llvm-project/mlir/lib/IR/MLIRContext.cpp

1273 lines
48 KiB
C++
Raw Normal View History

//===- MLIRContext.cpp - MLIR Type Classes --------------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/IR/MLIRContext.h"
#include "AffineExprDetail.h"
#include "AffineMapDetail.h"
#include "AttributeDetail.h"
#include "IntegerSetDetail.h"
#include "LocationDetail.h"
#include "SDBMExprDetail.h"
#include "TypeDetail.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Identifier.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/Types.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Support/STLExtras.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/RWMutex.h"
#include "llvm/Support/raw_ostream.h"
#include <memory>
using namespace mlir;
using namespace mlir::detail;
using llvm::hash_combine;
using llvm::hash_combine_range;
/// A utility function to safely get or create a uniqued instance within the
/// given set container.
template <typename ValueT, typename DenseInfoT, typename KeyT,
typename ConstructorFn>
static ValueT safeGetOrCreate(DenseSet<ValueT, DenseInfoT> &container,
KeyT &&key, llvm::sys::SmartRWMutex<true> &mutex,
ConstructorFn &&constructorFn) {
{ // Check for an existing instance in read-only mode.
llvm::sys::SmartScopedReader<true> instanceLock(mutex);
auto it = container.find_as(key);
if (it != container.end())
return *it;
}
// Aquire a writer-lock so that we can safely create the new instance.
llvm::sys::SmartScopedWriter<true> instanceLock(mutex);
// Check for an existing instance again here, because another writer thread
// may have already created one.
auto existing = container.insert_as(ValueT(), key);
if (!existing.second)
return *existing.first;
// Otherwise, construct a new instance of the value.
return *existing.first = constructorFn();
}
/// A utility function to thread-safely get or create a uniqued instance within
/// the given vector container.
template <typename ValueT, typename ConstructorFn>
ValueT safeGetOrCreate(std::vector<ValueT> &container, unsigned position,
llvm::sys::SmartRWMutex<true> &mutex,
ConstructorFn &&constructorFn) {
{ // Check for an existing instance in read-only mode.
llvm::sys::SmartScopedReader<true> lock(mutex);
if (container.size() > position && container[position])
return container[position];
}
// Aquire a writer-lock so that we can safely create the new instance.
llvm::sys::SmartScopedWriter<true> lock(mutex);
// Check if we need to resize.
if (position >= container.size())
container.resize(position + 1, nullptr);
// Check for an existing instance again here, because another writer thread
// may have already created one.
auto *&result = container[position];
if (result)
return result;
return result = constructorFn();
}
/// A utility function to safely get or create a uniqued instance within the
/// given map container.
template <typename ContainerTy, typename KeyT, typename ConstructorFn>
static typename ContainerTy::mapped_type
safeGetOrCreate(ContainerTy &container, KeyT &&key,
llvm::sys::SmartRWMutex<true> &mutex,
ConstructorFn &&constructorFn) {
{ // Check for an existing instance in read-only mode.
llvm::sys::SmartScopedReader<true> instanceLock(mutex);
auto it = container.find(key);
if (it != container.end())
return it->second;
}
// Aquire a writer-lock so that we can safely create the new instance.
llvm::sys::SmartScopedWriter<true> instanceLock(mutex);
// Check for an existing instance again here, because another writer thread
// may have already created one.
auto *&result = container[key];
if (result)
return result;
// Otherwise, construct a new instance of the value.
return result = constructorFn();
}
namespace {
/// A builtin dialect to define types/etc that are necessary for the
/// validity of the IR.
struct BuiltinDialect : public Dialect {
BuiltinDialect(MLIRContext *context) : Dialect(/*name=*/"", context) {
addTypes<FunctionType, OpaqueType, FloatType, IndexType, IntegerType,
VectorType, RankedTensorType, UnrankedTensorType, MemRefType,
ComplexType, TupleType, NoneType>();
}
};
struct AffineMapKeyInfo : DenseMapInfo<AffineMap> {
// Affine maps are uniqued based on their dim/symbol counts and affine
// expressions.
using KeyTy = std::tuple<unsigned, unsigned, ArrayRef<AffineExpr>,
ArrayRef<AffineExpr>>;
using DenseMapInfo<AffineMap>::isEqual;
static unsigned getHashValue(const AffineMap &key) {
return getHashValue(KeyTy(key.getNumDims(), key.getNumSymbols(),
key.getResults(), key.getRangeSizes()));
}
static unsigned getHashValue(KeyTy key) {
return hash_combine(
std::get<0>(key), std::get<1>(key),
hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()),
hash_combine_range(std::get<3>(key).begin(), std::get<3>(key).end()));
}
static bool isEqual(const KeyTy &lhs, AffineMap rhs) {
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
return false;
return lhs == std::make_tuple(rhs.getNumDims(), rhs.getNumSymbols(),
rhs.getResults(), rhs.getRangeSizes());
}
};
struct IntegerSetKeyInfo : DenseMapInfo<IntegerSet> {
// Integer sets are uniqued based on their dim/symbol counts, affine
// expressions appearing in the LHS of constraints, and eqFlags.
using KeyTy =
std::tuple<unsigned, unsigned, ArrayRef<AffineExpr>, ArrayRef<bool>>;
using DenseMapInfo<IntegerSet>::isEqual;
static unsigned getHashValue(const IntegerSet &key) {
return getHashValue(KeyTy(key.getNumDims(), key.getNumSymbols(),
key.getConstraints(), key.getEqFlags()));
}
static unsigned getHashValue(KeyTy key) {
return hash_combine(
std::get<0>(key), std::get<1>(key),
hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()),
hash_combine_range(std::get<3>(key).begin(), std::get<3>(key).end()));
}
static bool isEqual(const KeyTy &lhs, IntegerSet rhs) {
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
return false;
return lhs == std::make_tuple(rhs.getNumDims(), rhs.getNumSymbols(),
rhs.getConstraints(), rhs.getEqFlags());
}
};
struct AttributeListKeyInfo : DenseMapInfo<AttributeListStorage *> {
// Array attributes are uniqued based on their elements.
using KeyTy = ArrayRef<NamedAttribute>;
using DenseMapInfo<AttributeListStorage *>::isEqual;
static unsigned getHashValue(AttributeListStorage *key) {
return getHashValue(KeyTy(key->getElements()));
}
static unsigned getHashValue(KeyTy key) {
return hash_combine_range(key.begin(), key.end());
}
static bool isEqual(const KeyTy &lhs, const AttributeListStorage *rhs) {
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
return false;
return lhs == rhs->getElements();
}
};
struct CallSiteLocationKeyInfo : DenseMapInfo<CallSiteLocationStorage *> {
// Call locations are uniqued based on their held concret location
// and the caller location.
using KeyTy = std::pair<Location, Location>;
using DenseMapInfo<CallSiteLocationStorage *>::isEqual;
static unsigned getHashValue(CallSiteLocationStorage *key) {
return getHashValue(KeyTy(key->callee, key->caller));
}
static unsigned getHashValue(KeyTy key) {
return hash_combine(key.first, key.second);
}
static bool isEqual(const KeyTy &lhs, const CallSiteLocationStorage *rhs) {
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
return false;
return lhs == std::make_pair(rhs->callee, rhs->caller);
}
};
struct FusedLocKeyInfo : DenseMapInfo<FusedLocationStorage *> {
// Fused locations are uniqued based on their held locations and an optional
// metadata attribute.
using KeyTy = std::pair<ArrayRef<Location>, Attribute>;
using DenseMapInfo<FusedLocationStorage *>::isEqual;
static unsigned getHashValue(FusedLocationStorage *key) {
return getHashValue(KeyTy(key->getLocations(), key->metadata));
}
static unsigned getHashValue(KeyTy key) {
return hash_combine(hash_combine_range(key.first.begin(), key.first.end()),
key.second);
}
static bool isEqual(const KeyTy &lhs, const FusedLocationStorage *rhs) {
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
return false;
return lhs == std::make_pair(rhs->getLocations(), rhs->metadata);
}
};
} // end anonymous namespace.
namespace mlir {
/// This is the implementation of the MLIRContext class, using the pImpl idiom.
/// This class is completely private to this file, so everything is public.
class MLIRContextImpl {
public:
//===--------------------------------------------------------------------===//
// Location uniquing
//===--------------------------------------------------------------------===//
// Location allocator and mutex for thread safety.
llvm::BumpPtrAllocator locationAllocator;
llvm::sys::SmartRWMutex<true> locationMutex;
/// The singleton for UnknownLoc.
UnknownLocationStorage theUnknownLoc;
/// These are filename locations uniqued into this MLIRContext.
llvm::StringMap<char, llvm::BumpPtrAllocator &> filenames;
/// FileLineColLoc uniquing.
DenseMap<std::tuple<const char *, unsigned, unsigned>,
FileLineColLocationStorage *>
fileLineColLocs;
/// NameLocation uniquing.
DenseMap<const char *, NameLocationStorage *> nameLocs;
/// CallLocation uniquing.
DenseSet<CallSiteLocationStorage *, CallSiteLocationKeyInfo> callLocs;
/// FusedLoc uniquing.
using FusedLocations = DenseSet<FusedLocationStorage *, FusedLocKeyInfo>;
FusedLocations fusedLocs;
//===--------------------------------------------------------------------===//
// Identifier uniquing
//===--------------------------------------------------------------------===//
// Identifier allocator and mutex for thread safety.
llvm::BumpPtrAllocator identifierAllocator;
llvm::sys::SmartRWMutex<true> identifierMutex;
//===--------------------------------------------------------------------===//
// Diagnostics
//===--------------------------------------------------------------------===//
DiagnosticEngine diagEngine;
//===--------------------------------------------------------------------===//
// Other
//===--------------------------------------------------------------------===//
/// A general purpose mutex to lock access to parts of the context that do not
/// have a more specific mutex, e.g. registry operations.
llvm::sys::SmartRWMutex<true> contextMutex;
/// This is a list of dialects that are created referring to this context.
/// The MLIRContext owns the objects.
std::vector<std::unique_ptr<Dialect>> dialects;
/// This is a mapping from operation name to AbstractOperation for registered
/// operations.
llvm::StringMap<AbstractOperation> registeredOperations;
/// This is a mapping from type identifier to Dialect for registered types.
DenseMap<const ClassID *, Dialect *> registeredTypes;
/// These are identifiers uniqued into this MLIRContext.
llvm::StringMap<char, llvm::BumpPtrAllocator &> identifiers;
//===--------------------------------------------------------------------===//
// Affine uniquing
//===--------------------------------------------------------------------===//
// Affine allocator and mutex for thread safety.
llvm::BumpPtrAllocator affineAllocator;
llvm::sys::SmartRWMutex<true> affineMutex;
// Affine map uniquing.
using AffineMapSet = DenseSet<AffineMap, AffineMapKeyInfo>;
AffineMapSet affineMaps;
// Integer set uniquing.
using IntegerSets = DenseSet<IntegerSet, IntegerSetKeyInfo>;
IntegerSets integerSets;
// Affine binary op expression uniquing. Figure out uniquing of dimensional
// or symbolic identifiers.
DenseMap<std::tuple<unsigned, AffineExpr, AffineExpr>, AffineExpr>
affineExprs;
// Uniqui'ing of AffineDimExpr, AffineSymbolExpr's by their position.
std::vector<AffineDimExprStorage *> dimExprs;
std::vector<AffineSymbolExprStorage *> symbolExprs;
// Uniqui'ing of AffineConstantExprStorage using constant value as key.
DenseMap<int64_t, AffineConstantExprStorage *> constExprs;
//===--------------------------------------------------------------------===//
// SDBM uniquing
//===--------------------------------------------------------------------===//
llvm::BumpPtrAllocator SDBMAllocator;
llvm::sys::SmartRWMutex<true> SDBMMutex;
DenseMap<std::tuple<SDBMVaryingExpr, SDBMConstantExpr>,
SDBMBinaryExprStorage *>
SDBMSumExprs;
DenseMap<std::tuple<SDBMPositiveExpr, SDBMConstantExpr>,
SDBMBinaryExprStorage *>
SDBMStripeExprs;
DenseMap<std::tuple<SDBMPositiveExpr, SDBMPositiveExpr>,
SDBMDiffExprStorage *>
SDBMDiffExprs;
std::vector<SDBMPositiveExprStorage *> SDBMDimExprs;
std::vector<SDBMPositiveExprStorage *> SDBMSymbolExprs;
DenseMap<SDBMPositiveExpr, SDBMNegExprStorage *> SDBMNegExprs;
DenseMap<int64_t, SDBMConstantExprStorage *> SDBMConstExprs;
//===--------------------------------------------------------------------===//
// Type uniquing
//===--------------------------------------------------------------------===//
StorageUniquer typeUniquer;
//===--------------------------------------------------------------------===//
// Attribute uniquing
//===--------------------------------------------------------------------===//
StorageUniquer attributeUniquer;
// Attribute list allocator and mutex for thread safety.
llvm::BumpPtrAllocator attributeAllocator;
llvm::sys::SmartRWMutex<true> attributeMutex;
using AttributeListSet =
DenseSet<AttributeListStorage *, AttributeListKeyInfo>;
AttributeListSet attributeLists;
public:
MLIRContextImpl()
: filenames(locationAllocator), identifiers(identifierAllocator) {}
};
} // end namespace mlir
MLIRContext::MLIRContext() : impl(new MLIRContextImpl()) {
new BuiltinDialect(this);
registerAllDialects(this);
}
MLIRContext::~MLIRContext() {}
/// Copy the specified array of elements into memory managed by the provided
/// bump pointer allocator. This assumes the elements are all PODs.
template <typename T>
static ArrayRef<T> copyArrayRefInto(llvm::BumpPtrAllocator &allocator,
ArrayRef<T> elements) {
auto result = allocator.Allocate<T>(elements.size());
std::uninitialized_copy(elements.begin(), elements.end(), result);
return ArrayRef<T>(result, elements.size());
}
//===----------------------------------------------------------------------===//
// Diagnostic Handlers
//===----------------------------------------------------------------------===//
/// Helper function used to emit a diagnostic with an optionally empty twine
/// message. If the message is empty, then it is not inserted into the
/// diagnostic.
static InFlightDiagnostic emitDiag(MLIRContextImpl &ctx, Location location,
DiagnosticSeverity severity,
const llvm::Twine &message) {
auto diag = ctx.diagEngine.emit(location, severity);
if (!message.isTriviallyEmpty())
diag << message;
return diag;
}
InFlightDiagnostic MLIRContext::emitError(Location location) {
return emitError(location, /*message=*/{});
}
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-03 10:01:01 -07:00
InFlightDiagnostic MLIRContext::emitError(Location location,
const llvm::Twine &message) {
return emitDiag(getImpl(), location, DiagnosticSeverity::Error, message);
}
/// Emit a warning message using the diagnostic engine.
InFlightDiagnostic MLIRContext::emitWarning(Location location) {
return emitWarning(location, /*message=*/{});
}
InFlightDiagnostic MLIRContext::emitWarning(Location location,
const Twine &message) {
return emitDiag(getImpl(), location, DiagnosticSeverity::Warning, message);
}
/// Emit a remark message using the diagnostic engine.
InFlightDiagnostic MLIRContext::emitRemark(Location location) {
return emitRemark(location, /*message=*/{});
}
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-03 10:01:01 -07:00
InFlightDiagnostic MLIRContext::emitRemark(Location location,
const Twine &message) {
return emitDiag(getImpl(), location, DiagnosticSeverity::Remark, message);
}
/// Returns the diagnostic engine for this context.
DiagnosticEngine &MLIRContext::getDiagEngine() { return getImpl().diagEngine; }
//===----------------------------------------------------------------------===//
// Dialect and Operation Registration
//===----------------------------------------------------------------------===//
/// Return information about all registered IR dialects.
std::vector<Dialect *> MLIRContext::getRegisteredDialects() {
// Lock access to the context registry.
llvm::sys::SmartScopedReader<true> registryLock(getImpl().contextMutex);
std::vector<Dialect *> result;
result.reserve(getImpl().dialects.size());
for (auto &dialect : getImpl().dialects)
result.push_back(dialect.get());
return result;
}
/// Get a registered IR dialect with the given namespace. If none is found,
/// then return nullptr.
Dialect *MLIRContext::getRegisteredDialect(StringRef name) {
// Lock access to the context registry.
llvm::sys::SmartScopedReader<true> registryLock(getImpl().contextMutex);
for (auto &dialect : getImpl().dialects)
if (name == dialect->getNamespace())
return dialect.get();
return nullptr;
}
/// Register this dialect object with the specified context. The context
/// takes ownership of the heap allocated dialect.
void Dialect::registerDialect(MLIRContext *context) {
auto &impl = context->getImpl();
// Lock access to the context registry.
llvm::sys::SmartScopedWriter<true> registryLock(impl.contextMutex);
// Abort if dialect with namespace has already been registered.
if (llvm::any_of(impl.dialects, [this](std::unique_ptr<Dialect> &dialect) {
return dialect->getNamespace() == getNamespace();
})) {
llvm::report_fatal_error("a dialect with namespace '" +
Twine(getNamespace()) +
"' has already been registered");
}
impl.dialects.push_back(std::unique_ptr<Dialect>(this));
}
/// Return information about all registered operations. This isn't very
/// efficient, typically you should ask the operations about their properties
/// directly.
std::vector<AbstractOperation *> MLIRContext::getRegisteredOperations() {
std::vector<std::pair<StringRef, AbstractOperation *>> opsToSort;
{ // Lock access to the context registry.
llvm::sys::SmartScopedReader<true> registryLock(getImpl().contextMutex);
// We just have the operations in a non-deterministic hash table order. Dump
// into a temporary array, then sort it by operation name to get a stable
// ordering.
llvm::StringMap<AbstractOperation> &registeredOps =
getImpl().registeredOperations;
opsToSort.reserve(registeredOps.size());
for (auto &elt : registeredOps)
opsToSort.push_back({elt.first(), &elt.second});
}
llvm::array_pod_sort(opsToSort.begin(), opsToSort.end());
std::vector<AbstractOperation *> result;
result.reserve(opsToSort.size());
for (auto &elt : opsToSort)
result.push_back(elt.second);
return result;
}
void Dialect::addOperation(AbstractOperation opInfo) {
assert(opInfo.name.split('.').first == getNamespace() &&
"op name doesn't start with dialect namespace");
assert(&opInfo.dialect == this && "Dialect object mismatch");
auto &impl = context->getImpl();
// Lock access to the context registry.
llvm::sys::SmartScopedWriter<true> registryLock(impl.contextMutex);
if (!impl.registeredOperations.insert({opInfo.name, opInfo}).second) {
llvm::errs() << "error: operation named '" << opInfo.name
<< "' is already registered.\n";
abort();
}
}
/// Register a dialect-specific type with the current context.
void Dialect::addType(const ClassID *const typeID) {
auto &impl = context->getImpl();
// Lock access to the context registry.
llvm::sys::SmartScopedWriter<true> registryLock(impl.contextMutex);
if (!impl.registeredTypes.insert({typeID, this}).second) {
llvm::errs() << "error: type already registered.\n";
abort();
}
}
/// Look up the specified operation in the operation set and return a pointer
/// to it if present. Otherwise, return a null pointer.
const AbstractOperation *AbstractOperation::lookup(StringRef opName,
MLIRContext *context) {
auto &impl = context->getImpl();
// Lock access to the context registry.
llvm::sys::SmartScopedReader<true> registryLock(impl.contextMutex);
auto it = impl.registeredOperations.find(opName);
if (it != impl.registeredOperations.end())
return &it->second;
return nullptr;
}
//===----------------------------------------------------------------------===//
// Identifier uniquing
//===----------------------------------------------------------------------===//
/// Return an identifier for the specified string.
Identifier Identifier::get(StringRef str, MLIRContext *context) {
assert(!str.empty() && "Cannot create an empty identifier");
assert(str.find('\0') == StringRef::npos &&
"Cannot create an identifier with a nul character");
auto &impl = context->getImpl();
{ // Check for an existing identifier in read-only mode.
llvm::sys::SmartScopedReader<true> contextLock(impl.identifierMutex);
auto it = impl.identifiers.find(str);
if (it != impl.identifiers.end())
return Identifier(it->getKeyData());
}
// Aquire a writer-lock so that we can safely create the new instance.
llvm::sys::SmartScopedWriter<true> contextLock(impl.identifierMutex);
auto it = impl.identifiers.insert({str, char()}).first;
return Identifier(it->getKeyData());
}
//===----------------------------------------------------------------------===//
// Location uniquing
//===----------------------------------------------------------------------===//
UnknownLoc UnknownLoc::get(MLIRContext *context) {
return &context->getImpl().theUnknownLoc;
}
UniquedFilename UniquedFilename::get(StringRef filename, MLIRContext *context) {
auto &impl = context->getImpl();
// Aquire a writer-lock so that we can safely create the new instance.
llvm::sys::SmartScopedWriter<true> locationLock(impl.locationMutex);
auto it = impl.filenames.insert({filename, char()}).first;
return UniquedFilename(it->getKeyData());
}
FileLineColLoc FileLineColLoc::get(UniquedFilename filename, unsigned line,
unsigned column, MLIRContext *context) {
auto &impl = context->getImpl();
// Safely get or create a location instance.
auto key = std::make_tuple(filename.data(), line, column);
return safeGetOrCreate(impl.fileLineColLocs, key, impl.locationMutex, [&] {
return new (impl.locationAllocator.Allocate<FileLineColLocationStorage>())
FileLineColLocationStorage(filename, line, column);
});
}
NameLoc NameLoc::get(Identifier name, MLIRContext *context) {
auto &impl = context->getImpl();
// Safely get or create a location instance.
return safeGetOrCreate(impl.nameLocs, name.data(), impl.locationMutex, [&] {
return new (impl.locationAllocator.Allocate<NameLocationStorage>())
NameLocationStorage(name);
});
}
CallSiteLoc CallSiteLoc::get(Location callee, Location caller,
MLIRContext *context) {
auto &impl = context->getImpl();
// Safely get or create a location instance.
auto key = std::make_pair(callee, caller);
return safeGetOrCreate(impl.callLocs, key, impl.locationMutex, [&] {
return new (impl.locationAllocator.Allocate<CallSiteLocationStorage>())
CallSiteLocationStorage(callee, caller);
});
}
CallSiteLoc CallSiteLoc::get(Location name, ArrayRef<Location> frames,
MLIRContext *context) {
assert(!frames.empty() && "required at least 1 frames");
auto it = frames.rbegin();
Location caller = *it++;
for (auto e = frames.rend(); it != e; ++it) {
caller = CallSiteLoc::get(*it, caller, context);
}
return CallSiteLoc::get(name, caller, context);
}
Location FusedLoc::get(ArrayRef<Location> locs, MLIRContext *context) {
return get(locs, Attribute(), context);
}
Location FusedLoc::get(ArrayRef<Location> locs, Attribute metadata,
MLIRContext *context) {
// Unique the set of locations to be fused.
llvm::SmallSetVector<Location, 4> decomposedLocs;
for (auto loc : locs) {
// If the location is a fused location we decompose it if it has no
// metadata or the metadata is the same as the top level metadata.
if (auto fusedLoc = loc.dyn_cast<FusedLoc>()) {
if (fusedLoc->getMetadata() == metadata) {
// UnknownLoc's have already been removed from FusedLocs so we can
// simply add all of the internal locations.
decomposedLocs.insert(fusedLoc->getLocations().begin(),
fusedLoc->getLocations().end());
continue;
}
}
// Otherwise, only add known locations to the set.
if (!loc.isa<UnknownLoc>())
decomposedLocs.insert(loc);
}
locs = decomposedLocs.getArrayRef();
// Handle the simple cases of less than two locations.
if (locs.empty())
return UnknownLoc::get(context);
if (locs.size() == 1)
return locs.front();
auto &impl = context->getImpl();
// Safely get or create a location instance.
auto key = std::make_pair(locs, metadata);
return safeGetOrCreate(impl.fusedLocs, key, impl.locationMutex, [&] {
auto byteSize =
FusedLocationStorage::totalSizeToAlloc<Location>(locs.size());
auto rawMem = impl.locationAllocator.Allocate(
byteSize, alignof(FusedLocationStorage));
auto result = new (rawMem) FusedLocationStorage(locs.size(), metadata);
std::uninitialized_copy(locs.begin(), locs.end(),
result->getTrailingObjects<Location>());
return result;
});
}
//===----------------------------------------------------------------------===//
// SDBMExpr uniquing
//===----------------------------------------------------------------------===//
SDBMSumExpr SDBMSumExpr::get(SDBMVaryingExpr lhs, SDBMConstantExpr rhs) {
assert(lhs && "expected SDBM variable expression");
assert(rhs && "expected SDBM constant");
MLIRContextImpl &impl = lhs.getContext()->getImpl();
// If LHS of a sum is another sum, fold the constant RHS parts.
if (auto lhsSum = lhs.dyn_cast<SDBMSumExpr>()) {
lhs = lhsSum.getLHS();
rhs = SDBMConstantExpr::get(rhs.getContext(),
rhs.getValue() + lhsSum.getRHS().getValue());
}
auto key = std::make_tuple(lhs, rhs);
return safeGetOrCreate(
impl.SDBMSumExprs, key, impl.SDBMMutex, [&impl, lhs, rhs] {
auto *mem = impl.SDBMAllocator.Allocate<SDBMBinaryExprStorage>();
return new (mem) SDBMBinaryExprStorage(SDBMExprKind::Add,
lhs.getContext(), lhs, rhs);
});
}
SDBMDiffExpr SDBMDiffExpr::get(SDBMPositiveExpr lhs, SDBMPositiveExpr rhs) {
assert(lhs && "expected SDBM dimension");
assert(rhs && "expected SDBM dimension");
MLIRContextImpl &impl = lhs.getContext()->getImpl();
auto key = std::make_tuple(lhs, rhs);
return safeGetOrCreate(
impl.SDBMDiffExprs, key, impl.SDBMMutex, [&impl, lhs, rhs] {
auto *mem = impl.SDBMAllocator.Allocate<SDBMDiffExprStorage>();
return new (mem) SDBMDiffExprStorage(lhs.getContext(), lhs, rhs);
});
}
SDBMStripeExpr SDBMStripeExpr::get(SDBMPositiveExpr var,
SDBMConstantExpr stripeFactor) {
assert(var && "expected SDBM variable expression");
assert(stripeFactor && "expected non-null stripe factor");
if (stripeFactor.getValue() <= 0)
llvm::report_fatal_error("non-positive stripe factor");
MLIRContextImpl &impl = var.getContext()->getImpl();
auto key = std::make_tuple(var, stripeFactor);
return safeGetOrCreate(
impl.SDBMStripeExprs, key, impl.SDBMMutex, [&impl, var, stripeFactor] {
auto *mem = impl.SDBMAllocator.Allocate<SDBMBinaryExprStorage>();
return new (mem) SDBMBinaryExprStorage(
SDBMExprKind::Stripe, var.getContext(), var, stripeFactor);
});
}
SDBMDimExpr SDBMDimExpr::get(MLIRContext *context, unsigned position) {
assert(context && "expected non-null context");
MLIRContextImpl &impl = context->getImpl();
return safeGetOrCreate(
impl.SDBMDimExprs, position, impl.SDBMMutex, [&impl, context, position] {
auto *mem = impl.SDBMAllocator.Allocate<SDBMPositiveExprStorage>();
return new (mem)
SDBMPositiveExprStorage(SDBMExprKind::DimId, context, position);
});
}
SDBMSymbolExpr SDBMSymbolExpr::get(MLIRContext *context, unsigned position) {
assert(context && "expected non-null context");
MLIRContextImpl &impl = context->getImpl();
return safeGetOrCreate(
impl.SDBMSymbolExprs, position, impl.SDBMMutex,
[&impl, context, position] {
auto *mem = impl.SDBMAllocator.Allocate<SDBMPositiveExprStorage>();
return new (mem)
SDBMPositiveExprStorage(SDBMExprKind::SymbolId, context, position);
});
}
SDBMConstantExpr SDBMConstantExpr::get(MLIRContext *context, int64_t value) {
assert(context && "expected non-null context");
MLIRContextImpl &impl = context->getImpl();
return safeGetOrCreate(
impl.SDBMConstExprs, value, impl.SDBMMutex, [&impl, context, value] {
auto *mem = impl.SDBMAllocator.Allocate<SDBMConstantExprStorage>();
return new (mem) SDBMConstantExprStorage(context, value);
});
}
SDBMNegExpr SDBMNegExpr::get(SDBMPositiveExpr var) {
assert(var && "expected non-null SDBM variable expression");
MLIRContextImpl &impl = var.getContext()->getImpl();
return safeGetOrCreate(impl.SDBMNegExprs, var, impl.SDBMMutex, [&impl, var] {
auto *mem = impl.SDBMAllocator.Allocate<SDBMNegExprStorage>();
return new (mem) SDBMNegExprStorage(var);
});
}
//===----------------------------------------------------------------------===//
// Type uniquing
//===----------------------------------------------------------------------===//
/// Returns the storage unqiuer used for constructing type storage instances.
/// This should not be used directly.
StorageUniquer &MLIRContext::getTypeUniquer() { return getImpl().typeUniquer; }
/// Get the dialect that registered the type with the provided typeid.
const Dialect &TypeUniquer::lookupDialectForType(MLIRContext *ctx,
const ClassID *const typeID) {
auto &impl = ctx->getImpl();
auto it = impl.registeredTypes.find(typeID);
assert(it != impl.registeredTypes.end() && "typeID is not registered.");
return *it->second;
}
//===----------------------------------------------------------------------===//
// Attribute uniquing
//===----------------------------------------------------------------------===//
/// Returns the storage uniquer used for constructing attribute storage
/// instances. This should not be used directly.
StorageUniquer &MLIRContext::getAttributeUniquer() {
return getImpl().attributeUniquer;
}
/// Perform a three-way comparison between the names of the specified
/// NamedAttributes.
static int compareNamedAttributes(const NamedAttribute *lhs,
const NamedAttribute *rhs) {
return lhs->first.str().compare(rhs->first.str());
}
/// Given a list of NamedAttribute's, canonicalize the list (sorting
/// by name) and return the unique'd result. Note that the empty list is
/// represented with a null pointer.
AttributeListStorage *
AttributeListStorage::get(ArrayRef<NamedAttribute> attrs) {
// We need to sort the element list to canonicalize it, but we also don't want
// to do a ton of work in the super common case where the element list is
// already sorted.
SmallVector<NamedAttribute, 8> storage;
switch (attrs.size()) {
case 0:
// An empty list is represented with a null pointer.
return nullptr;
case 1:
// A single element is already sorted.
break;
case 2:
// Don't invoke a general sort for two element case.
if (attrs[0].first.str() > attrs[1].first.str()) {
storage.push_back(attrs[1]);
storage.push_back(attrs[0]);
attrs = storage;
}
break;
default:
// Check to see they are sorted already.
bool isSorted = true;
for (unsigned i = 0, e = attrs.size() - 1; i != e; ++i) {
if (attrs[i].first.str() > attrs[i + 1].first.str()) {
isSorted = false;
break;
}
}
// If not, do a general sort.
if (!isSorted) {
storage.append(attrs.begin(), attrs.end());
llvm::array_pod_sort(storage.begin(), storage.end(),
compareNamedAttributes);
attrs = storage;
}
}
auto &impl = attrs[0].second.getContext()->getImpl();
// Safely get or create an attribute instance.
return safeGetOrCreate(impl.attributeLists, attrs, impl.attributeMutex, [&] {
auto byteSize =
AttributeListStorage::totalSizeToAlloc<NamedAttribute>(attrs.size());
auto rawMem =
impl.attributeAllocator.Allocate(byteSize, alignof(NamedAttribute));
// Placement initialize the AggregateSymbolicValue.
auto result = ::new (rawMem) AttributeListStorage(attrs.size());
std::uninitialized_copy(attrs.begin(), attrs.end(),
result->getTrailingObjects<NamedAttribute>());
return result;
});
}
//===----------------------------------------------------------------------===//
// AffineMap and AffineExpr uniquing
//===----------------------------------------------------------------------===//
AffineMap AffineMap::get(unsigned dimCount, unsigned symbolCount,
ArrayRef<AffineExpr> results,
ArrayRef<AffineExpr> rangeSizes) {
// The number of results can't be zero.
assert(!results.empty());
assert(rangeSizes.empty() || results.size() == rangeSizes.size());
auto &impl = results[0].getContext()->getImpl();
auto key = std::make_tuple(dimCount, symbolCount, results, rangeSizes);
// Safely get or create an AffineMap instance.
return safeGetOrCreate(impl.affineMaps, key, impl.affineMutex, [&] {
auto *res = impl.affineAllocator.Allocate<detail::AffineMapStorage>();
// Copy the results and range sizes into the bump pointer.
results = copyArrayRefInto(impl.affineAllocator, results);
rangeSizes = copyArrayRefInto(impl.affineAllocator, rangeSizes);
// Initialize the memory using placement new.
new (res)
detail::AffineMapStorage{dimCount, symbolCount, results, rangeSizes};
return AffineMap(res);
});
}
/// Simplify add expression. Return nullptr if it can't be simplified.
static AffineExpr simplifyAdd(AffineExpr lhs, AffineExpr rhs) {
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
// Fold if both LHS, RHS are a constant.
if (lhsConst && rhsConst)
return getAffineConstantExpr(lhsConst.getValue() + rhsConst.getValue(),
lhs.getContext());
// Canonicalize so that only the RHS is a constant. (4 + d0 becomes d0 + 4).
// If only one of them is a symbolic expressions, make it the RHS.
if (lhs.isa<AffineConstantExpr>() ||
(lhs.isSymbolicOrConstant() && !rhs.isSymbolicOrConstant())) {
return rhs + lhs;
}
// At this point, if there was a constant, it would be on the right.
// Addition with a zero is a noop, return the other input.
if (rhsConst) {
if (rhsConst.getValue() == 0)
return lhs;
}
// Fold successive additions like (d0 + 2) + 3 into d0 + 5.
auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Add) {
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>())
return lBin.getLHS() + (lrhs.getValue() + rhsConst.getValue());
}
// When doing successive additions, bring constant to the right: turn (d0 + 2)
// + d1 into (d0 + d1) + 2.
if (lBin && lBin.getKind() == AffineExprKind::Add) {
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
return lBin.getLHS() + rhs + lrhs;
}
}
// Detect and transform "expr - c * (expr floordiv c)" to "expr mod c". This
// leads to a much more efficient form when 'c' is a power of two, and in
// general a more compact and readable form.
// Process '(expr floordiv c) * (-c)'.
AffineBinaryOpExpr rBinOpExpr = rhs.dyn_cast<AffineBinaryOpExpr>();
if (!rBinOpExpr)
return nullptr;
auto lrhs = rBinOpExpr.getLHS();
auto rrhs = rBinOpExpr.getRHS();
// Process lrhs, which is 'expr floordiv c'.
AffineBinaryOpExpr lrBinOpExpr = lrhs.dyn_cast<AffineBinaryOpExpr>();
if (!lrBinOpExpr)
return nullptr;
auto llrhs = lrBinOpExpr.getLHS();
auto rlrhs = lrBinOpExpr.getRHS();
if (lhs == llrhs && rlrhs == -rrhs) {
return lhs % rlrhs;
}
return nullptr;
}
/// Simplify a multiply expression. Return nullptr if it can't be simplified.
static AffineExpr simplifyMul(AffineExpr lhs, AffineExpr rhs) {
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
if (lhsConst && rhsConst)
return getAffineConstantExpr(lhsConst.getValue() * rhsConst.getValue(),
lhs.getContext());
assert(lhs.isSymbolicOrConstant() || rhs.isSymbolicOrConstant());
// Canonicalize the mul expression so that the constant/symbolic term is the
// RHS. If both the lhs and rhs are symbolic, swap them if the lhs is a
// constant. (Note that a constant is trivially symbolic).
if (!rhs.isSymbolicOrConstant() || lhs.isa<AffineConstantExpr>()) {
// At least one of them has to be symbolic.
return rhs * lhs;
}
// At this point, if there was a constant, it would be on the right.
// Multiplication with a one is a noop, return the other input.
if (rhsConst) {
if (rhsConst.getValue() == 1)
return lhs;
// Multiplication with zero.
if (rhsConst.getValue() == 0)
return rhsConst;
}
// Fold successive multiplications: eg: (d0 * 2) * 3 into d0 * 6.
auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
if (lBin && rhsConst && lBin.getKind() == AffineExprKind::Mul) {
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>())
return lBin.getLHS() * (lrhs.getValue() * rhsConst.getValue());
}
// When doing successive multiplication, bring constant to the right: turn (d0
// * 2) * d1 into (d0 * d1) * 2.
if (lBin && lBin.getKind() == AffineExprKind::Mul) {
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
return (lBin.getLHS() * rhs) * lrhs;
}
}
return nullptr;
}
static AffineExpr simplifyFloorDiv(AffineExpr lhs, AffineExpr rhs) {
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
if (!rhsConst || rhsConst.getValue() < 1)
return nullptr;
if (lhsConst)
return getAffineConstantExpr(
floorDiv(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext());
// Fold floordiv of a multiply with a constant that is a multiple of the
// divisor. Eg: (i * 128) floordiv 64 = i * 2.
if (rhsConst.getValue() == 1)
return lhs;
auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
if (lBin && lBin.getKind() == AffineExprKind::Mul) {
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
// rhsConst is known to be positive if a constant.
if (lrhs.getValue() % rhsConst.getValue() == 0)
return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue());
}
}
return nullptr;
}
static AffineExpr simplifyCeilDiv(AffineExpr lhs, AffineExpr rhs) {
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
if (!rhsConst || rhsConst.getValue() < 1)
return nullptr;
if (lhsConst)
return getAffineConstantExpr(
ceilDiv(lhsConst.getValue(), rhsConst.getValue()), lhs.getContext());
// Fold ceildiv of a multiply with a constant that is a multiple of the
// divisor. Eg: (i * 128) ceildiv 64 = i * 2.
if (rhsConst.getValue() == 1)
return lhs;
auto lBin = lhs.dyn_cast<AffineBinaryOpExpr>();
if (lBin && lBin.getKind() == AffineExprKind::Mul) {
if (auto lrhs = lBin.getRHS().dyn_cast<AffineConstantExpr>()) {
// rhsConst is known to be positive if a constant.
if (lrhs.getValue() % rhsConst.getValue() == 0)
return lBin.getLHS() * (lrhs.getValue() / rhsConst.getValue());
}
}
return nullptr;
}
static AffineExpr simplifyMod(AffineExpr lhs, AffineExpr rhs) {
auto lhsConst = lhs.dyn_cast<AffineConstantExpr>();
auto rhsConst = rhs.dyn_cast<AffineConstantExpr>();
if (!rhsConst || rhsConst.getValue() < 1)
return nullptr;
if (lhsConst)
return getAffineConstantExpr(mod(lhsConst.getValue(), rhsConst.getValue()),
lhs.getContext());
// Fold modulo of an expression that is known to be a multiple of a constant
// to zero if that constant is a multiple of the modulo factor. Eg: (i * 128)
// mod 64 is folded to 0, and less trivially, (i*(j*4*(k*32))) mod 128 = 0.
if (lhs.getLargestKnownDivisor() % rhsConst.getValue() == 0)
return getAffineConstantExpr(0, lhs.getContext());
return nullptr;
// TODO(bondhugula): In general, this can be simplified more by using the GCD
// test, or in general using quantifier elimination (add two new variables q
// and r, and eliminate all variables from the linear system other than r. All
// of this can be done through mlir/Analysis/'s FlatAffineConstraints.
}
/// Return a binary affine op expression with the specified op type and
/// operands: if it doesn't exist, create it and store it; if it is already
/// present, return from the list. The stored expressions are unique: they are
/// constructed and stored in a simplified/canonicalized form. The result after
/// simplification could be any form of affine expression.
AffineExpr AffineBinaryOpExprStorage::get(AffineExprKind kind, AffineExpr lhs,
AffineExpr rhs) {
auto &impl = lhs.getContext()->getImpl();
// Check if we already have this affine expression, and return it if we do.
[RFC][MLIR] Use AffineExprRef in place of AffineExpr* in IR This CL starts by replacing AffineExpr* with value-type AffineExprRef in a few places in the IR. By a domino effect that is pretty telling of the inconsistencies in the codebase, const is removed where it makes sense. The rationale is that the decision was concisously made that unique'd types have pointer semantics without const specifier. This is fine but we should be consistent. In the end, the only logical invariant is that there should never be such a thing as a const AffineExpr*, const AffineMap* or const IntegerSet* in our codebase. This CL takes a number of shortcuts to killing const with fire, in particular forcing const AffineExprRef to return the underlying non-const AffineExpr*. This will be removed once AffineExpr* has disappeared in containers but for now such shortcuts allow a bit of sanity in this long quest for cleanups. The **only** places where const AffineExpr*, const AffineMap* or const IntegerSet* may still appear is by transitive needs from containers, comparison operators etc. There is still one major thing remaining here: figure out why cast/dyn_cast return me a const AffineXXX*, which in turn requires a bunch of ugly const_casts. I suspect this is due to the classof taking const AffineXXXExpr*. I wonder whether this is a side effect of 1., if it is coming from llvm itself (I'd doubt it) or something else (clattner@?) In light of this, the whole discussion about const makes total sense to me now and I would systematically apply the rule that in the end, we should never have any const XXX in our codebase for unique'd types (assuming we can remove them all in containers and no additional constness constraint is added on us from the outside world). PiperOrigin-RevId: 215811554
2018-10-04 15:10:33 -07:00
auto keyValue = std::make_tuple((unsigned)kind, lhs, rhs);
{ // Check for an existing instance in read-only mode.
llvm::sys::SmartScopedReader<true> affineLock(impl.affineMutex);
auto cached = impl.affineExprs.find(keyValue);
if (cached != impl.affineExprs.end())
return cached->second;
}
// Simplify the expression if possible.
AffineExpr simplified;
switch (kind) {
case AffineExprKind::Add:
simplified = simplifyAdd(lhs, rhs);
break;
case AffineExprKind::Mul:
simplified = simplifyMul(lhs, rhs);
break;
case AffineExprKind::FloorDiv:
simplified = simplifyFloorDiv(lhs, rhs);
break;
case AffineExprKind::CeilDiv:
simplified = simplifyCeilDiv(lhs, rhs);
break;
case AffineExprKind::Mod:
simplified = simplifyMod(lhs, rhs);
break;
default:
llvm_unreachable("unexpected binary affine expr");
}
// The simplified one would have already been cached; just return it.
if (simplified)
return simplified;
// Aquire a writer-lock so that we can safely create the new instance.
llvm::sys::SmartScopedWriter<true> affineLock(impl.affineMutex);
// Check for an existing instance again here, because another writer thread
// may have already created one.
auto &result = impl.affineExprs.insert({keyValue, nullptr}).first->second;
if (!result) {
// An expression with these operands will already be in the
// simplified/canonical form. Create and store it.
result = new (impl.affineAllocator.Allocate<AffineBinaryOpExprStorage>())
AffineBinaryOpExprStorage{{kind, lhs.getContext()}, lhs, rhs};
}
return result;
}
AffineExpr mlir::getAffineBinaryOpExpr(AffineExprKind kind, AffineExpr lhs,
AffineExpr rhs) {
return AffineBinaryOpExprStorage::get(kind, lhs, rhs);
}
AffineExpr mlir::getAffineDimExpr(unsigned position, MLIRContext *context) {
auto &impl = context->getImpl();
return safeGetOrCreate(
impl.dimExprs, position, impl.affineMutex, [&impl, context, position] {
auto *result = impl.affineAllocator.Allocate<AffineDimExprStorage>();
// Initialize the memory using placement new.
new (result)
AffineDimExprStorage{{AffineExprKind::DimId, context}, position};
return result;
});
}
AffineExpr mlir::getAffineSymbolExpr(unsigned position, MLIRContext *context) {
auto &impl = context->getImpl();
return safeGetOrCreate(
impl.symbolExprs, position, impl.affineMutex, [&impl, context, position] {
auto *result = impl.affineAllocator.Allocate<AffineSymbolExprStorage>();
// Initialize the memory using placement new.
new (result) AffineSymbolExprStorage{
{AffineExprKind::SymbolId, context}, position};
return result;
});
}
AffineExpr mlir::getAffineConstantExpr(int64_t constant, MLIRContext *context) {
auto &impl = context->getImpl();
// Safely get or create an AffineConstantExpr instance.
return safeGetOrCreate(impl.constExprs, constant, impl.affineMutex, [&] {
auto *result = impl.affineAllocator.Allocate<AffineConstantExprStorage>();
return new (result) AffineConstantExprStorage{
{AffineExprKind::Constant, context}, constant};
});
}
//===----------------------------------------------------------------------===//
// Integer Sets: these are allocated into the bump pointer, and are immutable.
// Unlike AffineMap's, these are uniqued only if they are small.
//===----------------------------------------------------------------------===//
IntegerSet IntegerSet::get(unsigned dimCount, unsigned symbolCount,
ArrayRef<AffineExpr> constraints,
ArrayRef<bool> eqFlags) {
// The number of constraints can't be zero.
assert(!constraints.empty());
assert(constraints.size() == eqFlags.size());
auto &impl = constraints[0].getContext()->getImpl();
// A utility function to construct a new IntegerSetStorage instance.
auto constructorFn = [&] {
auto *res = impl.affineAllocator.Allocate<detail::IntegerSetStorage>();
// Copy the results and equality flags into the bump pointer.
constraints = copyArrayRefInto(impl.affineAllocator, constraints);
eqFlags = copyArrayRefInto(impl.affineAllocator, eqFlags);
// Initialize the memory using placement new.
new (res)
detail::IntegerSetStorage{dimCount, symbolCount, constraints, eqFlags};
return IntegerSet(res);
};
// If this instance is uniqued, then we handle it separately so that multiple
// threads may simulatenously access existing instances.
if (constraints.size() < IntegerSet::kUniquingThreshold) {
auto key = std::make_tuple(dimCount, symbolCount, constraints, eqFlags);
return safeGetOrCreate(impl.integerSets, key, impl.affineMutex,
constructorFn);
}
// Otherwise, aquire a writer-lock so that we can safely create the new
// instance.
llvm::sys::SmartScopedWriter<true> affineLock(impl.affineMutex);
return constructorFn();
}