llvm-project/llvm/utils/TableGen/X86FoldTablesEmitter.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

616 lines
24 KiB
C++
Raw Normal View History

//===- utils/TableGen/X86FoldTablesEmitter.cpp - X86 backend-*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This tablegen backend is responsible for emitting the memory fold tables of
// the X86 backend instructions.
//
//===----------------------------------------------------------------------===//
2023-02-17 00:28:07 +09:00
#include "CodeGenInstruction.h"
#include "CodeGenTarget.h"
#include "X86RecognizableInstr.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/X86FoldTablesUtils.h"
2023-02-17 00:28:07 +09:00
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
using namespace llvm;
using namespace X86Disassembler;
namespace {
// Represents an entry in the manual mapped instructions set.
struct ManualMapEntry {
const char *RegInstStr;
const char *MemInstStr;
uint16_t Strategy;
ManualMapEntry(const char *RegInstStr, const char *MemInstStr,
uint16_t Strategy = 0)
: RegInstStr(RegInstStr), MemInstStr(MemInstStr), Strategy(Strategy) {}
};
// List of instructions requiring explicitly aligned memory.
const char *ExplicitAlign[] = {"MOVDQA", "MOVAPS", "MOVAPD", "MOVNTPS",
"MOVNTPD", "MOVNTDQ", "MOVNTDQA"};
// List of instructions NOT requiring explicit memory alignment.
const char *ExplicitUnalign[] = {"MOVDQU", "MOVUPS", "MOVUPD",
"PCMPESTRM", "PCMPESTRI",
"PCMPISTRM", "PCMPISTRI" };
#include "X86FoldTablesEmitterManualMapSet.inc"
static bool isExplicitAlign(const CodeGenInstruction *Inst) {
return any_of(ExplicitAlign, [Inst](const char *InstStr) {
return Inst->TheDef->getName().contains(InstStr);
});
}
static bool isExplicitUnalign(const CodeGenInstruction *Inst) {
return any_of(ExplicitUnalign, [Inst](const char *InstStr) {
return Inst->TheDef->getName().contains(InstStr);
});
}
class X86FoldTablesEmitter {
RecordKeeper &Records;
CodeGenTarget Target;
// Represents an entry in the folding table
class X86FoldTableEntry {
const CodeGenInstruction *RegInst;
const CodeGenInstruction *MemInst;
public:
bool CannotUnfold = false;
bool CannotFold = false;
bool IsLoad = false;
bool IsStore = false;
bool IsAligned = false;
unsigned int Alignment = 0;
X86FoldTableEntry() = default;
X86FoldTableEntry(const CodeGenInstruction *RegInst,
const CodeGenInstruction *MemInst)
: RegInst(RegInst), MemInst(MemInst) {}
void print(formatted_raw_ostream &OS) const {
// Stop printing record if it can't fold and unfold.
if(CannotUnfold && CannotFold)
return;
OS.indent(2);
OS << "{X86::" << RegInst->TheDef->getName() << ", ";
OS << "X86::" << MemInst->TheDef->getName() << ", ";
std::string Attrs;
if (IsLoad)
Attrs += "TB_FOLDED_LOAD|";
if (IsStore)
Attrs += "TB_FOLDED_STORE|";
if (CannotUnfold)
Attrs += "TB_NO_REVERSE|";
if (CannotFold)
Attrs += "TB_NO_FORWARD|";
if (IsAligned)
Attrs += "TB_ALIGN_" + std::to_string(Alignment) + "|";
StringRef SimplifiedAttrs = StringRef(Attrs).rtrim("|");
if (SimplifiedAttrs.empty())
SimplifiedAttrs = "0";
OS << SimplifiedAttrs << "},\n";
}
};
struct CodeGenInstructionComparator {
// Comparator function
bool operator()(const CodeGenInstruction *LHS,
const CodeGenInstruction *RHS) const {
assert(LHS && RHS && "LHS and RHS shouldn't be nullptr");
bool LHSpseudo = LHS->TheDef->getValueAsBit("isPseudo");
bool RHSpseudo = RHS->TheDef->getValueAsBit("isPseudo");
if (LHSpseudo != RHSpseudo)
return LHSpseudo;
return LHS->TheDef->getName() < RHS->TheDef->getName();
}
};
typedef std::map<const CodeGenInstruction *, X86FoldTableEntry,
CodeGenInstructionComparator>
FoldTable;
// std::vector for each folding table.
// Table2Addr - Holds instructions which their memory form performs load+store
// Table#i - Holds instructions which the their memory form perform a load OR
// a store, and their #i'th operand is folded.
FoldTable Table2Addr;
FoldTable Table0;
FoldTable Table1;
FoldTable Table2;
FoldTable Table3;
FoldTable Table4;
public:
X86FoldTablesEmitter(RecordKeeper &R) : Records(R), Target(R) {}
// run - Generate the 6 X86 memory fold tables.
void run(raw_ostream &OS);
private:
// Decides to which table to add the entry with the given instructions.
// S sets the strategy of adding the TB_NO_REVERSE flag.
void updateTables(const CodeGenInstruction *RegInstr,
const CodeGenInstruction *MemInstr, const uint16_t S = 0,
bool IsManual = false);
// Generates X86FoldTableEntry with the given instructions and fill it with
// the appropriate flags - then adds it to Table.
void addEntryWithFlags(FoldTable &Table, const CodeGenInstruction *RegInstr,
const CodeGenInstruction *MemInstr, const uint16_t S,
const unsigned int FoldedInd, bool isManual);
// Print the given table as a static const C++ array of type
// X86MemoryFoldTableEntry.
void printTable(const FoldTable &Table, StringRef TableName,
formatted_raw_ostream &OS) {
OS << "static const X86MemoryFoldTableEntry MemoryFold" << TableName
<< "[] = {\n";
for (auto &E : Table)
E.second.print(OS);
OS << "};\n\n";
}
};
// Return true if one of the instruction's operands is a RST register class
static bool hasRSTRegClass(const CodeGenInstruction *Inst) {
return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
return OpIn.Rec->getName() == "RST" || OpIn.Rec->getName() == "RSTi";
});
}
// Return true if one of the instruction's operands is a ptr_rc_tailcall
static bool hasPtrTailcallRegClass(const CodeGenInstruction *Inst) {
return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
return OpIn.Rec->getName() == "ptr_rc_tailcall";
});
}
// Calculates the integer value representing the BitsInit object
static inline uint64_t getValueFromBitsInit(const BitsInit *B) {
assert(B->getNumBits() <= sizeof(uint64_t) * 8 && "BitInits' too long!");
uint64_t Value = 0;
for (unsigned i = 0, e = B->getNumBits(); i != e; ++i) {
BitInit *Bit = cast<BitInit>(B->getBit(i));
Value |= uint64_t(Bit->getValue()) << i;
}
return Value;
}
// Return true if the instruction defined as a register flavor.
static inline bool hasRegisterFormat(const Record *Inst) {
const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits");
uint64_t FormBitsNum = getValueFromBitsInit(FormBits);
// Values from X86Local namespace defined in X86RecognizableInstr.cpp
return FormBitsNum >= X86Local::MRMDestReg && FormBitsNum <= X86Local::MRM7r;
}
// Return true if the instruction defined as a memory flavor.
static inline bool hasMemoryFormat(const Record *Inst) {
const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits");
uint64_t FormBitsNum = getValueFromBitsInit(FormBits);
// Values from X86Local namespace defined in X86RecognizableInstr.cpp
return FormBitsNum >= X86Local::MRMDestMem && FormBitsNum <= X86Local::MRM7m;
}
static inline bool isNOREXRegClass(const Record *Op) {
return Op->getName().contains("_NOREX");
}
// Get the alternative instruction pointed by "FoldGenRegForm" field.
static inline const CodeGenInstruction *
getAltRegInst(const CodeGenInstruction *I, const RecordKeeper &Records,
const CodeGenTarget &Target) {
StringRef AltRegInstStr = I->TheDef->getValueAsString("FoldGenRegForm");
Record *AltRegInstRec = Records.getDef(AltRegInstStr);
assert(AltRegInstRec &&
"Alternative register form instruction def not found");
CodeGenInstruction &AltRegInst = Target.getInstruction(AltRegInstRec);
return &AltRegInst;
}
// Function object - Operator() returns true if the given VEX instruction
// matches the EVEX instruction of this object.
class IsMatch {
const CodeGenInstruction *MemInst;
unsigned Variant;
public:
IsMatch(const CodeGenInstruction *Inst, unsigned V)
: MemInst(Inst), Variant(V) {}
bool operator()(const CodeGenInstruction *RegInst) {
X86Disassembler::RecognizableInstrBase RegRI(*RegInst);
X86Disassembler::RecognizableInstrBase MemRI(*MemInst);
const Record *RegRec = RegInst->TheDef;
const Record *MemRec = MemInst->TheDef;
// EVEX_B means different things for memory and register forms.
if (RegRI.HasEVEX_B != 0 || MemRI.HasEVEX_B != 0)
return false;
// Instruction's format - The register form's "Form" field should be
// the opposite of the memory form's "Form" field.
if (!areOppositeForms(RegRI.Form, MemRI.Form))
return false;
// X86 encoding is crazy, e.g
//
// f3 0f c7 30 vmxon (%rax)
// f3 0f c7 f0 senduipi %rax
//
// This two instruction have similiar encoding fields but are unrelated
if (X86Disassembler::getMnemonic(MemInst, Variant) !=
X86Disassembler::getMnemonic(RegInst, Variant))
return false;
// Return false if one (at least) of the encoding fields of both
// instructions do not match.
if (RegRI.Encoding != MemRI.Encoding || RegRI.Opcode != MemRI.Opcode ||
RegRI.OpPrefix != MemRI.OpPrefix || RegRI.OpMap != MemRI.OpMap ||
RegRI.OpSize != MemRI.OpSize || RegRI.AdSize != MemRI.AdSize ||
RegRI.HasREX_W != MemRI.HasREX_W ||
RegRI.HasVEX_4V != MemRI.HasVEX_4V ||
RegRI.HasVEX_L != MemRI.HasVEX_L ||
RegRI.IgnoresVEX_L != MemRI.IgnoresVEX_L ||
RegRI.IgnoresVEX_W != MemRI.IgnoresVEX_W ||
RegRI.HasEVEX_K != MemRI.HasEVEX_K ||
RegRI.HasEVEX_KZ != MemRI.HasEVEX_KZ ||
RegRI.HasEVEX_L2 != MemRI.HasEVEX_L2 ||
RegRec->getValueAsBit("hasEVEX_RC") !=
MemRec->getValueAsBit("hasEVEX_RC") ||
RegRec->getValueAsBit("hasLockPrefix") !=
MemRec->getValueAsBit("hasLockPrefix") ||
RegRec->getValueAsBit("hasNoTrackPrefix") !=
MemRec->getValueAsBit("hasNoTrackPrefix") ||
RegRec->getValueAsBit("EVEX_W1_VEX_W0") !=
MemRec->getValueAsBit("EVEX_W1_VEX_W0"))
return false;
// Make sure the sizes of the operands of both instructions suit each other.
// This is needed for instructions with intrinsic version (_Int).
// Where the only difference is the size of the operands.
// For example: VUCOMISDZrm and Int_VUCOMISDrm
// Also for instructions that their EVEX version was upgraded to work with
// k-registers. For example VPCMPEQBrm (xmm output register) and
// VPCMPEQBZ128rm (k register output register).
bool ArgFolded = false;
unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
// Instructions with one output in their memory form use the memory folded
// operand as source and destination (Read-Modify-Write).
unsigned RegStartIdx =
(MemOutSize + 1 == RegOutSize) && (MemInSize == RegInSize) ? 1 : 0;
for (unsigned i = 0, e = MemInst->Operands.size(); i < e; i++) {
Record *MemOpRec = MemInst->Operands[i].Rec;
Record *RegOpRec = RegInst->Operands[i + RegStartIdx].Rec;
if (MemOpRec == RegOpRec)
continue;
if (isRegisterOperand(MemOpRec) && isRegisterOperand(RegOpRec)) {
if (getRegOperandSize(MemOpRec) != getRegOperandSize(RegOpRec) ||
isNOREXRegClass(MemOpRec) != isNOREXRegClass(RegOpRec))
return false;
} else if (isMemoryOperand(MemOpRec) && isMemoryOperand(RegOpRec)) {
if (getMemOperandSize(MemOpRec) != getMemOperandSize(RegOpRec))
return false;
} else if (isImmediateOperand(MemOpRec) && isImmediateOperand(RegOpRec)) {
if (MemOpRec->getValueAsDef("Type") != RegOpRec->getValueAsDef("Type"))
return false;
} else {
// Only one operand can be folded.
if (ArgFolded)
return false;
assert(isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec));
ArgFolded = true;
}
}
return true;
}
private:
// Return true of the 2 given forms are the opposite of each other.
bool areOppositeForms(unsigned RegForm, unsigned MemForm) {
if ((MemForm == X86Local::MRM0m && RegForm == X86Local::MRM0r) ||
(MemForm == X86Local::MRM1m && RegForm == X86Local::MRM1r) ||
(MemForm == X86Local::MRM2m && RegForm == X86Local::MRM2r) ||
(MemForm == X86Local::MRM3m && RegForm == X86Local::MRM3r) ||
(MemForm == X86Local::MRM4m && RegForm == X86Local::MRM4r) ||
(MemForm == X86Local::MRM5m && RegForm == X86Local::MRM5r) ||
(MemForm == X86Local::MRM6m && RegForm == X86Local::MRM6r) ||
(MemForm == X86Local::MRM7m && RegForm == X86Local::MRM7r) ||
(MemForm == X86Local::MRMXm && RegForm == X86Local::MRMXr) ||
(MemForm == X86Local::MRMXmCC && RegForm == X86Local::MRMXrCC) ||
(MemForm == X86Local::MRMDestMem && RegForm == X86Local::MRMDestReg) ||
(MemForm == X86Local::MRMSrcMem && RegForm == X86Local::MRMSrcReg) ||
(MemForm == X86Local::MRMSrcMem4VOp3 &&
RegForm == X86Local::MRMSrcReg4VOp3) ||
(MemForm == X86Local::MRMSrcMemOp4 &&
RegForm == X86Local::MRMSrcRegOp4) ||
(MemForm == X86Local::MRMSrcMemCC && RegForm == X86Local::MRMSrcRegCC))
return true;
return false;
}
};
} // end anonymous namespace
void X86FoldTablesEmitter::addEntryWithFlags(FoldTable &Table,
const CodeGenInstruction *RegInstr,
const CodeGenInstruction *MemInstr,
const uint16_t S,
const unsigned int FoldedInd,
bool isManual) {
X86FoldTableEntry Result = X86FoldTableEntry(RegInstr, MemInstr);
Record *RegRec = RegInstr->TheDef;
Record *MemRec = MemInstr->TheDef;
if (isManual) {
Result.CannotUnfold = (S & TB_NO_REVERSE) != 0;
Result.CannotFold = (S & TB_NO_FORWARD) != 0;
Result.IsLoad = (S & TB_FOLDED_LOAD) != 0;
Result.IsStore = (S & TB_FOLDED_STORE) != 0;
Result.IsAligned = (S & TB_ALIGN_MASK) != 0;
auto AlignValue = (S & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
Result.Alignment = AlignValue > 0 ? (1 << (AlignValue - 1)) : 0;
Table[RegInstr] = Result;
return;
}
// Only table0 entries should explicitly specify a load or store flag.
if (&Table == &Table0) {
unsigned MemInOpsNum = MemRec->getValueAsDag("InOperandList")->getNumArgs();
unsigned RegInOpsNum = RegRec->getValueAsDag("InOperandList")->getNumArgs();
// If the instruction writes to the folded operand, it will appear as an
// output in the register form instruction and as an input in the memory
// form instruction.
// If the instruction reads from the folded operand, it well appear as in
// input in both forms.
if (MemInOpsNum == RegInOpsNum)
Result.IsLoad = true;
else
Result.IsStore = true;
}
Record *RegOpRec = RegInstr->Operands[FoldedInd].Rec;
Record *MemOpRec = MemInstr->Operands[FoldedInd].Rec;
// Unfolding code generates a load/store instruction according to the size of
// the register in the register form instruction.
// If the register's size is greater than the memory's operand size, do not
// allow unfolding.
// the unfolded load size will be based on the register size. If thats bigger
// than the memory operand size, the unfolded load will load more memory and
// potentially cause a memory fault.
if (getRegOperandSize(RegOpRec) > getMemOperandSize(MemOpRec))
Result.CannotUnfold = true;
// Check no-kz version's isMoveReg
Record *BaseDef = nullptr;
if (RegRec->getName().ends_with("rkz") &&
(BaseDef = Records.getDef(
RegRec->getName().substr(0, RegRec->getName().size() - 2)))) {
Result.CannotUnfold =
Target.getInstruction(BaseDef).isMoveReg ? true : Result.CannotUnfold;
} else if (RegRec->getName().ends_with("rk") &&
(BaseDef = Records.getDef(
RegRec->getName().substr(0, RegRec->getName().size() - 1)))) {
Result.CannotUnfold =
Target.getInstruction(BaseDef).isMoveReg ? true : Result.CannotUnfold;
} else if (RegInstr->isMoveReg && Result.IsStore)
Result.CannotUnfold = true;
uint64_t Enc = getValueFromBitsInit(RegRec->getValueAsBitsInit("OpEncBits"));
if (isExplicitAlign(RegInstr)) {
// The instruction require explicitly aligned memory.
BitsInit *VectSize = RegRec->getValueAsBitsInit("VectSize");
uint64_t Value = getValueFromBitsInit(VectSize);
Result.IsAligned = true;
Result.Alignment = Value;
} else if (Enc != X86Local::XOP && Enc != X86Local::VEX &&
Enc != X86Local::EVEX) {
// Instructions with VEX encoding do not require alignment.
if (!isExplicitUnalign(RegInstr) && getMemOperandSize(MemOpRec) > 64) {
// SSE packed vector instructions require a 16 byte alignment.
Result.IsAligned = true;
Result.Alignment = 16;
}
}
// Expand is only ever created as a masked instruction. It is not safe to
// unfold a masked expand because we don't know if it came from an expand load
// intrinsic or folding a plain load. If it is from a expand load intrinsic,
// Unfolding to plain load would read more elements and could trigger a fault.
if (RegRec->getName().contains("EXPAND"))
Result.CannotUnfold = true;
Table[RegInstr] = Result;
}
void X86FoldTablesEmitter::updateTables(const CodeGenInstruction *RegInstr,
const CodeGenInstruction *MemInstr,
const uint16_t S, bool IsManual) {
Record *RegRec = RegInstr->TheDef;
Record *MemRec = MemInstr->TheDef;
unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
// Instructions which Read-Modify-Write should be added to Table2Addr.
if (MemOutSize != RegOutSize && MemInSize == RegInSize) {
addEntryWithFlags(Table2Addr, RegInstr, MemInstr, S, 0, IsManual);
return;
}
if (MemInSize == RegInSize && MemOutSize == RegOutSize) {
// Load-Folding cases.
// If the i'th register form operand is a register and the i'th memory form
// operand is a memory operand, add instructions to Table#i.
for (unsigned i = RegOutSize, e = RegInstr->Operands.size(); i < e; i++) {
Record *RegOpRec = RegInstr->Operands[i].Rec;
Record *MemOpRec = MemInstr->Operands[i].Rec;
// PointerLikeRegClass: For instructions like TAILJMPr, TAILJMPr64, TAILJMPr64_REX
if ((isRegisterOperand(RegOpRec) ||
RegOpRec->isSubClassOf("PointerLikeRegClass")) &&
isMemoryOperand(MemOpRec)) {
switch (i) {
case 0:
addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0, IsManual);
return;
case 1:
addEntryWithFlags(Table1, RegInstr, MemInstr, S, 1, IsManual);
return;
case 2:
addEntryWithFlags(Table2, RegInstr, MemInstr, S, 2, IsManual);
return;
case 3:
addEntryWithFlags(Table3, RegInstr, MemInstr, S, 3, IsManual);
return;
case 4:
addEntryWithFlags(Table4, RegInstr, MemInstr, S, 4, IsManual);
return;
}
}
}
} else if (MemInSize == RegInSize + 1 && MemOutSize + 1 == RegOutSize) {
// Store-Folding cases.
// If the memory form instruction performs a store, the *output*
// register of the register form instructions disappear and instead a
// memory *input* operand appears in the memory form instruction.
// For example:
// MOVAPSrr => (outs VR128:$dst), (ins VR128:$src)
// MOVAPSmr => (outs), (ins f128mem:$dst, VR128:$src)
Record *RegOpRec = RegInstr->Operands[RegOutSize - 1].Rec;
Record *MemOpRec = MemInstr->Operands[RegOutSize - 1].Rec;
if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec) &&
getRegOperandSize(RegOpRec) == getMemOperandSize(MemOpRec))
addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0, IsManual);
}
}
void X86FoldTablesEmitter::run(raw_ostream &o) {
formatted_raw_ostream OS(o);
// Holds all memory instructions
std::vector<const CodeGenInstruction *> MemInsts;
// Holds all register instructions - divided according to opcode.
std::map<uint8_t, std::vector<const CodeGenInstruction *>> RegInsts;
ArrayRef<const CodeGenInstruction *> NumberedInstructions =
Target.getInstructionsByEnumValue();
for (const CodeGenInstruction *Inst : NumberedInstructions) {
const Record *Rec = Inst->TheDef;
if (!Rec->isSubClassOf("X86Inst") || Rec->getValueAsBit("isAsmParserOnly"))
continue;
// - Do not proceed if the instruction is marked as notMemoryFoldable.
// - Instructions including RST register class operands are not relevant
// for memory folding (for further details check the explanation in
// lib/Target/X86/X86InstrFPStack.td file).
// - Some instructions (listed in the manual map above) use the register
// class ptr_rc_tailcall, which can be of a size 32 or 64, to ensure
// safe mapping of these instruction we manually map them and exclude
// them from the automation.
if (Rec->getValueAsBit("isMemoryFoldable") == false ||
hasRSTRegClass(Inst) || hasPtrTailcallRegClass(Inst))
continue;
// Add all the memory form instructions to MemInsts, and all the register
// form instructions to RegInsts[Opc], where Opc in the opcode of each
// instructions. this helps reducing the runtime of the backend.
if (hasMemoryFormat(Rec))
MemInsts.push_back(Inst);
else if (hasRegisterFormat(Rec)) {
uint8_t Opc = getValueFromBitsInit(Rec->getValueAsBitsInit("Opcode"));
RegInsts[Opc].push_back(Inst);
}
}
Record *AsmWriter = Target.getAsmWriter();
unsigned Variant = AsmWriter->getValueAsInt("Variant");
// For each memory form instruction, try to find its register form
// instruction.
for (const CodeGenInstruction *MemInst : MemInsts) {
uint8_t Opc =
getValueFromBitsInit(MemInst->TheDef->getValueAsBitsInit("Opcode"));
auto RegInstsIt = RegInsts.find(Opc);
if (RegInstsIt == RegInsts.end())
continue;
// Two forms (memory & register) of the same instruction must have the same
// opcode. try matching only with register form instructions with the same
// opcode.
std::vector<const CodeGenInstruction *> &OpcRegInsts = RegInstsIt->second;
auto Match = find_if(OpcRegInsts, IsMatch(MemInst, Variant));
if (Match != OpcRegInsts.end()) {
const CodeGenInstruction *RegInst = *Match;
// If the matched instruction has it's "FoldGenRegForm" set, map the
// memory form instruction to the register form instruction pointed by
// this field
if (RegInst->TheDef->isValueUnset("FoldGenRegForm")) {
updateTables(RegInst, MemInst);
} else {
const CodeGenInstruction *AltRegInst =
getAltRegInst(RegInst, Records, Target);
updateTables(AltRegInst, MemInst);
}
OpcRegInsts.erase(Match);
}
}
// Add the manually mapped instructions listed above.
for (const ManualMapEntry &Entry : ManualMapSet) {
Record *RegInstIter = Records.getDef(Entry.RegInstStr);
Record *MemInstIter = Records.getDef(Entry.MemInstStr);
updateTables(&(Target.getInstruction(RegInstIter)),
&(Target.getInstruction(MemInstIter)), Entry.Strategy, true);
}
// Print all tables.
printTable(Table2Addr, "Table2Addr", OS);
printTable(Table0, "Table0", OS);
printTable(Table1, "Table1", OS);
printTable(Table2, "Table2", OS);
printTable(Table3, "Table3", OS);
printTable(Table4, "Table4", OS);
}
static TableGen::Emitter::OptClass<X86FoldTablesEmitter>
X("gen-x86-fold-tables", "Generate X86 fold tables");