llvm-project/clang/lib/Analysis/FlowSensitive/Models/UncheckedOptionalAccessModel.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

655 lines
26 KiB
C++
Raw Normal View History

//===-- UncheckedOptionalAccessModel.cpp ------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines a dataflow analysis that detects unsafe uses of optional
// values.
//
//===----------------------------------------------------------------------===//
#include "clang/Analysis/FlowSensitive/Models/UncheckedOptionalAccessModel.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/Stmt.h"
#include "clang/ASTMatchers/ASTMatchers.h"
#include "clang/Analysis/FlowSensitive/DataflowEnvironment.h"
#include "clang/Analysis/FlowSensitive/MatchSwitch.h"
#include "clang/Analysis/FlowSensitive/SourceLocationsLattice.h"
#include "clang/Analysis/FlowSensitive/Value.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/Casting.h"
#include <cassert>
#include <memory>
#include <utility>
namespace clang {
namespace dataflow {
namespace {
using namespace ::clang::ast_matchers;
using LatticeTransferState = TransferState<SourceLocationsLattice>;
DeclarationMatcher optionalClass() {
return classTemplateSpecializationDecl(
anyOf(hasName("std::optional"), hasName("std::__optional_storage_base"),
hasName("__optional_destruct_base"), hasName("absl::optional"),
hasName("base::Optional")),
hasTemplateArgument(0, refersToType(type().bind("T"))));
}
auto optionalOrAliasType() {
return hasUnqualifiedDesugaredType(
recordType(hasDeclaration(optionalClass())));
}
/// Matches any of the spellings of the optional types and sugar, aliases, etc.
auto hasOptionalType() { return hasType(optionalOrAliasType()); }
auto isOptionalMemberCallWithName(
llvm::StringRef MemberName,
llvm::Optional<StatementMatcher> Ignorable = llvm::None) {
auto Exception = unless(Ignorable ? expr(anyOf(*Ignorable, cxxThisExpr()))
: cxxThisExpr());
return cxxMemberCallExpr(
on(expr(Exception)),
callee(cxxMethodDecl(hasName(MemberName), ofClass(optionalClass()))));
}
auto isOptionalOperatorCallWithName(
llvm::StringRef operator_name,
llvm::Optional<StatementMatcher> Ignorable = llvm::None) {
return cxxOperatorCallExpr(
hasOverloadedOperatorName(operator_name),
callee(cxxMethodDecl(ofClass(optionalClass()))),
Ignorable ? callExpr(unless(hasArgument(0, *Ignorable))) : callExpr());
}
auto isMakeOptionalCall() {
return callExpr(
callee(functionDecl(hasAnyName(
"std::make_optional", "base::make_optional", "absl::make_optional"))),
hasOptionalType());
}
auto hasNulloptType() {
return hasType(namedDecl(
hasAnyName("std::nullopt_t", "absl::nullopt_t", "base::nullopt_t")));
}
auto inPlaceClass() {
return recordDecl(
hasAnyName("std::in_place_t", "absl::in_place_t", "base::in_place_t"));
}
auto isOptionalNulloptConstructor() {
return cxxConstructExpr(hasOptionalType(), argumentCountIs(1),
hasArgument(0, hasNulloptType()));
}
auto isOptionalInPlaceConstructor() {
return cxxConstructExpr(hasOptionalType(),
hasArgument(0, hasType(inPlaceClass())));
}
auto isOptionalValueOrConversionConstructor() {
return cxxConstructExpr(
hasOptionalType(),
unless(hasDeclaration(
cxxConstructorDecl(anyOf(isCopyConstructor(), isMoveConstructor())))),
argumentCountIs(1), hasArgument(0, unless(hasNulloptType())));
}
auto isOptionalValueOrConversionAssignment() {
return cxxOperatorCallExpr(
hasOverloadedOperatorName("="),
callee(cxxMethodDecl(ofClass(optionalClass()))),
unless(hasDeclaration(cxxMethodDecl(
anyOf(isCopyAssignmentOperator(), isMoveAssignmentOperator())))),
argumentCountIs(2), hasArgument(1, unless(hasNulloptType())));
}
auto isOptionalNulloptAssignment() {
return cxxOperatorCallExpr(hasOverloadedOperatorName("="),
callee(cxxMethodDecl(ofClass(optionalClass()))),
argumentCountIs(2),
hasArgument(1, hasNulloptType()));
}
auto isStdSwapCall() {
return callExpr(callee(functionDecl(hasName("std::swap"))),
argumentCountIs(2), hasArgument(0, hasOptionalType()),
hasArgument(1, hasOptionalType()));
}
constexpr llvm::StringLiteral ValueOrCallID = "ValueOrCall";
auto isValueOrStringEmptyCall() {
// `opt.value_or("").empty()`
return cxxMemberCallExpr(
callee(cxxMethodDecl(hasName("empty"))),
onImplicitObjectArgument(ignoringImplicit(
cxxMemberCallExpr(on(expr(unless(cxxThisExpr()))),
callee(cxxMethodDecl(hasName("value_or"),
ofClass(optionalClass()))),
hasArgument(0, stringLiteral(hasSize(0))))
.bind(ValueOrCallID))));
}
auto isValueOrNotEqX() {
auto ComparesToSame = [](ast_matchers::internal::Matcher<Stmt> Arg) {
return hasOperands(
ignoringImplicit(
cxxMemberCallExpr(on(expr(unless(cxxThisExpr()))),
callee(cxxMethodDecl(hasName("value_or"),
ofClass(optionalClass()))),
hasArgument(0, Arg))
.bind(ValueOrCallID)),
ignoringImplicit(Arg));
};
// `opt.value_or(X) != X`, for X is `nullptr`, `""`, or `0`. Ideally, we'd
// support this pattern for any expression, but the AST does not have a
// generic expression comparison facility, so we specialize to common cases
// seen in practice. FIXME: define a matcher that compares values across
// nodes, which would let us generalize this to any `X`.
return binaryOperation(hasOperatorName("!="),
anyOf(ComparesToSame(cxxNullPtrLiteralExpr()),
ComparesToSame(stringLiteral(hasSize(0))),
ComparesToSame(integerLiteral(equals(0)))));
}
auto isCallReturningOptional() {
return callExpr(callee(functionDecl(returns(anyOf(
optionalOrAliasType(), referenceType(pointee(optionalOrAliasType())))))));
}
/// Creates a symbolic value for an `optional` value using `HasValueVal` as the
/// symbolic value of its "has_value" property.
StructValue &createOptionalValue(Environment &Env, BoolValue &HasValueVal) {
auto OptionalVal = std::make_unique<StructValue>();
OptionalVal->setProperty("has_value", HasValueVal);
return Env.takeOwnership(std::move(OptionalVal));
}
/// Returns the symbolic value that represents the "has_value" property of the
/// optional value `OptionalVal`. Returns null if `OptionalVal` is null.
BoolValue *getHasValue(Environment &Env, Value *OptionalVal) {
if (OptionalVal != nullptr) {
auto *HasValueVal =
cast_or_null<BoolValue>(OptionalVal->getProperty("has_value"));
if (HasValueVal == nullptr) {
HasValueVal = &Env.makeAtomicBoolValue();
OptionalVal->setProperty("has_value", *HasValueVal);
}
return HasValueVal;
}
return nullptr;
}
/// If `Type` is a reference type, returns the type of its pointee. Otherwise,
/// returns `Type` itself.
QualType stripReference(QualType Type) {
return Type->isReferenceType() ? Type->getPointeeType() : Type;
}
/// Returns true if and only if `Type` is an optional type.
bool IsOptionalType(QualType Type) {
if (!Type->isRecordType())
return false;
// FIXME: Optimize this by avoiding the `getQualifiedNameAsString` call.
auto TypeName = Type->getAsCXXRecordDecl()->getQualifiedNameAsString();
return TypeName == "std::optional" || TypeName == "absl::optional" ||
TypeName == "base::Optional";
}
/// Returns the number of optional wrappers in `Type`.
///
/// For example, if `Type` is `optional<optional<int>>`, the result of this
/// function will be 2.
int countOptionalWrappers(const ASTContext &ASTCtx, QualType Type) {
if (!IsOptionalType(Type))
return 0;
return 1 + countOptionalWrappers(
ASTCtx,
cast<ClassTemplateSpecializationDecl>(Type->getAsRecordDecl())
->getTemplateArgs()
.get(0)
.getAsType()
.getDesugaredType(ASTCtx));
}
/// Tries to initialize the `optional`'s value (that is, contents), and return
/// its location. Returns nullptr if the value can't be represented.
StorageLocation *maybeInitializeOptionalValueMember(QualType Q,
Value &OptionalVal,
Environment &Env) {
// The "value" property represents a synthetic field. As such, it needs
// `StorageLocation`, like normal fields (and other variables). So, we model
// it with a `ReferenceValue`, since that includes a storage location. Once
// the property is set, it will be shared by all environments that access the
// `Value` representing the optional (here, `OptionalVal`).
if (auto *ValueProp = OptionalVal.getProperty("value")) {
auto *ValueRef = clang::cast<ReferenceValue>(ValueProp);
auto &ValueLoc = ValueRef->getPointeeLoc();
if (Env.getValue(ValueLoc) == nullptr) {
// The property was previously set, but the value has been lost. This can
// happen, for example, because of an environment merge (where the two
// environments mapped the property to different values, which resulted in
// them both being discarded), or when two blocks in the CFG, with neither
// a dominator of the other, visit the same optional value, or even when a
// block is revisited during testing to collect per-statement state.
// FIXME: This situation means that the optional contents are not shared
// between branches and the like. Practically, this lack of sharing
// reduces the precision of the model when the contents are relevant to
// the check, like another optional or a boolean that influences control
// flow.
auto *ValueVal = Env.createValue(ValueLoc.getType());
if (ValueVal == nullptr)
return nullptr;
Env.setValue(ValueLoc, *ValueVal);
}
return &ValueLoc;
}
auto Ty = stripReference(Q);
auto *ValueVal = Env.createValue(Ty);
if (ValueVal == nullptr)
return nullptr;
auto &ValueLoc = Env.createStorageLocation(Ty);
Env.setValue(ValueLoc, *ValueVal);
auto ValueRef = std::make_unique<ReferenceValue>(ValueLoc);
OptionalVal.setProperty("value", Env.takeOwnership(std::move(ValueRef)));
return &ValueLoc;
}
void initializeOptionalReference(const Expr *OptionalExpr,
const MatchFinder::MatchResult &,
LatticeTransferState &State) {
if (auto *OptionalVal =
State.Env.getValue(*OptionalExpr, SkipPast::Reference)) {
if (OptionalVal->getProperty("has_value") == nullptr) {
OptionalVal->setProperty("has_value", State.Env.makeAtomicBoolValue());
}
}
}
void transferUnwrapCall(const Expr *UnwrapExpr, const Expr *ObjectExpr,
LatticeTransferState &State) {
if (auto *OptionalVal =
State.Env.getValue(*ObjectExpr, SkipPast::ReferenceThenPointer)) {
if (State.Env.getStorageLocation(*UnwrapExpr, SkipPast::None) == nullptr)
if (auto *Loc = maybeInitializeOptionalValueMember(
UnwrapExpr->getType(), *OptionalVal, State.Env))
State.Env.setStorageLocation(*UnwrapExpr, *Loc);
auto *Prop = OptionalVal->getProperty("has_value");
if (auto *HasValueVal = cast_or_null<BoolValue>(Prop)) {
if (State.Env.flowConditionImplies(*HasValueVal))
return;
}
}
// Record that this unwrap is *not* provably safe.
// FIXME: include either the name of the optional (if applicable) or a source
// range of the access for easier interpretation of the result.
State.Lattice.getSourceLocations().insert(ObjectExpr->getBeginLoc());
}
void transferMakeOptionalCall(const CallExpr *E,
const MatchFinder::MatchResult &,
LatticeTransferState &State) {
auto &Loc = State.Env.createStorageLocation(*E);
State.Env.setStorageLocation(*E, Loc);
State.Env.setValue(
Loc, createOptionalValue(State.Env, State.Env.getBoolLiteralValue(true)));
}
void transferOptionalHasValueCall(const CXXMemberCallExpr *CallExpr,
const MatchFinder::MatchResult &,
LatticeTransferState &State) {
if (auto *HasValueVal = getHasValue(
State.Env, State.Env.getValue(*CallExpr->getImplicitObjectArgument(),
SkipPast::ReferenceThenPointer))) {
auto &CallExprLoc = State.Env.createStorageLocation(*CallExpr);
State.Env.setValue(CallExprLoc, *HasValueVal);
State.Env.setStorageLocation(*CallExpr, CallExprLoc);
}
}
/// `ModelPred` builds a logical formula relating the predicate in
/// `ValueOrPredExpr` to the optional's `has_value` property.
void transferValueOrImpl(const clang::Expr *ValueOrPredExpr,
const MatchFinder::MatchResult &Result,
LatticeTransferState &State,
BoolValue &(*ModelPred)(Environment &Env,
BoolValue &ExprVal,
BoolValue &HasValueVal)) {
auto &Env = State.Env;
const auto *ObjectArgumentExpr =
Result.Nodes.getNodeAs<clang::CXXMemberCallExpr>(ValueOrCallID)
->getImplicitObjectArgument();
auto *HasValueVal = getHasValue(
State.Env,
State.Env.getValue(*ObjectArgumentExpr, SkipPast::ReferenceThenPointer));
if (HasValueVal == nullptr)
return;
auto *ExprValue = cast_or_null<BoolValue>(
State.Env.getValue(*ValueOrPredExpr, SkipPast::None));
if (ExprValue == nullptr) {
auto &ExprLoc = State.Env.createStorageLocation(*ValueOrPredExpr);
ExprValue = &State.Env.makeAtomicBoolValue();
State.Env.setValue(ExprLoc, *ExprValue);
State.Env.setStorageLocation(*ValueOrPredExpr, ExprLoc);
}
Env.addToFlowCondition(ModelPred(Env, *ExprValue, *HasValueVal));
}
void transferValueOrStringEmptyCall(const clang::Expr *ComparisonExpr,
const MatchFinder::MatchResult &Result,
LatticeTransferState &State) {
return transferValueOrImpl(ComparisonExpr, Result, State,
[](Environment &Env, BoolValue &ExprVal,
BoolValue &HasValueVal) -> BoolValue & {
// If the result is *not* empty, then we know the
// optional must have been holding a value. If
// `ExprVal` is true, though, we don't learn
// anything definite about `has_value`, so we
// don't add any corresponding implications to
// the flow condition.
return Env.makeImplication(Env.makeNot(ExprVal),
HasValueVal);
});
}
void transferValueOrNotEqX(const Expr *ComparisonExpr,
const MatchFinder::MatchResult &Result,
LatticeTransferState &State) {
transferValueOrImpl(ComparisonExpr, Result, State,
[](Environment &Env, BoolValue &ExprVal,
BoolValue &HasValueVal) -> BoolValue & {
// We know that if `(opt.value_or(X) != X)` then
// `opt.hasValue()`, even without knowing further
// details about the contents of `opt`.
return Env.makeImplication(ExprVal, HasValueVal);
});
}
void transferCallReturningOptional(const CallExpr *E,
const MatchFinder::MatchResult &Result,
LatticeTransferState &State) {
if (State.Env.getStorageLocation(*E, SkipPast::None) != nullptr)
return;
auto &Loc = State.Env.createStorageLocation(*E);
State.Env.setStorageLocation(*E, Loc);
State.Env.setValue(
Loc, createOptionalValue(State.Env, State.Env.makeAtomicBoolValue()));
}
void assignOptionalValue(const Expr &E, LatticeTransferState &State,
BoolValue &HasValueVal) {
if (auto *OptionalLoc =
State.Env.getStorageLocation(E, SkipPast::ReferenceThenPointer)) {
State.Env.setValue(*OptionalLoc,
createOptionalValue(State.Env, HasValueVal));
}
}
/// Returns a symbolic value for the "has_value" property of an `optional<T>`
/// value that is constructed/assigned from a value of type `U` or `optional<U>`
/// where `T` is constructible from `U`.
BoolValue &
getValueOrConversionHasValue(const FunctionDecl &F, const Expr &E,
const MatchFinder::MatchResult &MatchRes,
LatticeTransferState &State) {
assert(F.getTemplateSpecializationArgs()->size() > 0);
const int TemplateParamOptionalWrappersCount = countOptionalWrappers(
*MatchRes.Context,
stripReference(F.getTemplateSpecializationArgs()->get(0).getAsType()));
const int ArgTypeOptionalWrappersCount =
countOptionalWrappers(*MatchRes.Context, stripReference(E.getType()));
// Check if this is a constructor/assignment call for `optional<T>` with
// argument of type `U` such that `T` is constructible from `U`.
if (TemplateParamOptionalWrappersCount == ArgTypeOptionalWrappersCount)
return State.Env.getBoolLiteralValue(true);
// This is a constructor/assignment call for `optional<T>` with argument of
// type `optional<U>` such that `T` is constructible from `U`.
if (auto *HasValueVal =
getHasValue(State.Env, State.Env.getValue(E, SkipPast::Reference)))
return *HasValueVal;
return State.Env.makeAtomicBoolValue();
}
void transferValueOrConversionConstructor(
const CXXConstructExpr *E, const MatchFinder::MatchResult &MatchRes,
LatticeTransferState &State) {
assert(E->getNumArgs() > 0);
assignOptionalValue(*E, State,
getValueOrConversionHasValue(*E->getConstructor(),
*E->getArg(0), MatchRes,
State));
}
void transferAssignment(const CXXOperatorCallExpr *E, BoolValue &HasValueVal,
LatticeTransferState &State) {
assert(E->getNumArgs() > 0);
auto *OptionalLoc =
State.Env.getStorageLocation(*E->getArg(0), SkipPast::Reference);
assert(OptionalLoc != nullptr);
State.Env.setValue(*OptionalLoc, createOptionalValue(State.Env, HasValueVal));
// Assign a storage location for the whole expression.
State.Env.setStorageLocation(*E, *OptionalLoc);
}
void transferValueOrConversionAssignment(
const CXXOperatorCallExpr *E, const MatchFinder::MatchResult &MatchRes,
LatticeTransferState &State) {
assert(E->getNumArgs() > 1);
transferAssignment(E,
getValueOrConversionHasValue(
*E->getDirectCallee(), *E->getArg(1), MatchRes, State),
State);
}
void transferNulloptAssignment(const CXXOperatorCallExpr *E,
const MatchFinder::MatchResult &,
LatticeTransferState &State) {
transferAssignment(E, State.Env.getBoolLiteralValue(false), State);
}
void transferSwap(const StorageLocation &OptionalLoc1,
const StorageLocation &OptionalLoc2,
LatticeTransferState &State) {
auto *OptionalVal1 = State.Env.getValue(OptionalLoc1);
assert(OptionalVal1 != nullptr);
auto *OptionalVal2 = State.Env.getValue(OptionalLoc2);
assert(OptionalVal2 != nullptr);
State.Env.setValue(OptionalLoc1, *OptionalVal2);
State.Env.setValue(OptionalLoc2, *OptionalVal1);
}
void transferSwapCall(const CXXMemberCallExpr *E,
const MatchFinder::MatchResult &,
LatticeTransferState &State) {
assert(E->getNumArgs() == 1);
auto *OptionalLoc1 = State.Env.getStorageLocation(
*E->getImplicitObjectArgument(), SkipPast::ReferenceThenPointer);
assert(OptionalLoc1 != nullptr);
auto *OptionalLoc2 =
State.Env.getStorageLocation(*E->getArg(0), SkipPast::Reference);
assert(OptionalLoc2 != nullptr);
transferSwap(*OptionalLoc1, *OptionalLoc2, State);
}
void transferStdSwapCall(const CallExpr *E, const MatchFinder::MatchResult &,
LatticeTransferState &State) {
assert(E->getNumArgs() == 2);
auto *OptionalLoc1 =
State.Env.getStorageLocation(*E->getArg(0), SkipPast::Reference);
assert(OptionalLoc1 != nullptr);
auto *OptionalLoc2 =
State.Env.getStorageLocation(*E->getArg(1), SkipPast::Reference);
assert(OptionalLoc2 != nullptr);
transferSwap(*OptionalLoc1, *OptionalLoc2, State);
}
llvm::Optional<StatementMatcher>
ignorableOptional(const UncheckedOptionalAccessModelOptions &Options) {
if (Options.IgnoreSmartPointerDereference)
return memberExpr(hasObjectExpression(ignoringParenImpCasts(
cxxOperatorCallExpr(anyOf(hasOverloadedOperatorName("->"),
hasOverloadedOperatorName("*")),
unless(hasArgument(0, expr(hasOptionalType())))))));
return llvm::None;
}
auto buildTransferMatchSwitch(
const UncheckedOptionalAccessModelOptions &Options) {
// FIXME: Evaluate the efficiency of matchers. If using matchers results in a
// lot of duplicated work (e.g. string comparisons), consider providing APIs
// that avoid it through memoization.
auto IgnorableOptional = ignorableOptional(Options);
return MatchSwitchBuilder<LatticeTransferState>()
// Attach a symbolic "has_value" state to optional values that we see for
// the first time.
.CaseOf<Expr>(
expr(anyOf(declRefExpr(), memberExpr()), hasOptionalType()),
initializeOptionalReference)
// make_optional
.CaseOf<CallExpr>(isMakeOptionalCall(), transferMakeOptionalCall)
// optional::optional
.CaseOf<CXXConstructExpr>(
isOptionalInPlaceConstructor(),
[](const CXXConstructExpr *E, const MatchFinder::MatchResult &,
LatticeTransferState &State) {
assignOptionalValue(*E, State, State.Env.getBoolLiteralValue(true));
})
.CaseOf<CXXConstructExpr>(
isOptionalNulloptConstructor(),
[](const CXXConstructExpr *E, const MatchFinder::MatchResult &,
LatticeTransferState &State) {
assignOptionalValue(*E, State,
State.Env.getBoolLiteralValue(false));
})
.CaseOf<CXXConstructExpr>(isOptionalValueOrConversionConstructor(),
transferValueOrConversionConstructor)
// optional::operator=
.CaseOf<CXXOperatorCallExpr>(isOptionalValueOrConversionAssignment(),
transferValueOrConversionAssignment)
.CaseOf<CXXOperatorCallExpr>(isOptionalNulloptAssignment(),
transferNulloptAssignment)
// optional::value
.CaseOf<CXXMemberCallExpr>(
isOptionalMemberCallWithName("value", IgnorableOptional),
[](const CXXMemberCallExpr *E, const MatchFinder::MatchResult &,
LatticeTransferState &State) {
transferUnwrapCall(E, E->getImplicitObjectArgument(), State);
})
// optional::operator*, optional::operator->
.CaseOf<CallExpr>(
expr(anyOf(isOptionalOperatorCallWithName("*", IgnorableOptional),
isOptionalOperatorCallWithName("->", IgnorableOptional))),
[](const CallExpr *E, const MatchFinder::MatchResult &,
LatticeTransferState &State) {
transferUnwrapCall(E, E->getArg(0), State);
})
// optional::has_value
.CaseOf<CXXMemberCallExpr>(isOptionalMemberCallWithName("has_value"),
transferOptionalHasValueCall)
// optional::operator bool
.CaseOf<CXXMemberCallExpr>(isOptionalMemberCallWithName("operator bool"),
transferOptionalHasValueCall)
// optional::emplace
.CaseOf<CXXMemberCallExpr>(
isOptionalMemberCallWithName("emplace"),
[](const CXXMemberCallExpr *E, const MatchFinder::MatchResult &,
LatticeTransferState &State) {
assignOptionalValue(*E->getImplicitObjectArgument(), State,
State.Env.getBoolLiteralValue(true));
})
// optional::reset
.CaseOf<CXXMemberCallExpr>(
isOptionalMemberCallWithName("reset"),
[](const CXXMemberCallExpr *E, const MatchFinder::MatchResult &,
LatticeTransferState &State) {
assignOptionalValue(*E->getImplicitObjectArgument(), State,
State.Env.getBoolLiteralValue(false));
})
// optional::swap
.CaseOf<CXXMemberCallExpr>(isOptionalMemberCallWithName("swap"),
transferSwapCall)
// std::swap
.CaseOf<CallExpr>(isStdSwapCall(), transferStdSwapCall)
// opt.value_or("").empty()
.CaseOf<Expr>(isValueOrStringEmptyCall(), transferValueOrStringEmptyCall)
// opt.value_or(X) != X
.CaseOf<Expr>(isValueOrNotEqX(), transferValueOrNotEqX)
// returns optional
.CaseOf<CallExpr>(isCallReturningOptional(),
transferCallReturningOptional)
.Build();
}
} // namespace
ast_matchers::DeclarationMatcher
UncheckedOptionalAccessModel::optionalClassDecl() {
return optionalClass();
}
UncheckedOptionalAccessModel::UncheckedOptionalAccessModel(
ASTContext &Ctx, UncheckedOptionalAccessModelOptions Options)
: DataflowAnalysis<UncheckedOptionalAccessModel, SourceLocationsLattice>(
Ctx),
TransferMatchSwitch(buildTransferMatchSwitch(Options)) {}
void UncheckedOptionalAccessModel::transfer(const Stmt *S,
SourceLocationsLattice &L,
Environment &Env) {
LatticeTransferState State(L, Env);
TransferMatchSwitch(*S, getASTContext(), State);
}
} // namespace dataflow
} // namespace clang