is exactly when to include these nodes in existing text AST dumps rooted at (TranslationUnit)Decls. These already omit supported nodes sometimes, e.g. NestedNameSpecifiers are often mentioned but not recursively dumped. TypeLocs are a more extreme case: they're ~always more verbose than the current AST dump. So this patch punts on that, TypeLocs are only ever printed recursively as part of a TypeLoc::dump() call. It would also be nice to be able to invoke `clang` to dump a typeloc somehow, like `clang -cc1 -ast-dump`. But I don't know exactly what the best verison of that is, so this patch doesn't do it. --- There are similar (less critical!) nodes: TemplateArgumentLoc etc, these also don't have dump() functions today and are obvious extensions. I suspect that we should add these, and Loc nodes should dump each other (e.g. the ElaboratedTypeLoc `vector<int>::iterator` should dump the NestedNameSpecifierLoc `vector<int>::`, which dumps the TemplateSpecializationTypeLoc `vector<int>::` etc). Maybe this generalizes further to a "full syntactic dump" mode, where even Decls and Stmts would print the TypeLocs they lexically contain. But this may be more complex than useful. --- While here, ConceptReference JSON dumping must be implemented. It's not totally clear to me why this implementation wasn't required before but is now...
2024-01-31 16:40:29 +01:00
void TextNodeDumper::VisitTypeLoc(TypeLoc TL) {
// By default, add extra Type details with no extra loc info.
TypeVisitor<TextNodeDumper>::Visit(TL.getTypePtr());
}
// FIXME: override behavior for TypeLocs that have interesting location
// information, such as the qualifier in ElaboratedTypeLoc.
void TextNodeDumper::VisitLabelDecl(const LabelDecl *D) { dumpName(D); }
void TextNodeDumper::VisitTypedefDecl(const TypedefDecl *D) {
dumpName(D);
dumpType(D->getUnderlyingType());
if (D->isModulePrivate())
OS << " __module_private__";
}
void TextNodeDumper::VisitEnumDecl(const EnumDecl *D) {
if (D->isScoped()) {
if (D->isScopedUsingClassTag())
OS << " class";
else
OS << " struct";
}
dumpName(D);
if (D->isModulePrivate())
OS << " __module_private__";
if (D->isFixed())
dumpType(D->getIntegerType());
if (const auto *Instance = D->getInstantiatedFromMemberEnum()) {
OS << " instantiated_from";
dumpPointer(Instance);
}
}
void TextNodeDumper::VisitRecordDecl(const RecordDecl *D) {
OS << ' ' << D->getKindName();
dumpName(D);
if (D->isModulePrivate())
OS << " __module_private__";
if (D->isCompleteDefinition())
OS << " definition";
}
void TextNodeDumper::VisitEnumConstantDecl(const EnumConstantDecl *D) {
dumpName(D);
dumpType(D->getType());
}
void TextNodeDumper::VisitIndirectFieldDecl(const IndirectFieldDecl *D) {
dumpName(D);
dumpType(D->getType());
for (const auto *Child : D->chain())
dumpDeclRef(Child);
}
void TextNodeDumper::VisitFunctionDecl(const FunctionDecl *D) {
dumpName(D);
dumpType(D->getType());
dumpTemplateSpecializationKind(D->getTemplateSpecializationKind());
StorageClass SC = D->getStorageClass();
if (SC != SC_None)
OS << ' ' << VarDecl::getStorageClassSpecifierString(SC);
if (D->isInlineSpecified())
OS << " inline";
if (D->isVirtualAsWritten())
OS << " virtual";
if (D->isModulePrivate())
OS << " __module_private__";
if (D->isPureVirtual())
OS << " pure";
if (D->isDefaulted()) {
OS << " default";
if (D->isDeleted())
OS << "_delete";
}
if (D->isDeletedAsWritten())
OS << " delete";
if (D->isTrivial())
OS << " trivial";
if (const StringLiteral *M = D->getDeletedMessage())
AddChild("delete message", [=] { Visit(M); });
if (D->isIneligibleOrNotSelected())
OS << (isa<CXXDestructorDecl>(D) ? " not_selected" : " ineligible");
if (const auto *FPT = D->getType()->getAs<FunctionProtoType>()) {
FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
switch (EPI.ExceptionSpec.Type) {
default:
break;
case EST_Unevaluated:
OS << " noexcept-unevaluated " << EPI.ExceptionSpec.SourceDecl;
break;
case EST_Uninstantiated:
OS << " noexcept-uninstantiated " << EPI.ExceptionSpec.SourceTemplate;
break;
}
}
if (const auto *MD = dyn_cast<CXXMethodDecl>(D)) {
if (MD->size_overridden_methods() != 0) {
auto dumpOverride = [=](const CXXMethodDecl *D) {
SplitQualType T_split = D->getType().split();
OS << D << " " << D->getParent()->getName() << "::" << D->getDeclName()
<< " '" << QualType::getAsString(T_split, PrintPolicy) << "'";
};
AddChild([=] {
auto Overrides = MD->overridden_methods();
OS << "Overrides: [ ";
dumpOverride(*Overrides.begin());
for (const auto *Override : llvm::drop_begin(Overrides)) {
OS << ", ";
dumpOverride(Override);
}
OS << " ]";
});
}
}
if (!D->isInlineSpecified() && D->isInlined()) {
OS << " implicit-inline";
}
// Since NumParams comes from the FunctionProtoType of the FunctionDecl and
// the Params are set later, it is possible for a dump during debugging to
// encounter a FunctionDecl that has been created but hasn't been assigned
// ParmVarDecls yet.
if (!D->param_empty() && !D->param_begin())
OS << " <<<NULL params x " << D->getNumParams() << ">>>";
if (const auto *Instance = D->getInstantiatedFromMemberFunction()) {
OS << " instantiated_from";
dumpPointer(Instance);
}
}
void TextNodeDumper::VisitCXXDeductionGuideDecl(
const CXXDeductionGuideDecl *D) {
VisitFunctionDecl(D);
switch (D->getDeductionCandidateKind()) {
case DeductionCandidate::Normal:
case DeductionCandidate::Copy:
return;
case DeductionCandidate::Aggregate:
OS << " aggregate ";
break;
}
}
void TextNodeDumper::VisitLifetimeExtendedTemporaryDecl(
const LifetimeExtendedTemporaryDecl *D) {
OS << " extended by ";
dumpBareDeclRef(D->getExtendingDecl());
OS << " mangling ";
{
ColorScope Color(OS, ShowColors, ValueColor);
OS << D->getManglingNumber();
}
}
void TextNodeDumper::VisitFieldDecl(const FieldDecl *D) {
dumpName(D);
dumpType(D->getType());
if (D->isMutable())
OS << " mutable";
if (D->isModulePrivate())
OS << " __module_private__";
}
void TextNodeDumper::VisitVarDecl(const VarDecl *D) {
dumpNestedNameSpecifier(D->getQualifier());
dumpName(D);
if (const auto *P = dyn_cast<ParmVarDecl>(D);
P && P->isExplicitObjectParameter())
OS << " this";
dumpType(D->getType());
dumpTemplateSpecializationKind(D->getTemplateSpecializationKind());
StorageClass SC = D->getStorageClass();
if (SC != SC_None)
OS << ' ' << VarDecl::getStorageClassSpecifierString(SC);
switch (D->getTLSKind()) {
case VarDecl::TLS_None:
break;
case VarDecl::TLS_Static:
OS << " tls";
break;
case VarDecl::TLS_Dynamic:
OS << " tls_dynamic";
break;
}
if (D->isModulePrivate())
OS << " __module_private__";
if (D->isNRVOVariable())
OS << " nrvo";
if (D->isInline())
OS << " inline";
if (D->isConstexpr())
OS << " constexpr";
if (D->hasInit()) {
switch (D->getInitStyle()) {
case VarDecl::CInit:
OS << " cinit";
break;
case VarDecl::CallInit:
OS << " callinit";
break;
case VarDecl::ListInit:
OS << " listinit";
break;
case VarDecl::ParenListInit:
OS << " parenlistinit";
}
}
if (D->needsDestruction(D->getASTContext()))
OS << " destroyed";
if (D->isParameterPack())
OS << " pack";
[clang] Rework how and when APValues are dumped Currently APValues are dumped as a single string. This becomes quickly completely unreadable since APValue is a tree-like structure. Even a simple example is not pretty: struct S { int arr[4]; float f; }; constexpr S s = { .arr = {1,2}, .f = 3.1415f }; // Struct fields: Array: Int: 1, Int: 2, 2 x Int: 0, Float: 3.141500e+00 With this patch this becomes: -Struct |-field: Array size=4 | |-elements: Int 1, Int 2 | `-filler: 2 x Int 0 `-field: Float 3.141500e+00 Additionally APValues are currently only dumped as part of visiting a ConstantExpr. This patch also dump the value of the initializer of constexpr variable declarations: constexpr int foo(int a, int b) { return a + b - 42; } constexpr int a = 1, b = 2; constexpr int c = foo(a, b) > 0 ? foo(a, b) : foo(b, a); // VarDecl 0x62100008aec8 <col:3, col:57> col:17 c 'const int' constexpr cinit // |-value: Int -39 // `-ConditionalOperator 0x62100008b4d0 <col:21, col:57> 'int' // <snip> Do the above by moving the dump functions to TextNodeDumper which already has the machinery to display trees. The cases APValue::LValue, APValue::MemberPointer and APValue::AddrLabelDiff are left as they were before (unimplemented). We try to display multiple elements on the same line if they are considered to be "simple". This is to avoid wasting large amounts of vertical space in an example like: constexpr int arr[8] = {0,1,2,3,4,5,6,7}; // VarDecl 0x62100008bb78 <col:3, col:42> col:17 arr 'int const[8]' constexpr cinit // |-value: Array size=8 // | |-elements: Int 0, Int 1, Int 2, Int 3 // | `-elements: Int 4, Int 5, Int 6, Int 7 Differential Revision: https://reviews.llvm.org/D83183 Reviewed By: aaron.ballman
2020-07-06 21:50:23 +01:00
if (D->hasInit()) {
const Expr *E = D->getInit();
// Only dump the value of constexpr VarDecls for now.
if (E && !E->isValueDependent() && D->isConstexpr() &&
!D->getType()->isDependentType()) {
[clang] Rework how and when APValues are dumped Currently APValues are dumped as a single string. This becomes quickly completely unreadable since APValue is a tree-like structure. Even a simple example is not pretty: struct S { int arr[4]; float f; }; constexpr S s = { .arr = {1,2}, .f = 3.1415f }; // Struct fields: Array: Int: 1, Int: 2, 2 x Int: 0, Float: 3.141500e+00 With this patch this becomes: -Struct |-field: Array size=4 | |-elements: Int 1, Int 2 | `-filler: 2 x Int 0 `-field: Float 3.141500e+00 Additionally APValues are currently only dumped as part of visiting a ConstantExpr. This patch also dump the value of the initializer of constexpr variable declarations: constexpr int foo(int a, int b) { return a + b - 42; } constexpr int a = 1, b = 2; constexpr int c = foo(a, b) > 0 ? foo(a, b) : foo(b, a); // VarDecl 0x62100008aec8 <col:3, col:57> col:17 c 'const int' constexpr cinit // |-value: Int -39 // `-ConditionalOperator 0x62100008b4d0 <col:21, col:57> 'int' // <snip> Do the above by moving the dump functions to TextNodeDumper which already has the machinery to display trees. The cases APValue::LValue, APValue::MemberPointer and APValue::AddrLabelDiff are left as they were before (unimplemented). We try to display multiple elements on the same line if they are considered to be "simple". This is to avoid wasting large amounts of vertical space in an example like: constexpr int arr[8] = {0,1,2,3,4,5,6,7}; // VarDecl 0x62100008bb78 <col:3, col:42> col:17 arr 'int const[8]' constexpr cinit // |-value: Array size=8 // | |-elements: Int 0, Int 1, Int 2, Int 3 // | `-elements: Int 4, Int 5, Int 6, Int 7 Differential Revision: https://reviews.llvm.org/D83183 Reviewed By: aaron.ballman
2020-07-06 21:50:23 +01:00
const APValue *Value = D->evaluateValue();
if (Value)
AddChild("value", [=] { Visit(*Value, E->getType()); });
}
}
}
void TextNodeDumper::VisitBindingDecl(const BindingDecl *D) {
dumpName(D);
dumpType(D->getType());
}
void TextNodeDumper::VisitCapturedDecl(const CapturedDecl *D) {
if (D->isNothrow())
OS << " nothrow";
}
void TextNodeDumper::VisitImportDecl(const ImportDecl *D) {
OS << ' ' << D->getImportedModule()->getFullModuleName();
for (Decl *InitD :
D->getASTContext().getModuleInitializers(D->getImportedModule()))
dumpDeclRef(InitD, "initializer");
}
void TextNodeDumper::VisitPragmaCommentDecl(const PragmaCommentDecl *D) {
OS << ' ';
switch (D->getCommentKind()) {
case PCK_Unknown:
llvm_unreachable("unexpected pragma comment kind");
case PCK_Compiler:
OS << "compiler";
break;
case PCK_ExeStr:
OS << "exestr";
break;
case PCK_Lib:
OS << "lib";
break;
case PCK_Linker:
OS << "linker";
break;
case PCK_User:
OS << "user";
break;
}
StringRef Arg = D->getArg();
if (!Arg.empty())
OS << " \"" << Arg << "\"";
}
void TextNodeDumper::VisitPragmaDetectMismatchDecl(
const PragmaDetectMismatchDecl *D) {
OS << " \"" << D->getName() << "\" \"" << D->getValue() << "\"";
}
[clang][OpeMP] Model OpenMP structured-block in AST (PR40563) Summary: https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf, page 3: ``` structured block For C/C++, an executable statement, possibly compound, with a single entry at the top and a single exit at the bottom, or an OpenMP construct. COMMENT: See Section 2.1 on page 38 for restrictions on structured blocks. ``` ``` 2.1 Directive Format Some executable directives include a structured block. A structured block: • may contain infinite loops where the point of exit is never reached; • may halt due to an IEEE exception; • may contain calls to exit(), _Exit(), quick_exit(), abort() or functions with a _Noreturn specifier (in C) or a noreturn attribute (in C/C++); • may be an expression statement, iteration statement, selection statement, or try block, provided that the corresponding compound statement obtained by enclosing it in { and } would be a structured block; and Restrictions Restrictions to structured blocks are as follows: • Entry to a structured block must not be the result of a branch. • The point of exit cannot be a branch out of the structured block. C / C++ • The point of entry to a structured block must not be a call to setjmp(). • longjmp() and throw() must not violate the entry/exit criteria. ``` Of particular note here is the fact that OpenMP structured blocks are as-if `noexcept`, in the same sense as with the normal `noexcept` functions in C++. I.e. if throw happens, and it attempts to travel out of the `noexcept` function (here: out of the current structured-block), then the program terminates. Now, one of course can say that since it is explicitly prohibited by the Specification, then any and all programs that violate this Specification contain undefined behavior, and are unspecified, and thus no one should care about them. Just don't write broken code /s But i'm not sure this is a reasonable approach. I have personally had oss-fuzz issues of this origin - exception thrown inside of an OpenMP structured-block that is not caught, thus causing program termination. This issue isn't all that hard to catch, it's not any particularly different from diagnosing the same situation with the normal `noexcept` function. Now, clang static analyzer does not presently model exceptions. But clang-tidy has a simplisic [[ https://clang.llvm.org/extra/clang-tidy/checks/bugprone-exception-escape.html | bugprone-exception-escape ]] check, and it is even refactored as a `ExceptionAnalyzer` class for reuse. So it would be trivial to use that analyzer to check for exceptions escaping out of OpenMP structured blocks. (D59466) All that sounds too great to be true. Indeed, there is a caveat. Presently, it's practically impossible to do. To check a OpenMP structured block you need to somehow 'get' the OpenMP structured block, and you can't because it's simply not modelled in AST. `CapturedStmt`/`CapturedDecl` is not it's representation. Now, it is of course possible to write e.g. some AST matcher that would e.g. match every OpenMP executable directive, and then return the whatever `Stmt` is the structured block of said executable directive, if any. But i said //practically//. This isn't practical for the following reasons: 1. This **will** bitrot. That matcher will need to be kept up-to-date, and refreshed with every new OpenMP spec version. 2. Every single piece of code that would want that knowledge would need to have such matcher. Well, okay, if it is an AST matcher, it could be shared. But then you still have `RecursiveASTVisitor` and friends. `2 > 1`, so now you have code duplication. So it would be reasonable (and is fully within clang AST spirit) to not force every single consumer to do that work, but instead store that knowledge in the correct, and appropriate place - AST, class structure. Now, there is another hoop we need to get through. It isn't fully obvious //how// to model this. The best solution would of course be to simply add a `OMPStructuredBlock` transparent node. It would be optimal, it would give us two properties: * Given this `OMPExecutableDirective`, what's it OpenMP structured block? * It is trivial to check whether the `Stmt*` is a OpenMP structured block (`isa<OMPStructuredBlock>(ptr)`) But OpenMP structured block isn't **necessarily** the first, direct child of `OMP*Directive`. (even ignoring the clang's `CapturedStmt`/`CapturedDecl` that were inserted inbetween). So i'm not sure whether or not we could re-create AST statements after they were already created? There would be other costs to a new AST node: https://bugs.llvm.org/show_bug.cgi?id=40563#c12 ``` 1. You will need to break the representation of loops. The body should be replaced by the "structured block" entity. 2. You will need to support serialization/deserialization. 3. You will need to support template instantiation. 4. You will need to support codegen and take this new construct to account in each OpenMP directive. ``` Instead, there **is** an functionally-equivalent, alternative solution, consisting of two parts. Part 1: * Add a member function `isStandaloneDirective()` to the `OMPExecutableDirective` class, that will tell whether this directive is stand-alone or not, as per the spec. We need it because we can't just check for the existance of associated statements, see code comment. * Add a member function `getStructuredBlock()` to the OMPExecutableDirective` class itself, that assert that this is not a stand-alone directive, and either return the correct loop body if this is a loop-like directive, or the captured statement. This way, given an `OMPExecutableDirective`, we can get it's structured block. Also, since the knowledge is ingrained into the clang OpenMP implementation, it will not cause any duplication, and //hopefully// won't bitrot. Great we achieved 1 of 2 properties of `OMPStructuredBlock` approach. Thus, there is a second part needed: * How can we check whether a given `Stmt*` is `OMPStructuredBlock`? Well, we can't really, in general. I can see this workaround: ``` class FunctionASTVisitor : public RecursiveASTVisitor<FunctionASTVisitor> { using Base = RecursiveASTVisitor<FunctionASTVisitor>; public: bool VisitOMPExecDir(OMPExecDir *D) { OmpStructuredStmts.emplace_back(D.getStructuredStmt()); } bool VisitSOMETHINGELSE(???) { if(InOmpStructuredStmt) HI! } bool TraverseStmt(Stmt *Node) { if (!Node) return Base::TraverseStmt(Node); if (OmpStructuredStmts.back() == Node) ++InOmpStructuredStmt; Base::TraverseStmt(Node); if (OmpStructuredStmts.back() == Node) { OmpStructuredStmts.pop_back(); --InOmpStructuredStmt; } return true; } std::vector<Stmt*> OmpStructuredStmts; int InOmpStructuredStmt = 0; }; ``` But i really don't see using it in practice. It's just too intrusive; and again, requires knowledge duplication. .. but no. The solution lies right on the ground. Why don't we simply store this `i'm a openmp structured block` in the bitfield of the `Stmt` itself? This does not appear to have any impact on the memory footprint of the clang AST, since it's just a single extra bit in the bitfield. At least the static assertions don't fail. Thus, indeed, we can achieve both of the properties without a new AST node. We can cheaply set that bit right in sema, at the end of `Sema::ActOnOpenMPExecutableDirective()`, by just calling the `getStructuredBlock()` that we just added. Test coverage that demonstrates all this has been added. This isn't as great with serialization though. Most of it does not use abbrevs, so we do end up paying the full price (4 bytes?) instead of a single bit. That price, of course, can be reclaimed by using abbrevs. In fact, i suspect that //might// not just reclaim these bytes, but pack these PCH significantly. I'm not seeing a third solution. If there is one, it would be interesting to hear about it. ("just don't write code that would require `isa<OMPStructuredBlock>(ptr)`" is not a solution.) Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=40563 | PR40563 ]]. Reviewers: ABataev, rjmccall, hfinkel, rsmith, riccibruno, gribozavr Reviewed By: ABataev, gribozavr Subscribers: mgorny, aaron.ballman, steveire, guansong, jfb, jdoerfert, cfe-commits Tags: #clang, #openmp Differential Revision: https://reviews.llvm.org/D59214 llvm-svn: 356570
2019-03-20 16:32:36 +00:00
void TextNodeDumper::VisitOMPExecutableDirective(
const OMPExecutableDirective *D) {
if (D->isStandaloneDirective())
OS << " openmp_standalone_directive";
}
void TextNodeDumper::VisitOMPDeclareReductionDecl(
const OMPDeclareReductionDecl *D) {
dumpName(D);
dumpType(D->getType());
OS << " combiner";
dumpPointer(D->getCombiner());
if (const auto *Initializer = D->getInitializer()) {
OS << " initializer";
dumpPointer(Initializer);
switch (D->getInitializerKind()) {
case OMPDeclareReductionInitKind::Direct:
OS << " omp_priv = ";
break;
case OMPDeclareReductionInitKind::Copy:
OS << " omp_priv ()";
break;
case OMPDeclareReductionInitKind::Call:
break;
}
}
}
void TextNodeDumper::VisitOMPRequiresDecl(const OMPRequiresDecl *D) {
for (const auto *C : D->clauselists()) {
AddChild([=] {
if (!C) {
ColorScope Color(OS, ShowColors, NullColor);
OS << "<<<NULL>>> OMPClause";
return;
}
{
ColorScope Color(OS, ShowColors, AttrColor);
StringRef ClauseName(
llvm::omp::getOpenMPClauseName(C->getClauseKind()));
OS << "OMP" << ClauseName.substr(/*Start=*/0, /*N=*/1).upper()
<< ClauseName.drop_front() << "Clause";
}
dumpPointer(C);
dumpSourceRange(SourceRange(C->getBeginLoc(), C->getEndLoc()));
});
}
}
void TextNodeDumper::VisitOMPCapturedExprDecl(const OMPCapturedExprDecl *D) {
dumpName(D);
dumpType(D->getType());
}
void TextNodeDumper::VisitNamespaceDecl(const NamespaceDecl *D) {
dumpName(D);
if (D->isInline())
OS << " inline";
if (D->isNested())
OS << " nested";
if (!D->isFirstDecl())
dumpDeclRef(D->getFirstDecl(), "original");
}
void TextNodeDumper::VisitUsingDirectiveDecl(const UsingDirectiveDecl *D) {
OS << ' ';
dumpBareDeclRef(D->getNominatedNamespace());
}
void TextNodeDumper::VisitNamespaceAliasDecl(const NamespaceAliasDecl *D) {
dumpName(D);
dumpDeclRef(D->getAliasedNamespace());
}
void TextNodeDumper::VisitTypeAliasDecl(const TypeAliasDecl *D) {
dumpName(D);
dumpType(D->getUnderlyingType());
}
void TextNodeDumper::VisitTypeAliasTemplateDecl(
const TypeAliasTemplateDecl *D) {
dumpName(D);
}
void TextNodeDumper::VisitCXXRecordDecl(const CXXRecordDecl *D) {
VisitRecordDecl(D);
if (const auto *Instance = D->getInstantiatedFromMemberClass()) {
OS << " instantiated_from";
dumpPointer(Instance);
}
if (const auto *CTSD = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
dumpTemplateSpecializationKind(CTSD->getSpecializationKind());
if (CTSD->hasStrictPackMatch())
OS << " strict-pack-match";
}
dumpNestedNameSpecifier(D->getQualifier());
if (!D->isCompleteDefinition())
return;
AddChild([=] {
{
ColorScope Color(OS, ShowColors, DeclKindNameColor);
OS << "DefinitionData";
}
#define FLAG(fn, name) \
if (D->fn()) \
OS << " " #name;
FLAG(isParsingBaseSpecifiers, parsing_base_specifiers);
FLAG(isGenericLambda, generic);
FLAG(isLambda, lambda);
FLAG(isAnonymousStructOrUnion, is_anonymous);
FLAG(canPassInRegisters, pass_in_registers);
FLAG(isEmpty, empty);
FLAG(isAggregate, aggregate);
FLAG(isStandardLayout, standard_layout);
FLAG(isTriviallyCopyable, trivially_copyable);
FLAG(isPOD, pod);
FLAG(isTrivial, trivial);
FLAG(isPolymorphic, polymorphic);
FLAG(isAbstract, abstract);
FLAG(isLiteral, literal);
FLAG(hasUserDeclaredConstructor, has_user_declared_ctor);
FLAG(hasConstexprNonCopyMoveConstructor, has_constexpr_non_copy_move_ctor);
FLAG(hasMutableFields, has_mutable_fields);
FLAG(hasVariantMembers, has_variant_members);
FLAG(allowConstDefaultInit, can_const_default_init);
AddChild([=] {
{
ColorScope Color(OS, ShowColors, DeclKindNameColor);
OS << "DefaultConstructor";
}
FLAG(hasDefaultConstructor, exists);
FLAG(hasTrivialDefaultConstructor, trivial);
FLAG(hasNonTrivialDefaultConstructor, non_trivial);
FLAG(hasUserProvidedDefaultConstructor, user_provided);
FLAG(hasConstexprDefaultConstructor, constexpr);
FLAG(needsImplicitDefaultConstructor, needs_implicit);
FLAG(defaultedDefaultConstructorIsConstexpr, defaulted_is_constexpr);
});
AddChild([=] {
{
ColorScope Color(OS, ShowColors, DeclKindNameColor);
OS << "CopyConstructor";
}
FLAG(hasSimpleCopyConstructor, simple);
FLAG(hasTrivialCopyConstructor, trivial);
FLAG(hasNonTrivialCopyConstructor, non_trivial);
FLAG(hasUserDeclaredCopyConstructor, user_declared);
FLAG(hasCopyConstructorWithConstParam, has_const_param);
FLAG(needsImplicitCopyConstructor, needs_implicit);
FLAG(needsOverloadResolutionForCopyConstructor,
needs_overload_resolution);
if (!D->needsOverloadResolutionForCopyConstructor())
FLAG(defaultedCopyConstructorIsDeleted, defaulted_is_deleted);
FLAG(implicitCopyConstructorHasConstParam, implicit_has_const_param);
});
AddChild([=] {
{
ColorScope Color(OS, ShowColors, DeclKindNameColor);
OS << "MoveConstructor";
}
FLAG(hasMoveConstructor, exists);
FLAG(hasSimpleMoveConstructor, simple);
FLAG(hasTrivialMoveConstructor, trivial);
FLAG(hasNonTrivialMoveConstructor, non_trivial);
FLAG(hasUserDeclaredMoveConstructor, user_declared);
FLAG(needsImplicitMoveConstructor, needs_implicit);
FLAG(needsOverloadResolutionForMoveConstructor,
needs_overload_resolution);
if (!D->needsOverloadResolutionForMoveConstructor())
FLAG(defaultedMoveConstructorIsDeleted, defaulted_is_deleted);
});
AddChild([=] {
{
ColorScope Color(OS, ShowColors, DeclKindNameColor);
OS << "CopyAssignment";
}
FLAG(hasSimpleCopyAssignment, simple);
FLAG(hasTrivialCopyAssignment, trivial);
FLAG(hasNonTrivialCopyAssignment, non_trivial);
FLAG(hasCopyAssignmentWithConstParam, has_const_param);
FLAG(hasUserDeclaredCopyAssignment, user_declared);
FLAG(needsImplicitCopyAssignment, needs_implicit);
FLAG(needsOverloadResolutionForCopyAssignment, needs_overload_resolution);
FLAG(implicitCopyAssignmentHasConstParam, implicit_has_const_param);
});
AddChild([=] {
{
ColorScope Color(OS, ShowColors, DeclKindNameColor);
OS << "MoveAssignment";
}
FLAG(hasMoveAssignment, exists);
FLAG(hasSimpleMoveAssignment, simple);
FLAG(hasTrivialMoveAssignment, trivial);
FLAG(hasNonTrivialMoveAssignment, non_trivial);
FLAG(hasUserDeclaredMoveAssignment, user_declared);
FLAG(needsImplicitMoveAssignment, needs_implicit);
FLAG(needsOverloadResolutionForMoveAssignment, needs_overload_resolution);
});
AddChild([=] {
{
ColorScope Color(OS, ShowColors, DeclKindNameColor);
OS << "Destructor";
}
FLAG(hasSimpleDestructor, simple);
FLAG(hasIrrelevantDestructor, irrelevant);
FLAG(hasTrivialDestructor, trivial);
FLAG(hasNonTrivialDestructor, non_trivial);
FLAG(hasUserDeclaredDestructor, user_declared);
FLAG(hasConstexprDestructor, constexpr);
FLAG(needsImplicitDestructor, needs_implicit);
FLAG(needsOverloadResolutionForDestructor, needs_overload_resolution);
if (!D->needsOverloadResolutionForDestructor())
FLAG(defaultedDestructorIsDeleted, defaulted_is_deleted);
});
});
for (const auto &I : D->bases()) {
AddChild([=] {
if (I.isVirtual())
OS << "virtual ";
dumpAccessSpecifier(I.getAccessSpecifier());
dumpType(I.getType());
if (I.isPackExpansion())
OS << "...";
});
}
}
void TextNodeDumper::VisitFunctionTemplateDecl(const FunctionTemplateDecl *D) {
dumpName(D);
}
void TextNodeDumper::VisitClassTemplateDecl(const ClassTemplateDecl *D) {
dumpName(D);
}
void TextNodeDumper::VisitVarTemplateDecl(const VarTemplateDecl *D) {
dumpName(D);
}
void TextNodeDumper::VisitBuiltinTemplateDecl(const BuiltinTemplateDecl *D) {
dumpName(D);
}
void TextNodeDumper::VisitTemplateTypeParmDecl(const TemplateTypeParmDecl *D) {
if (const auto *TC = D->getTypeConstraint()) {
OS << " ";
dumpBareDeclRef(TC->getNamedConcept());
if (TC->getNamedConcept() != TC->getFoundDecl()) {
OS << " (";
dumpBareDeclRef(TC->getFoundDecl());
OS << ")";
}
} else if (D->wasDeclaredWithTypename())
OS << " typename";
else
OS << " class";
OS << " depth " << D->getDepth() << " index " << D->getIndex();
if (D->isParameterPack())
OS << " ...";
dumpName(D);
}
void TextNodeDumper::VisitNonTypeTemplateParmDecl(
const NonTypeTemplateParmDecl *D) {
dumpType(D->getType());
OS << " depth " << D->getDepth() << " index " << D->getIndex();
if (D->isParameterPack())
OS << " ...";
dumpName(D);
}
void TextNodeDumper::VisitTemplateTemplateParmDecl(
const TemplateTemplateParmDecl *D) {
OS << " depth " << D->getDepth() << " index " << D->getIndex();
if (D->isParameterPack())
OS << " ...";
dumpName(D);
}
void TextNodeDumper::VisitUsingDecl(const UsingDecl *D) {
OS << ' ';
if (D->getQualifier())
D->getQualifier()->print(OS, D->getASTContext().getPrintingPolicy());
OS << D->getDeclName();
dumpNestedNameSpecifier(D->getQualifier());
}
void TextNodeDumper::VisitUsingEnumDecl(const UsingEnumDecl *D) {
OS << ' ';
dumpBareDeclRef(D->getEnumDecl());
}
void TextNodeDumper::VisitUnresolvedUsingTypenameDecl(
const UnresolvedUsingTypenameDecl *D) {
OS << ' ';
if (D->getQualifier())
D->getQualifier()->print(OS, D->getASTContext().getPrintingPolicy());
OS << D->getDeclName();
}
void TextNodeDumper::VisitUnresolvedUsingValueDecl(
const UnresolvedUsingValueDecl *D) {
OS << ' ';
if (D->getQualifier())
D->getQualifier()->print(OS, D->getASTContext().getPrintingPolicy());
OS << D->getDeclName();
dumpType(D->getType());
}
void TextNodeDumper::VisitUsingShadowDecl(const UsingShadowDecl *D) {
OS << ' ';
dumpBareDeclRef(D->getTargetDecl());
}
void TextNodeDumper::VisitConstructorUsingShadowDecl(
const ConstructorUsingShadowDecl *D) {
if (D->constructsVirtualBase())
OS << " virtual";
AddChild([=] {
OS << "target ";
dumpBareDeclRef(D->getTargetDecl());
});
AddChild([=] {
OS << "nominated ";
dumpBareDeclRef(D->getNominatedBaseClass());
OS << ' ';
dumpBareDeclRef(D->getNominatedBaseClassShadowDecl());
});
AddChild([=] {
OS << "constructed ";
dumpBareDeclRef(D->getConstructedBaseClass());
OS << ' ';
dumpBareDeclRef(D->getConstructedBaseClassShadowDecl());
});
}
void TextNodeDumper::VisitLinkageSpecDecl(const LinkageSpecDecl *D) {
switch (D->getLanguage()) {
case LinkageSpecLanguageIDs::C:
OS << " C";
break;
case LinkageSpecLanguageIDs::CXX:
OS << " C++";
break;
}
}
void TextNodeDumper::VisitAccessSpecDecl(const AccessSpecDecl *D) {
OS << ' ';
dumpAccessSpecifier(D->getAccess());
}
void TextNodeDumper::VisitFriendDecl(const FriendDecl *D) {
if (TypeSourceInfo *T = D->getFriendType())
dumpType(T->getType());
if (D->isPackExpansion())
OS << "...";
}
void TextNodeDumper::VisitObjCIvarDecl(const ObjCIvarDecl *D) {
dumpName(D);
dumpType(D->getType());
if (D->getSynthesize())
OS << " synthesize";
switch (D->getAccessControl()) {
case ObjCIvarDecl::None:
OS << " none";
break;
case ObjCIvarDecl::Private:
OS << " private";
break;
case ObjCIvarDecl::Protected:
OS << " protected";
break;
case ObjCIvarDecl::Public:
OS << " public";
break;
case ObjCIvarDecl::Package:
OS << " package";
break;
}
}
void TextNodeDumper::VisitObjCMethodDecl(const ObjCMethodDecl *D) {
if (D->isInstanceMethod())
OS << " -";
else
OS << " +";
dumpName(D);
dumpType(D->getReturnType());
if (D->isVariadic())
OS << " variadic";
}
void TextNodeDumper::VisitObjCTypeParamDecl(const ObjCTypeParamDecl *D) {
dumpName(D);
switch (D->getVariance()) {
case ObjCTypeParamVariance::Invariant:
break;
case ObjCTypeParamVariance::Covariant:
OS << " covariant";
break;
case ObjCTypeParamVariance::Contravariant:
OS << " contravariant";
break;
}
if (D->hasExplicitBound())
OS << " bounded";
dumpType(D->getUnderlyingType());
}
void TextNodeDumper::VisitObjCCategoryDecl(const ObjCCategoryDecl *D) {
dumpName(D);
dumpDeclRef(D->getClassInterface());
dumpDeclRef(D->getImplementation());
for (const auto *P : D->protocols())
dumpDeclRef(P);
}
void TextNodeDumper::VisitObjCCategoryImplDecl(const ObjCCategoryImplDecl *D) {
dumpName(D);
dumpDeclRef(D->getClassInterface());
dumpDeclRef(D->getCategoryDecl());
}
void TextNodeDumper::VisitObjCProtocolDecl(const ObjCProtocolDecl *D) {
dumpName(D);
for (const auto *Child : D->protocols())
dumpDeclRef(Child);
}
void TextNodeDumper::VisitObjCInterfaceDecl(const ObjCInterfaceDecl *D) {
dumpName(D);
dumpDeclRef(D->getSuperClass(), "super");
dumpDeclRef(D->getImplementation());
for (const auto *Child : D->protocols())
dumpDeclRef(Child);
}
void TextNodeDumper::VisitObjCImplementationDecl(
const ObjCImplementationDecl *D) {
dumpName(D);
dumpDeclRef(D->getSuperClass(), "super");
dumpDeclRef(D->getClassInterface());
}
void TextNodeDumper::VisitObjCCompatibleAliasDecl(
const ObjCCompatibleAliasDecl *D) {
dumpName(D);
dumpDeclRef(D->getClassInterface());
}
void TextNodeDumper::VisitObjCPropertyDecl(const ObjCPropertyDecl *D) {
dumpName(D);
dumpType(D->getType());
if (D->getPropertyImplementation() == ObjCPropertyDecl::Required)
OS << " required";
else if (D->getPropertyImplementation() == ObjCPropertyDecl::Optional)
OS << " optional";
ObjCPropertyAttribute::Kind Attrs = D->getPropertyAttributes();
if (Attrs != ObjCPropertyAttribute::kind_noattr) {
if (Attrs & ObjCPropertyAttribute::kind_readonly)
OS << " readonly";
if (Attrs & ObjCPropertyAttribute::kind_assign)
OS << " assign";
if (Attrs & ObjCPropertyAttribute::kind_readwrite)
OS << " readwrite";
if (Attrs & ObjCPropertyAttribute::kind_retain)
OS << " retain";
if (Attrs & ObjCPropertyAttribute::kind_copy)
OS << " copy";
if (Attrs & ObjCPropertyAttribute::kind_nonatomic)
OS << " nonatomic";
if (Attrs & ObjCPropertyAttribute::kind_atomic)
OS << " atomic";
if (Attrs & ObjCPropertyAttribute::kind_weak)
OS << " weak";
if (Attrs & ObjCPropertyAttribute::kind_strong)
OS << " strong";
if (Attrs & ObjCPropertyAttribute::kind_unsafe_unretained)
OS << " unsafe_unretained";
if (Attrs & ObjCPropertyAttribute::kind_class)
OS << " class";
if (Attrs & ObjCPropertyAttribute::kind_direct)
Implement __attribute__((objc_direct)), __attribute__((objc_direct_members)) __attribute__((objc_direct)) is an attribute on methods declaration, and __attribute__((objc_direct_members)) on implementation, categories or extensions. A `direct` property specifier is added (@property(direct) type name) These attributes / specifiers cause the method to have no associated Objective-C metadata (for the property or the method itself), and the calling convention to be a direct C function call. The symbol for the method has enforced hidden visibility and such direct calls are hence unreachable cross image. An explicit C function must be made if so desired to wrap them. The implicit `self` and `_cmd` arguments are preserved, however to maintain compatibility with the usual `objc_msgSend` semantics, 3 fundamental precautions are taken: 1) for instance methods, `self` is nil-checked. On arm64 backends this typically adds a single instruction (cbz x0, <closest-ret>) to the codegen, for the vast majority of the cases when the return type is a scalar. 2) for class methods, because the class may not be realized/initialized yet, a call to `[self self]` is emitted. When the proper deployment target is used, this is optimized to `objc_opt_self(self)`. However, long term we might want to emit something better that the optimizer can reason about. When inlining kicks in, these calls aren't optimized away as the optimizer has no idea that a single call is really necessary. 3) the calling convention for the `_cmd` argument is changed: the caller leaves the second argument to the call undefined, and the selector is loaded inside the body when it's referenced only. As far as error reporting goes, the compiler refuses: - making any overloads direct, - making an overload of a direct method, - implementations marked as direct when the declaration in the interface isn't (the other way around is allowed, as the direct attribute is inherited from the declaration), - marking methods required for protocol conformance as direct, - messaging an unqualified `id` with a direct method, - forming any @selector() expression with only direct selectors. As warnings: - any inconsistency of direct-related calling convention when @selector() or messaging is used, - forming any @selector() expression with a possibly direct selector. Lastly an `objc_direct_members` attribute is added that can decorate `@implementation` blocks and causes methods only declared there (and in no `@interface`) to be automatically direct. When decorating an `@interface` then all methods and properties declared in this block are marked direct. Radar-ID: rdar://problem/2684889 Differential Revision: https://reviews.llvm.org/D69991 Reviewed-By: John McCall
2019-11-07 23:14:58 -08:00
OS << " direct";
if (Attrs & ObjCPropertyAttribute::kind_getter)
dumpDeclRef(D->getGetterMethodDecl(), "getter");
if (Attrs & ObjCPropertyAttribute::kind_setter)
dumpDeclRef(D->getSetterMethodDecl(), "setter");
}
}
void TextNodeDumper::VisitObjCPropertyImplDecl(const ObjCPropertyImplDecl *D) {
dumpName(D->getPropertyDecl());
if (D->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize)
OS << " synthesize";
else
OS << " dynamic";
dumpDeclRef(D->getPropertyDecl());
dumpDeclRef(D->getPropertyIvarDecl());
}
void TextNodeDumper::VisitBlockDecl(const BlockDecl *D) {
if (D->isVariadic())
OS << " variadic";
if (D->capturesCXXThis())
OS << " captures_this";
}
void TextNodeDumper::VisitConceptDecl(const ConceptDecl *D) {
dumpName(D);
}
[FPEnv] Allow CompoundStmt to keep FP options This is a recommit of b822efc7404bf09ccfdc1ab7657475026966c3b2, reverted in dc34d8df4c48b3a8f474360970cae8a58e6c84f0. The commit caused fails because the test ast-print-fp-pragmas.c did not specify particular target, and it failed on targets which do not support constrained intrinsics. The original commit message is below. AST does not have special nodes for pragmas. Instead a pragma modifies some state variables of Sema, which in turn results in modified attributes of AST nodes. This technique applies to floating point operations as well. Every AST node that can depend on FP options keeps current set of them. This technique works well for options like exception behavior or fast math options. They represent instructions to the compiler how to modify code generation for the affected nodes. However treatment of FP control modes has problems with this technique. Modifying FP control mode (like rounding direction) usually requires operations on hardware, like writing to control registers. It must be done prior to the first operation that depends on the control mode. In particular, such operations are required for implementation of `pragma STDC FENV_ROUND`, compiler should set up necessary rounding direction at the beginning of compound statement where the pragma occurs. As there is no representation for pragmas in AST, the code generation becomes a complicated task in this case. To solve this issue FP options are kept inside CompoundStmt. Unlike to FP options in expressions, these does not affect any operation on FP values, but only inform the codegen about the FP options that act in the body of the statement. As all pragmas that modify FP environment may occurs only at the start of compound statement or at global level, such solution works for all relevant pragmas. The options are kept as a difference from the options in the enclosing compound statement or default options, it helps codegen to set only changed control modes. Differential Revision: https://reviews.llvm.org/D123952
2022-07-01 18:32:26 +07:00
void TextNodeDumper::VisitCompoundStmt(const CompoundStmt *S) {
VisitStmt(S);
if (S->hasStoredFPFeatures())
printFPOptions(S->getStoredFPFeatures());
}
void TextNodeDumper::VisitHLSLBufferDecl(const HLSLBufferDecl *D) {
if (D->isCBuffer())
OS << " cbuffer";
else
OS << " tbuffer";
dumpName(D);
}
void TextNodeDumper::VisitHLSLOutArgExpr(const HLSLOutArgExpr *E) {
OS << (E->isInOut() ? " inout" : " out");
}
void TextNodeDumper::VisitOpenACCConstructStmt(const OpenACCConstructStmt *S) {
OS << " " << S->getDirectiveKind();
}
void TextNodeDumper::VisitOpenACCLoopConstruct(const OpenACCLoopConstruct *S) {
if (S->isOrphanedLoopConstruct())
OS << " <orphan>";
else
OS << " parent: " << S->getParentComputeConstructKind();
}
void TextNodeDumper::VisitOpenACCCombinedConstruct(
const OpenACCCombinedConstruct *S) {
VisitOpenACCConstructStmt(S);
}
void TextNodeDumper::VisitOpenACCDataConstruct(const OpenACCDataConstruct *S) {
VisitOpenACCConstructStmt(S);
}
void TextNodeDumper::VisitOpenACCEnterDataConstruct(
const OpenACCEnterDataConstruct *S) {
VisitOpenACCConstructStmt(S);
}
void TextNodeDumper::VisitOpenACCExitDataConstruct(
const OpenACCExitDataConstruct *S) {
VisitOpenACCConstructStmt(S);
}
void TextNodeDumper::VisitOpenACCHostDataConstruct(
const OpenACCHostDataConstruct *S) {
VisitOpenACCConstructStmt(S);
}
void TextNodeDumper::VisitOpenACCWaitConstruct(const OpenACCWaitConstruct *S) {
VisitOpenACCConstructStmt(S);
}
void TextNodeDumper::VisitOpenACCCacheConstruct(
const OpenACCCacheConstruct *S) {
VisitOpenACCConstructStmt(S);
if (S->hasReadOnly())
OS <<" readonly";
}
void TextNodeDumper::VisitOpenACCInitConstruct(const OpenACCInitConstruct *S) {
VisitOpenACCConstructStmt(S);
}
void TextNodeDumper::VisitOpenACCShutdownConstruct(
const OpenACCShutdownConstruct *S) {
VisitOpenACCConstructStmt(S);
}
void TextNodeDumper::VisitOpenACCSetConstruct(const OpenACCSetConstruct *S) {
VisitOpenACCConstructStmt(S);
}
void TextNodeDumper::VisitOpenACCUpdateConstruct(
const OpenACCUpdateConstruct *S) {
VisitOpenACCConstructStmt(S);
}
void TextNodeDumper::VisitOpenACCAtomicConstruct(
const OpenACCAtomicConstruct *S) {
VisitOpenACCConstructStmt(S);
OS << ' ' << S->getAtomicKind();
}
void TextNodeDumper::VisitOpenACCDeclareDecl(const OpenACCDeclareDecl *D) {
OS << " " << D->getDirectiveKind();
for (const OpenACCClause *C : D->clauses())
AddChild([=] {
Visit(C);
for (const Stmt *S : C->children())
AddChild([=] { Visit(S); });
});
}
void TextNodeDumper::VisitOpenACCRoutineDecl(const OpenACCRoutineDecl *D) {
OS << " " << D->getDirectiveKind();
if (D->hasNameSpecified()) {
OS << " name_specified";
dumpSourceRange(SourceRange{D->getLParenLoc(), D->getRParenLoc()});
}
AddChild([=] { Visit(D->getFunctionReference()); });
for (const OpenACCClause *C : D->clauses())
AddChild([=] {
Visit(C);
for (const Stmt *S : C->children())
AddChild([=] { Visit(S); });
});
}
void TextNodeDumper::VisitEmbedExpr(const EmbedExpr *S) {
AddChild("begin", [=] { OS << S->getStartingElementPos(); });
AddChild("number of elements", [=] { OS << S->getDataElementCount(); });
}
void TextNodeDumper::VisitAtomicExpr(const AtomicExpr *AE) {
OS << ' ' << AE->getOpAsString();
}
void TextNodeDumper::VisitConvertVectorExpr(const ConvertVectorExpr *S) {
VisitStmt(S);
if (S->hasStoredFPFeatures())
printFPOptions(S->getStoredFPFeatures());
}