Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

606 lines
20 KiB
C++
Raw Normal View History

//===--- RISCV.cpp - Implement RISC-V target feature support --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements RISC-V TargetInfo objects.
//
//===----------------------------------------------------------------------===//
#include "RISCV.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/MacroBuilder.h"
#include "clang/Basic/TargetBuiltins.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/Support/raw_ostream.h"
[TargetParser] Generate the defs for RISCV CPUs using llvm-tblgen. Rework the change to prevent build failures. NFCI. The failing code was submitted as cf7a8305a2b4ddfd299c748136cb9a2960ef7089 and reverted via 8bd65e535fb33bc48805bafed8217b16a853e158. The rework in this new commit prevents failures like the following: FAILED: tools/clang/lib/Basic/CMakeFiles/obj.clangBasic.dir/Targets/RISCV.cpp.o /usr/bin/c++ [bunch of non interesting stuff] -c <path-to>/llvm-project/clang/lib/Basic/Targets/RISCV.cpp In file included from <path-to>/llvm-project/clang/lib/Basic/Targets/RISCV.cpp:19: <path-to>/llvm-project/llvm/include/llvm/TargetParser/RISCVTargetParser.h:29:10: fatal error: llvm/TargetParser/RISCVTargetParserDef.inc: No such file or directory 29 | #include "llvm/TargetParser/RISCVTargetParserDef.inc" | ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ These failures happen because the library LLVMTargetParser depends on RISCVTargetParserTableGen, which is a tablegen target that generates the list of CPUs in llvm/TargetParser/RISCVTargetParserDef.inc. This *.inc file is included by the public header file llvm/TargetParser/RISCVTargetParser.h. The header file llvm/TargetParser/RISCVTargetParser.h is also used in components (clangDriver and clangBasic) that link into LLVMTargetParser, but on some configurations such components might end up being built before TargetParser is ready. The fix is to make sure that clangDriver and clangBasic depend on the tablegen target RISCVTargetParserTableGen, which generates the .inc file whether or not LLVMTargetParser is ready. WRT the original patch at https://reviews.llvm.org/D137517, this commit is just adding RISCVTargetParserTableGen in the DEPENDS list of clangDriver and clangBasic.
2023-01-11 10:23:55 +01:00
#include "llvm/TargetParser/RISCVTargetParser.h"
#include <optional>
using namespace clang;
using namespace clang::targets;
ArrayRef<const char *> RISCVTargetInfo::getGCCRegNames() const {
// clang-format off
static const char *const GCCRegNames[] = {
// Integer registers
"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
"x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
"x16", "x17", "x18", "x19", "x20", "x21", "x22", "x23",
"x24", "x25", "x26", "x27", "x28", "x29", "x30", "x31",
// Floating point registers
"f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
"f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
"f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
"f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
// Vector registers
"v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
"v8", "v9", "v10", "v11", "v12", "v13", "v14", "v15",
"v16", "v17", "v18", "v19", "v20", "v21", "v22", "v23",
"v24", "v25", "v26", "v27", "v28", "v29", "v30", "v31",
// CSRs
"fflags", "frm", "vtype", "vl", "vxsat", "vxrm", "sf.vcix_state"
};
// clang-format on
return llvm::ArrayRef(GCCRegNames);
}
ArrayRef<TargetInfo::GCCRegAlias> RISCVTargetInfo::getGCCRegAliases() const {
static const TargetInfo::GCCRegAlias GCCRegAliases[] = {
{{"zero"}, "x0"}, {{"ra"}, "x1"}, {{"sp"}, "x2"}, {{"gp"}, "x3"},
{{"tp"}, "x4"}, {{"t0"}, "x5"}, {{"t1"}, "x6"}, {{"t2"}, "x7"},
{{"s0"}, "x8"}, {{"s1"}, "x9"}, {{"a0"}, "x10"}, {{"a1"}, "x11"},
{{"a2"}, "x12"}, {{"a3"}, "x13"}, {{"a4"}, "x14"}, {{"a5"}, "x15"},
{{"a6"}, "x16"}, {{"a7"}, "x17"}, {{"s2"}, "x18"}, {{"s3"}, "x19"},
{{"s4"}, "x20"}, {{"s5"}, "x21"}, {{"s6"}, "x22"}, {{"s7"}, "x23"},
{{"s8"}, "x24"}, {{"s9"}, "x25"}, {{"s10"}, "x26"}, {{"s11"}, "x27"},
{{"t3"}, "x28"}, {{"t4"}, "x29"}, {{"t5"}, "x30"}, {{"t6"}, "x31"},
{{"ft0"}, "f0"}, {{"ft1"}, "f1"}, {{"ft2"}, "f2"}, {{"ft3"}, "f3"},
{{"ft4"}, "f4"}, {{"ft5"}, "f5"}, {{"ft6"}, "f6"}, {{"ft7"}, "f7"},
{{"fs0"}, "f8"}, {{"fs1"}, "f9"}, {{"fa0"}, "f10"}, {{"fa1"}, "f11"},
{{"fa2"}, "f12"}, {{"fa3"}, "f13"}, {{"fa4"}, "f14"}, {{"fa5"}, "f15"},
{{"fa6"}, "f16"}, {{"fa7"}, "f17"}, {{"fs2"}, "f18"}, {{"fs3"}, "f19"},
{{"fs4"}, "f20"}, {{"fs5"}, "f21"}, {{"fs6"}, "f22"}, {{"fs7"}, "f23"},
{{"fs8"}, "f24"}, {{"fs9"}, "f25"}, {{"fs10"}, "f26"}, {{"fs11"}, "f27"},
{{"ft8"}, "f28"}, {{"ft9"}, "f29"}, {{"ft10"}, "f30"}, {{"ft11"}, "f31"}};
return llvm::ArrayRef(GCCRegAliases);
}
bool RISCVTargetInfo::validateAsmConstraint(
const char *&Name, TargetInfo::ConstraintInfo &Info) const {
switch (*Name) {
default:
return false;
case 'I':
// A 12-bit signed immediate.
Info.setRequiresImmediate(-2048, 2047);
return true;
case 'J':
// Integer zero.
Info.setRequiresImmediate(0);
return true;
case 'K':
// A 5-bit unsigned immediate for CSR access instructions.
Info.setRequiresImmediate(0, 31);
return true;
case 'f':
// A floating-point register.
Info.setAllowsRegister();
return true;
case 'A':
// An address that is held in a general-purpose register.
Info.setAllowsMemory();
return true;
case 's':
case 'S': // A symbol or label reference with a constant offset
Info.setAllowsRegister();
return true;
case 'c':
// A RVC register - GPR or FPR
if (Name[1] == 'r' || Name[1] == 'R' || Name[1] == 'f') {
Info.setAllowsRegister();
Name += 1;
return true;
}
return false;
[RISCV] Inline Assembly Support for GPR Pairs ('R') (#112983) This patch adds support for getting even-odd general purpose register pairs into and out of inline assembly using the `R` constraint as proposed in riscv-non-isa/riscv-c-api-doc#92 There are a few different pieces to this patch, each of which need their own explanation. - Renames the Register Class used for f64 values on rv32i_zdinx from `GPRPair*` to `GPRF64Pair*`. These register classes are kept broadly unmodified, as their primary value type is used for type inference over selection patterns. This rename affects quite a lot of files. - Adds new `GPRPair*` register classes which will be used for `R` constraints and for instructions that need an even-odd GPR pair. This new type is used for `amocas.d.*`(rv32) and `amocas.q.*`(rv64) in Zacas, instead of the `GPRF64Pair` class being used before. - Marks the new `GPRPair` class legal as for holding a `MVT::Untyped`. Two new RISCVISD node types are added for creating and destructing a pair - `BuildGPRPair` and `SplitGPRPair`, and are introduced when bitcasting to/from the pair type and `untyped`. - Adds functionality to `splitValueIntoRegisterParts` and `joinRegisterPartsIntoValue` to handle changing `i<2*xlen>` MVTs into `untyped` pairs. - Adds an override for `getNumRegisters` to ensure that `i<2*xlen>` values, when going to/from inline assembly, only allocate one (pair) register (they would otherwise allocate two). This is due to a bug in SelectionDAGBuilder.cpp which other backends also work around. - Ensures that Clang understands that `R` is a valid inline assembly constraint. - This also allows `R` to be used for `f64` types on `rv32_zdinx` architectures, where doubles are stored in a GPR pair.
2024-11-18 17:45:58 +00:00
case 'R':
// An even-odd GPR pair
Info.setAllowsRegister();
return true;
case 'v':
// A vector register.
if (Name[1] == 'r' || Name[1] == 'd' || Name[1] == 'm') {
Info.setAllowsRegister();
Name += 1;
return true;
}
return false;
}
}
std::string RISCVTargetInfo::convertConstraint(const char *&Constraint) const {
std::string R;
switch (*Constraint) {
// c* and v* are two-letter constraints on RISC-V.
case 'c':
case 'v':
R = std::string("^") + std::string(Constraint, 2);
Constraint += 1;
break;
default:
R = TargetInfo::convertConstraint(Constraint);
break;
}
return R;
}
static unsigned getVersionValue(unsigned MajorVersion, unsigned MinorVersion) {
return MajorVersion * 1000000 + MinorVersion * 1000;
}
void RISCVTargetInfo::getTargetDefines(const LangOptions &Opts,
MacroBuilder &Builder) const {
Builder.defineMacro("__riscv");
2023-12-09 14:02:11 -08:00
bool Is64Bit = getTriple().isRISCV64();
Builder.defineMacro("__riscv_xlen", Is64Bit ? "64" : "32");
StringRef CodeModel = getTargetOpts().CodeModel;
unsigned FLen = ISAInfo->getFLen();
unsigned MinVLen = ISAInfo->getMinVLen();
unsigned MaxELen = ISAInfo->getMaxELen();
unsigned MaxELenFp = ISAInfo->getMaxELenFp();
if (CodeModel == "default")
CodeModel = "small";
if (CodeModel == "small")
Builder.defineMacro("__riscv_cmodel_medlow");
else if (CodeModel == "medium")
Builder.defineMacro("__riscv_cmodel_medany");
else if (CodeModel == "large")
Builder.defineMacro("__riscv_cmodel_large");
StringRef ABIName = getABI();
if (ABIName == "ilp32f" || ABIName == "lp64f")
Builder.defineMacro("__riscv_float_abi_single");
else if (ABIName == "ilp32d" || ABIName == "lp64d")
Builder.defineMacro("__riscv_float_abi_double");
else
Builder.defineMacro("__riscv_float_abi_soft");
if (ABIName == "ilp32e" || ABIName == "lp64e")
Builder.defineMacro("__riscv_abi_rve");
Builder.defineMacro("__riscv_arch_test");
for (auto &Extension : ISAInfo->getExtensions()) {
auto ExtName = Extension.first;
auto ExtInfo = Extension.second;
Builder.defineMacro(Twine("__riscv_", ExtName),
Twine(getVersionValue(ExtInfo.Major, ExtInfo.Minor)));
}
if (ISAInfo->hasExtension("zmmul"))
Builder.defineMacro("__riscv_mul");
if (ISAInfo->hasExtension("m")) {
Builder.defineMacro("__riscv_div");
Builder.defineMacro("__riscv_muldiv");
}
if (ISAInfo->hasExtension("a")) {
Builder.defineMacro("__riscv_atomic");
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_1");
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_2");
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_4");
if (Is64Bit)
Builder.defineMacro("__GCC_HAVE_SYNC_COMPARE_AND_SWAP_8");
}
if (FLen) {
Builder.defineMacro("__riscv_flen", Twine(FLen));
Builder.defineMacro("__riscv_fdiv");
Builder.defineMacro("__riscv_fsqrt");
}
if (MinVLen) {
Builder.defineMacro("__riscv_v_min_vlen", Twine(MinVLen));
Builder.defineMacro("__riscv_v_elen", Twine(MaxELen));
Builder.defineMacro("__riscv_v_elen_fp", Twine(MaxELenFp));
}
if (ISAInfo->hasExtension("c"))
Builder.defineMacro("__riscv_compressed");
if (ISAInfo->hasExtension("zve32x"))
Builder.defineMacro("__riscv_vector");
// Currently we support the v1.0 RISC-V V intrinsics.
Builder.defineMacro("__riscv_v_intrinsic", Twine(getVersionValue(1, 0)));
auto VScale = getVScaleRange(Opts, false);
if (VScale && VScale->first && VScale->first == VScale->second)
Builder.defineMacro("__riscv_v_fixed_vlen",
Twine(VScale->first * llvm::RISCV::RVVBitsPerBlock));
if (FastScalarUnalignedAccess)
Builder.defineMacro("__riscv_misaligned_fast");
else
Builder.defineMacro("__riscv_misaligned_avoid");
if (ISAInfo->hasExtension("e")) {
if (Is64Bit)
Builder.defineMacro("__riscv_64e");
else
Builder.defineMacro("__riscv_32e");
}
if (Opts.CFProtectionReturn && ISAInfo->hasExtension("zicfiss"))
Builder.defineMacro("__riscv_shadow_stack");
}
[StrTable] Switch Clang builtins to use string tables This both reapplies #118734, the initial attempt at this, and updates it significantly. First, it uses the newly added `StringTable` abstraction for string tables, and simplifies the construction to build the string table and info arrays separately. This should reduce any `constexpr` compile time memory or CPU cost of the original PR while significantly improving the APIs throughout. It also restructures the builtins to support sharding across several independent tables. This accomplishes two improvements from the original PR: 1) It improves the APIs used significantly. 2) When builtins are defined from different sources (like SVE vs MVE in AArch64), this allows each of them to build their own string table independently rather than having to merge the string tables and info structures. 3) It allows each shard to factor out a common prefix, often cutting the size of the strings needed for the builtins by a factor two. The second point is important both to allow different mechanisms of construction (for example a `.def` file and a tablegen'ed `.inc` file, or different tablegen'ed `.inc files), it also simply reduces the sizes of these tables which is valuable given how large they are in some cases. The third builds on that size reduction. Initially, we use this new sharding rather than merging tables in AArch64, LoongArch, RISCV, and X86. Mostly this helps ensure the system works, as without further changes these still push scaling limits. Subsequent commits will more deeply leverage the new structure, including using the prefix capabilities which cannot be easily factored out here and requires deep changes to the targets.
2024-12-14 09:09:47 +00:00
static constexpr int NumRVVBuiltins =
RISCVVector::FirstSiFiveBuiltin - Builtin::FirstTSBuiltin;
static constexpr int NumRVVSiFiveBuiltins =
RISCVVector::FirstTSBuiltin - RISCVVector::FirstSiFiveBuiltin;
[StrTable] Switch Clang builtins to use string tables This both reapplies #118734, the initial attempt at this, and updates it significantly. First, it uses the newly added `StringTable` abstraction for string tables, and simplifies the construction to build the string table and info arrays separately. This should reduce any `constexpr` compile time memory or CPU cost of the original PR while significantly improving the APIs throughout. It also restructures the builtins to support sharding across several independent tables. This accomplishes two improvements from the original PR: 1) It improves the APIs used significantly. 2) When builtins are defined from different sources (like SVE vs MVE in AArch64), this allows each of them to build their own string table independently rather than having to merge the string tables and info structures. 3) It allows each shard to factor out a common prefix, often cutting the size of the strings needed for the builtins by a factor two. The second point is important both to allow different mechanisms of construction (for example a `.def` file and a tablegen'ed `.inc` file, or different tablegen'ed `.inc files), it also simply reduces the sizes of these tables which is valuable given how large they are in some cases. The third builds on that size reduction. Initially, we use this new sharding rather than merging tables in AArch64, LoongArch, RISCV, and X86. Mostly this helps ensure the system works, as without further changes these still push scaling limits. Subsequent commits will more deeply leverage the new structure, including using the prefix capabilities which cannot be easily factored out here and requires deep changes to the targets.
2024-12-14 09:09:47 +00:00
static constexpr int NumRISCVBuiltins =
RISCV::LastTSBuiltin - RISCVVector::FirstTSBuiltin;
[StrTable] Switch Clang builtins to use string tables This both reapplies #118734, the initial attempt at this, and updates it significantly. First, it uses the newly added `StringTable` abstraction for string tables, and simplifies the construction to build the string table and info arrays separately. This should reduce any `constexpr` compile time memory or CPU cost of the original PR while significantly improving the APIs throughout. It also restructures the builtins to support sharding across several independent tables. This accomplishes two improvements from the original PR: 1) It improves the APIs used significantly. 2) When builtins are defined from different sources (like SVE vs MVE in AArch64), this allows each of them to build their own string table independently rather than having to merge the string tables and info structures. 3) It allows each shard to factor out a common prefix, often cutting the size of the strings needed for the builtins by a factor two. The second point is important both to allow different mechanisms of construction (for example a `.def` file and a tablegen'ed `.inc` file, or different tablegen'ed `.inc files), it also simply reduces the sizes of these tables which is valuable given how large they are in some cases. The third builds on that size reduction. Initially, we use this new sharding rather than merging tables in AArch64, LoongArch, RISCV, and X86. Mostly this helps ensure the system works, as without further changes these still push scaling limits. Subsequent commits will more deeply leverage the new structure, including using the prefix capabilities which cannot be easily factored out here and requires deep changes to the targets.
2024-12-14 09:09:47 +00:00
static constexpr int NumBuiltins =
RISCV::LastTSBuiltin - Builtin::FirstTSBuiltin;
static_assert(NumBuiltins ==
(NumRVVBuiltins + NumRVVSiFiveBuiltins + NumRISCVBuiltins));
namespace RVV {
#define GET_RISCVV_BUILTIN_STR_TABLE
#include "clang/Basic/riscv_vector_builtins.inc"
#undef GET_RISCVV_BUILTIN_STR_TABLE
static_assert(BuiltinStrings.size() < 100'000);
static constexpr std::array<Builtin::Info, NumRVVBuiltins> BuiltinInfos = {
#define GET_RISCVV_BUILTIN_INFOS
#include "clang/Basic/riscv_vector_builtins.inc"
#undef GET_RISCVV_BUILTIN_INFOS
};
} // namespace RVV
namespace RVVSiFive {
#define GET_RISCVV_BUILTIN_STR_TABLE
#include "clang/Basic/riscv_sifive_vector_builtins.inc"
#undef GET_RISCVV_BUILTIN_STR_TABLE
static constexpr std::array<Builtin::Info, NumRVVSiFiveBuiltins> BuiltinInfos =
{
#define GET_RISCVV_BUILTIN_INFOS
#include "clang/Basic/riscv_sifive_vector_builtins.inc"
#undef GET_RISCVV_BUILTIN_INFOS
};
} // namespace RVVSiFive
#define GET_BUILTIN_STR_TABLE
#include "clang/Basic/BuiltinsRISCV.inc"
#undef GET_BUILTIN_STR_TABLE
static constexpr Builtin::Info BuiltinInfos[] = {
#define GET_BUILTIN_INFOS
[StrTable] Switch Clang builtins to use string tables This both reapplies #118734, the initial attempt at this, and updates it significantly. First, it uses the newly added `StringTable` abstraction for string tables, and simplifies the construction to build the string table and info arrays separately. This should reduce any `constexpr` compile time memory or CPU cost of the original PR while significantly improving the APIs throughout. It also restructures the builtins to support sharding across several independent tables. This accomplishes two improvements from the original PR: 1) It improves the APIs used significantly. 2) When builtins are defined from different sources (like SVE vs MVE in AArch64), this allows each of them to build their own string table independently rather than having to merge the string tables and info structures. 3) It allows each shard to factor out a common prefix, often cutting the size of the strings needed for the builtins by a factor two. The second point is important both to allow different mechanisms of construction (for example a `.def` file and a tablegen'ed `.inc` file, or different tablegen'ed `.inc files), it also simply reduces the sizes of these tables which is valuable given how large they are in some cases. The third builds on that size reduction. Initially, we use this new sharding rather than merging tables in AArch64, LoongArch, RISCV, and X86. Mostly this helps ensure the system works, as without further changes these still push scaling limits. Subsequent commits will more deeply leverage the new structure, including using the prefix capabilities which cannot be easily factored out here and requires deep changes to the targets.
2024-12-14 09:09:47 +00:00
#include "clang/Basic/BuiltinsRISCV.inc"
#undef GET_BUILTIN_INFOS
};
static_assert(std::size(BuiltinInfos) == NumRISCVBuiltins);
[StrTable] Switch Clang builtins to use string tables This both reapplies #118734, the initial attempt at this, and updates it significantly. First, it uses the newly added `StringTable` abstraction for string tables, and simplifies the construction to build the string table and info arrays separately. This should reduce any `constexpr` compile time memory or CPU cost of the original PR while significantly improving the APIs throughout. It also restructures the builtins to support sharding across several independent tables. This accomplishes two improvements from the original PR: 1) It improves the APIs used significantly. 2) When builtins are defined from different sources (like SVE vs MVE in AArch64), this allows each of them to build their own string table independently rather than having to merge the string tables and info structures. 3) It allows each shard to factor out a common prefix, often cutting the size of the strings needed for the builtins by a factor two. The second point is important both to allow different mechanisms of construction (for example a `.def` file and a tablegen'ed `.inc` file, or different tablegen'ed `.inc files), it also simply reduces the sizes of these tables which is valuable given how large they are in some cases. The third builds on that size reduction. Initially, we use this new sharding rather than merging tables in AArch64, LoongArch, RISCV, and X86. Mostly this helps ensure the system works, as without further changes these still push scaling limits. Subsequent commits will more deeply leverage the new structure, including using the prefix capabilities which cannot be easily factored out here and requires deep changes to the targets.
2024-12-14 09:09:47 +00:00
llvm::SmallVector<Builtin::InfosShard>
RISCVTargetInfo::getTargetBuiltins() const {
return {
{&RVV::BuiltinStrings, RVV::BuiltinInfos, "__builtin_rvv_"},
{&RVVSiFive::BuiltinStrings, RVVSiFive::BuiltinInfos, "__builtin_rvv_"},
{&BuiltinStrings, BuiltinInfos},
[StrTable] Switch Clang builtins to use string tables This both reapplies #118734, the initial attempt at this, and updates it significantly. First, it uses the newly added `StringTable` abstraction for string tables, and simplifies the construction to build the string table and info arrays separately. This should reduce any `constexpr` compile time memory or CPU cost of the original PR while significantly improving the APIs throughout. It also restructures the builtins to support sharding across several independent tables. This accomplishes two improvements from the original PR: 1) It improves the APIs used significantly. 2) When builtins are defined from different sources (like SVE vs MVE in AArch64), this allows each of them to build their own string table independently rather than having to merge the string tables and info structures. 3) It allows each shard to factor out a common prefix, often cutting the size of the strings needed for the builtins by a factor two. The second point is important both to allow different mechanisms of construction (for example a `.def` file and a tablegen'ed `.inc` file, or different tablegen'ed `.inc files), it also simply reduces the sizes of these tables which is valuable given how large they are in some cases. The third builds on that size reduction. Initially, we use this new sharding rather than merging tables in AArch64, LoongArch, RISCV, and X86. Mostly this helps ensure the system works, as without further changes these still push scaling limits. Subsequent commits will more deeply leverage the new structure, including using the prefix capabilities which cannot be easily factored out here and requires deep changes to the targets.
2024-12-14 09:09:47 +00:00
};
}
bool RISCVTargetInfo::initFeatureMap(
llvm::StringMap<bool> &Features, DiagnosticsEngine &Diags, StringRef CPU,
const std::vector<std::string> &FeaturesVec) const {
unsigned XLen = 32;
2023-12-09 14:02:11 -08:00
if (getTriple().isRISCV64()) {
Features["64bit"] = true;
XLen = 64;
} else {
Features["32bit"] = true;
}
std::vector<std::string> AllFeatures = FeaturesVec;
auto ParseResult = llvm::RISCVISAInfo::parseFeatures(XLen, FeaturesVec);
if (!ParseResult) {
std::string Buffer;
llvm::raw_string_ostream OutputErrMsg(Buffer);
handleAllErrors(ParseResult.takeError(), [&](llvm::StringError &ErrMsg) {
OutputErrMsg << ErrMsg.getMessage();
});
Diags.Report(diag::err_invalid_feature_combination) << OutputErrMsg.str();
return false;
}
// Append all features, not just new ones, so we override any negatives.
llvm::append_range(AllFeatures, (*ParseResult)->toFeatures());
return TargetInfo::initFeatureMap(Features, Diags, CPU, AllFeatures);
}
std::optional<std::pair<unsigned, unsigned>>
RISCVTargetInfo::getVScaleRange(const LangOptions &LangOpts,
bool IsArmStreamingFunction) const {
// RISCV::RVVBitsPerBlock is 64.
unsigned VScaleMin = ISAInfo->getMinVLen() / llvm::RISCV::RVVBitsPerBlock;
if (LangOpts.VScaleMin || LangOpts.VScaleMax) {
// Treat Zvl*b as a lower bound on vscale.
VScaleMin = std::max(VScaleMin, LangOpts.VScaleMin);
unsigned VScaleMax = LangOpts.VScaleMax;
if (VScaleMax != 0 && VScaleMax < VScaleMin)
VScaleMax = VScaleMin;
return std::pair<unsigned, unsigned>(VScaleMin ? VScaleMin : 1, VScaleMax);
}
if (VScaleMin > 0) {
unsigned VScaleMax = ISAInfo->getMaxVLen() / llvm::RISCV::RVVBitsPerBlock;
return std::make_pair(VScaleMin, VScaleMax);
}
return std::nullopt;
}
/// Return true if has this feature, need to sync with handleTargetFeatures.
bool RISCVTargetInfo::hasFeature(StringRef Feature) const {
2023-12-09 14:02:11 -08:00
bool Is64Bit = getTriple().isRISCV64();
auto Result = llvm::StringSwitch<std::optional<bool>>(Feature)
.Case("riscv", true)
.Case("riscv32", !Is64Bit)
.Case("riscv64", Is64Bit)
.Case("32bit", !Is64Bit)
.Case("64bit", Is64Bit)
.Case("experimental", HasExperimental)
.Default(std::nullopt);
if (Result)
return *Result;
return ISAInfo->hasExtension(Feature);
}
/// Perform initialization based on the user configured set of features.
bool RISCVTargetInfo::handleTargetFeatures(std::vector<std::string> &Features,
DiagnosticsEngine &Diags) {
unsigned XLen = getTriple().isArch64Bit() ? 64 : 32;
auto ParseResult = llvm::RISCVISAInfo::parseFeatures(XLen, Features);
if (!ParseResult) {
std::string Buffer;
llvm::raw_string_ostream OutputErrMsg(Buffer);
handleAllErrors(ParseResult.takeError(), [&](llvm::StringError &ErrMsg) {
OutputErrMsg << ErrMsg.getMessage();
});
Diags.Report(diag::err_invalid_feature_combination) << OutputErrMsg.str();
return false;
} else {
ISAInfo = std::move(*ParseResult);
}
if (ABI.empty())
ABI = ISAInfo->computeDefaultABI().str();
if (ISAInfo->hasExtension("zfh") || ISAInfo->hasExtension("zhinx"))
HasLegalHalfType = true;
FastScalarUnalignedAccess =
llvm::is_contained(Features, "+unaligned-scalar-mem");
if (llvm::is_contained(Features, "+experimental"))
HasExperimental = true;
if (ABI == "ilp32e" && ISAInfo->hasExtension("d")) {
Diags.Report(diag::err_invalid_feature_combination)
<< "ILP32E cannot be used with the D ISA extension";
return false;
}
return true;
}
bool RISCVTargetInfo::isValidCPUName(StringRef Name) const {
bool Is64Bit = getTriple().isArch64Bit();
return llvm::RISCV::parseCPU(Name, Is64Bit);
}
void RISCVTargetInfo::fillValidCPUList(
SmallVectorImpl<StringRef> &Values) const {
bool Is64Bit = getTriple().isArch64Bit();
llvm::RISCV::fillValidCPUArchList(Values, Is64Bit);
}
bool RISCVTargetInfo::isValidTuneCPUName(StringRef Name) const {
bool Is64Bit = getTriple().isArch64Bit();
return llvm::RISCV::parseTuneCPU(Name, Is64Bit);
}
void RISCVTargetInfo::fillValidTuneCPUList(
SmallVectorImpl<StringRef> &Values) const {
bool Is64Bit = getTriple().isArch64Bit();
llvm::RISCV::fillValidTuneCPUArchList(Values, Is64Bit);
}
static void populateNegativeRISCVFeatures(std::vector<std::string> &Features) {
auto RII = llvm::RISCVISAInfo::parseArchString(
"rv64i", /* EnableExperimentalExtension */ true);
if (llvm::errorToBool(RII.takeError()))
llvm_unreachable("unsupport rv64i");
std::vector<std::string> FeatStrings =
(*RII)->toFeatures(/* AddAllExtensions */ true);
Features.insert(Features.end(), FeatStrings.begin(), FeatStrings.end());
}
static void handleFullArchString(StringRef FullArchStr,
std::vector<std::string> &Features) {
auto RII = llvm::RISCVISAInfo::parseArchString(
FullArchStr, /* EnableExperimentalExtension */ true);
if (llvm::errorToBool(RII.takeError())) {
// Forward the invalid FullArchStr.
Features.push_back(FullArchStr.str());
} else {
// Append a full list of features, including any negative extensions so that
// we override the CPU's features.
populateNegativeRISCVFeatures(Features);
std::vector<std::string> FeatStrings =
(*RII)->toFeatures(/* AddAllExtensions */ true);
Features.insert(Features.end(), FeatStrings.begin(), FeatStrings.end());
}
}
ParsedTargetAttr RISCVTargetInfo::parseTargetAttr(StringRef Features) const {
ParsedTargetAttr Ret;
if (Features == "default")
return Ret;
SmallVector<StringRef, 1> AttrFeatures;
Features.split(AttrFeatures, ";");
bool FoundArch = false;
auto handleArchExtension = [](StringRef AttrString,
std::vector<std::string> &Features) {
SmallVector<StringRef, 1> Exts;
AttrString.split(Exts, ",");
for (auto Ext : Exts) {
if (Ext.empty())
continue;
StringRef ExtName = Ext.substr(1);
std::string TargetFeature =
llvm::RISCVISAInfo::getTargetFeatureForExtension(ExtName);
if (!TargetFeature.empty())
Features.push_back(Ext.front() + TargetFeature);
else
Features.push_back(Ext.str());
}
};
for (auto &Feature : AttrFeatures) {
Feature = Feature.trim();
StringRef AttrString = Feature.split("=").second.trim();
if (Feature.starts_with("arch=")) {
// Override last features
Ret.Features.clear();
if (FoundArch)
Ret.Duplicate = "arch=";
FoundArch = true;
if (AttrString.starts_with("+")) {
// EXTENSION like arch=+v,+zbb
handleArchExtension(AttrString, Ret.Features);
} else {
// full-arch-string like arch=rv64gcv
handleFullArchString(AttrString, Ret.Features);
}
} else if (Feature.starts_with("cpu=")) {
if (!Ret.CPU.empty())
Ret.Duplicate = "cpu=";
Ret.CPU = AttrString;
if (!FoundArch) {
// Update Features with CPU's features
StringRef MarchFromCPU = llvm::RISCV::getMArchFromMcpu(Ret.CPU);
if (MarchFromCPU != "") {
Ret.Features.clear();
handleFullArchString(MarchFromCPU, Ret.Features);
}
}
} else if (Feature.starts_with("tune=")) {
if (!Ret.Tune.empty())
Ret.Duplicate = "tune=";
Ret.Tune = AttrString;
} else if (Feature.starts_with("priority")) {
// Skip because it only use for FMV.
} else if (Feature.starts_with("+")) {
// Handle target_version/target_clones attribute strings
// that are already delimited by ','
handleArchExtension(Feature, Ret.Features);
}
}
return Ret;
}
uint64_t RISCVTargetInfo::getFMVPriority(ArrayRef<StringRef> Features) const {
// Priority is explicitly specified on RISC-V unlike on other targets, where
// it is derived by all the features of a specific version. Therefore if a
// feature contains the priority string, then return it immediately.
for (StringRef Feature : Features) {
auto [LHS, RHS] = Feature.rsplit(';');
if (LHS.consume_front("priority="))
Feature = LHS;
else if (RHS.consume_front("priority="))
Feature = RHS;
else
continue;
uint64_t Priority;
if (!Feature.getAsInteger(0, Priority))
return Priority;
}
// Default Priority is zero.
return 0;
}
TargetInfo::CallingConvCheckResult
RISCVTargetInfo::checkCallingConvention(CallingConv CC) const {
switch (CC) {
default:
return CCCR_Warning;
case CC_C:
case CC_RISCVVectorCall:
case CC_RISCVVLSCall_32:
case CC_RISCVVLSCall_64:
case CC_RISCVVLSCall_128:
case CC_RISCVVLSCall_256:
case CC_RISCVVLSCall_512:
case CC_RISCVVLSCall_1024:
case CC_RISCVVLSCall_2048:
case CC_RISCVVLSCall_4096:
case CC_RISCVVLSCall_8192:
case CC_RISCVVLSCall_16384:
case CC_RISCVVLSCall_32768:
case CC_RISCVVLSCall_65536:
return CCCR_OK;
}
}
bool RISCVTargetInfo::validateCpuSupports(StringRef Feature) const {
// Only allow extensions we have a known bit position for in the
// __riscv_feature_bits structure.
return -1 != llvm::RISCVISAInfo::getRISCVFeaturesBitsInfo(Feature).second;
}
bool RISCVTargetInfo::isValidFeatureName(StringRef Name) const {
return llvm::RISCVISAInfo::isSupportedExtensionFeature(Name);
}
bool RISCVTargetInfo::validateGlobalRegisterVariable(
StringRef RegName, unsigned RegSize, bool &HasSizeMismatch) const {
if (RegName == "ra" || RegName == "sp" || RegName == "gp" ||
RegName == "tp" || RegName.starts_with("x") || RegName.starts_with("a") ||
RegName.starts_with("s") || RegName.starts_with("t")) {
unsigned XLen = getTriple().isArch64Bit() ? 64 : 32;
HasSizeMismatch = RegSize != XLen;
return true;
}
return false;
}
bool RISCVTargetInfo::validateCpuIs(StringRef CPUName) const {
assert(getTriple().isOSLinux() &&
"__builtin_cpu_is() is only supported for Linux.");
return llvm::RISCV::hasValidCPUModel(CPUName);
}