llvm-project/bolt/lib/Core/DebugData.cpp

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

1249 lines
46 KiB
C++
Raw Normal View History

//===- bolt/Core/DebugData.cpp - Debugging information handling -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements functions and classes for handling debug info.
//
//===----------------------------------------------------------------------===//
#include "bolt/Core/DebugData.h"
#include "bolt/Core/BinaryContext.h"
#include "bolt/Core/DIEBuilder.h"
#include "bolt/Rewrite/RewriteInstance.h"
#include "bolt/Utils/Utils.h"
#include "llvm/BinaryFormat/Dwarf.h"
#include "llvm/CodeGen/DIE.h"
#include "llvm/DebugInfo/DWARF/DWARFCompileUnit.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugAddr.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCObjectStreamer.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/EndianStream.h"
#include "llvm/Support/LEB128.h"
#include "llvm/Support/SHA1.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <functional>
#include <limits>
#include <memory>
#include <unordered_map>
#include <vector>
#define DEBUG_TYPE "bolt-debug-info"
namespace opts {
extern llvm::cl::opt<unsigned> Verbosity;
} // namespace opts
namespace llvm {
class MCSymbol;
namespace bolt {
static void replaceLocValbyForm(DIEBuilder &DIEBldr, DIE &Die, DIEValue DIEVal,
dwarf::Form Format, uint64_t NewVal) {
if (Format == dwarf::DW_FORM_loclistx)
DIEBldr.replaceValue(&Die, DIEVal.getAttribute(), Format,
DIELocList(NewVal));
else
DIEBldr.replaceValue(&Die, DIEVal.getAttribute(), Format,
DIEInteger(NewVal));
}
std::optional<AttrInfo>
findAttributeInfo(const DWARFDie DIE,
const DWARFAbbreviationDeclaration *AbbrevDecl,
uint32_t Index) {
const DWARFUnit &U = *DIE.getDwarfUnit();
uint64_t Offset =
AbbrevDecl->getAttributeOffsetFromIndex(Index, DIE.getOffset(), U);
std::optional<DWARFFormValue> Value =
AbbrevDecl->getAttributeValueFromOffset(Index, Offset, U);
if (!Value)
return std::nullopt;
// AttributeSpec
const DWARFAbbreviationDeclaration::AttributeSpec *AttrVal =
AbbrevDecl->attributes().begin() + Index;
uint32_t ValSize = 0;
std::optional<int64_t> ValSizeOpt = AttrVal->getByteSize(U);
if (ValSizeOpt) {
ValSize = static_cast<uint32_t>(*ValSizeOpt);
} else {
DWARFDataExtractor DebugInfoData = U.getDebugInfoExtractor();
uint64_t NewOffset = Offset;
DWARFFormValue::skipValue(Value->getForm(), DebugInfoData, &NewOffset,
U.getFormParams());
// This includes entire size of the entry, which might not be just the
// encoding part. For example for DW_AT_loc it will include expression
// location.
ValSize = NewOffset - Offset;
}
return AttrInfo{*Value, DIE.getAbbreviationDeclarationPtr(), Offset, ValSize};
}
std::optional<AttrInfo> findAttributeInfo(const DWARFDie DIE,
dwarf::Attribute Attr) {
if (!DIE.isValid())
return std::nullopt;
const DWARFAbbreviationDeclaration *AbbrevDecl =
DIE.getAbbreviationDeclarationPtr();
if (!AbbrevDecl)
return std::nullopt;
std::optional<uint32_t> Index = AbbrevDecl->findAttributeIndex(Attr);
if (!Index)
return std::nullopt;
return findAttributeInfo(DIE, AbbrevDecl, *Index);
}
const DebugLineTableRowRef DebugLineTableRowRef::NULL_ROW{0, 0};
LLVM_ATTRIBUTE_UNUSED
static void printLE64(const std::string &S) {
for (uint32_t I = 0, Size = S.size(); I < Size; ++I) {
errs() << Twine::utohexstr(S[I]);
errs() << Twine::utohexstr((int8_t)S[I]);
}
errs() << "\n";
}
// Writes address ranges to Writer as pairs of 64-bit (address, size).
// If RelativeRange is true, assumes the address range to be written must be of
// the form (begin address, range size), otherwise (begin address, end address).
// Terminates the list by writing a pair of two zeroes.
// Returns the number of written bytes.
static uint64_t
writeAddressRanges(raw_svector_ostream &Stream,
const DebugAddressRangesVector &AddressRanges,
const bool WriteRelativeRanges = false) {
for (const DebugAddressRange &Range : AddressRanges) {
support::endian::write(Stream, Range.LowPC, support::little);
support::endian::write(
Stream, WriteRelativeRanges ? Range.HighPC - Range.LowPC : Range.HighPC,
support::little);
}
// Finish with 0 entries.
support::endian::write(Stream, 0ULL, support::little);
support::endian::write(Stream, 0ULL, support::little);
return AddressRanges.size() * 16 + 16;
}
DebugRangesSectionWriter::DebugRangesSectionWriter() {
RangesBuffer = std::make_unique<DebugBufferVector>();
RangesStream = std::make_unique<raw_svector_ostream>(*RangesBuffer);
// Add an empty range as the first entry;
SectionOffset +=
writeAddressRanges(*RangesStream.get(), DebugAddressRangesVector{});
Kind = RangesWriterKind::DebugRangesWriter;
}
uint64_t DebugRangesSectionWriter::addRanges(
DebugAddressRangesVector &&Ranges,
std::map<DebugAddressRangesVector, uint64_t> &CachedRanges) {
if (Ranges.empty())
return getEmptyRangesOffset();
const auto RI = CachedRanges.find(Ranges);
if (RI != CachedRanges.end())
return RI->second;
const uint64_t EntryOffset = addRanges(Ranges);
CachedRanges.emplace(std::move(Ranges), EntryOffset);
return EntryOffset;
}
uint64_t DebugRangesSectionWriter::addRanges(DebugAddressRangesVector &Ranges) {
if (Ranges.empty())
return getEmptyRangesOffset();
// Reading the SectionOffset and updating it should be atomic to guarantee
// unique and correct offsets in patches.
std::lock_guard<std::mutex> Lock(WriterMutex);
const uint32_t EntryOffset = SectionOffset;
SectionOffset += writeAddressRanges(*RangesStream.get(), Ranges);
return EntryOffset;
}
uint64_t DebugRangesSectionWriter::getSectionOffset() {
std::lock_guard<std::mutex> Lock(WriterMutex);
return SectionOffset;
}
DebugAddrWriter *DebugRangeListsSectionWriter::AddrWriter = nullptr;
uint64_t DebugRangeListsSectionWriter::addRanges(
DebugAddressRangesVector &&Ranges,
std::map<DebugAddressRangesVector, uint64_t> &CachedRanges) {
return addRanges(Ranges);
}
struct LocListsRangelistsHeader {
UnitLengthType UnitLength; // Size of loclist entris section, not including
// size of header.
VersionType Version;
AddressSizeType AddressSize;
SegmentSelectorType SegmentSelector;
OffsetEntryCountType OffsetEntryCount;
};
static std::unique_ptr<DebugBufferVector>
getDWARF5Header(const LocListsRangelistsHeader &Header) {
std::unique_ptr<DebugBufferVector> HeaderBuffer =
std::make_unique<DebugBufferVector>();
std::unique_ptr<raw_svector_ostream> HeaderStream =
std::make_unique<raw_svector_ostream>(*HeaderBuffer);
// 7.29 length of the set of entries for this compilation unit, not including
// the length field itself
const uint32_t HeaderSize =
getDWARF5RngListLocListHeaderSize() - sizeof(UnitLengthType);
support::endian::write(*HeaderStream, Header.UnitLength + HeaderSize,
support::little);
support::endian::write(*HeaderStream, Header.Version, support::little);
support::endian::write(*HeaderStream, Header.AddressSize, support::little);
support::endian::write(*HeaderStream, Header.SegmentSelector,
support::little);
support::endian::write(*HeaderStream, Header.OffsetEntryCount,
support::little);
return HeaderBuffer;
}
struct OffsetEntry {
uint32_t Index;
uint32_t StartOffset;
uint32_t EndOffset;
};
template <typename DebugVector, typename ListEntry, typename DebugAddressEntry>
static bool emitWithBase(raw_ostream &OS, const DebugVector &Entries,
DebugAddrWriter &AddrWriter, DWARFUnit &CU,
uint32_t &Index, const ListEntry BaseAddressx,
const ListEntry OffsetPair, const ListEntry EndOfList,
const std::function<void(uint32_t)> &Func) {
if (Entries.size() < 2)
return false;
uint64_t Base = Entries[Index].LowPC;
std::vector<OffsetEntry> Offsets;
uint8_t TempBuffer[64];
while (Index < Entries.size()) {
const DebugAddressEntry &Entry = Entries[Index];
if (Entry.LowPC == 0)
break;
assert(Base <= Entry.LowPC && "Entry base is higher than low PC");
uint32_t StartOffset = Entry.LowPC - Base;
uint32_t EndOffset = Entry.HighPC - Base;
if (encodeULEB128(EndOffset, TempBuffer) > 2)
break;
Offsets.push_back({Index, StartOffset, EndOffset});
++Index;
}
if (Offsets.size() < 2) {
Index -= Offsets.size();
return false;
}
support::endian::write(OS, static_cast<uint8_t>(BaseAddressx),
support::little);
uint32_t BaseIndex = AddrWriter.getIndexFromAddress(Base, CU);
encodeULEB128(BaseIndex, OS);
for (auto &OffsetEntry : Offsets) {
support::endian::write(OS, static_cast<uint8_t>(OffsetPair),
support::little);
encodeULEB128(OffsetEntry.StartOffset, OS);
encodeULEB128(OffsetEntry.EndOffset, OS);
Func(OffsetEntry.Index);
}
support::endian::write(OS, static_cast<uint8_t>(EndOfList), support::little);
return true;
}
uint64_t
DebugRangeListsSectionWriter::addRanges(DebugAddressRangesVector &Ranges) {
std::lock_guard<std::mutex> Lock(WriterMutex);
RangeEntries.push_back(CurrentOffset);
bool WrittenStartxLength = false;
std::sort(
Ranges.begin(), Ranges.end(),
[](const DebugAddressRange &R1, const DebugAddressRange &R2) -> bool {
return R1.LowPC < R2.LowPC;
});
for (unsigned I = 0; I < Ranges.size();) {
WrittenStartxLength = false;
if (emitWithBase<DebugAddressRangesVector, dwarf::RnglistEntries,
DebugAddressRange>(
*CUBodyStream, Ranges, *AddrWriter, *CU, I,
dwarf::DW_RLE_base_addressx, dwarf::DW_RLE_offset_pair,
dwarf::DW_RLE_end_of_list, [](uint32_t Index) -> void {}))
continue;
const DebugAddressRange &Range = Ranges[I];
support::endian::write(*CUBodyStream,
static_cast<uint8_t>(dwarf::DW_RLE_startx_length),
support::little);
uint32_t Index = AddrWriter->getIndexFromAddress(Range.LowPC, *CU);
encodeULEB128(Index, *CUBodyStream);
encodeULEB128(Range.HighPC - Range.LowPC, *CUBodyStream);
++I;
WrittenStartxLength = true;
}
if (WrittenStartxLength)
support::endian::write(*CUBodyStream,
static_cast<uint8_t>(dwarf::DW_RLE_end_of_list),
support::little);
CurrentOffset = CUBodyBuffer->size();
return RangeEntries.size() - 1;
}
void DebugRangeListsSectionWriter::finalizeSection() {
std::unique_ptr<DebugBufferVector> CUArrayBuffer =
std::make_unique<DebugBufferVector>();
std::unique_ptr<raw_svector_ostream> CUArrayStream =
std::make_unique<raw_svector_ostream>(*CUArrayBuffer);
constexpr uint32_t SizeOfArrayEntry = 4;
const uint32_t SizeOfArraySection = RangeEntries.size() * SizeOfArrayEntry;
for (uint32_t Offset : RangeEntries)
support::endian::write(*CUArrayStream, Offset + SizeOfArraySection,
support::little);
std::unique_ptr<DebugBufferVector> Header = getDWARF5Header(
{static_cast<uint32_t>(SizeOfArraySection + CUBodyBuffer.get()->size()),
5, 8, 0, static_cast<uint32_t>(RangeEntries.size())});
*RangesStream << *Header;
*RangesStream << *CUArrayBuffer;
*RangesStream << *CUBodyBuffer;
SectionOffset = RangesBuffer->size();
}
void DebugRangeListsSectionWriter::initSection(DWARFUnit &Unit) {
CUBodyBuffer = std::make_unique<DebugBufferVector>();
CUBodyStream = std::make_unique<raw_svector_ostream>(*CUBodyBuffer);
RangeEntries.clear();
CurrentOffset = 0;
CU = &Unit;
}
void DebugARangesSectionWriter::addCURanges(uint64_t CUOffset,
DebugAddressRangesVector &&Ranges) {
std::lock_guard<std::mutex> Lock(CUAddressRangesMutex);
CUAddressRanges.emplace(CUOffset, std::move(Ranges));
}
void DebugARangesSectionWriter::writeARangesSection(
raw_svector_ostream &RangesStream, const CUOffsetMap &CUMap) const {
// For reference on the format of the .debug_aranges section, see the DWARF4
// specification, section 6.1.4 Lookup by Address
// http://www.dwarfstd.org/doc/DWARF4.pdf
for (const auto &CUOffsetAddressRangesPair : CUAddressRanges) {
const uint64_t Offset = CUOffsetAddressRangesPair.first;
const DebugAddressRangesVector &AddressRanges =
CUOffsetAddressRangesPair.second;
// Emit header.
// Size of this set: 8 (size of the header) + 4 (padding after header)
// + 2*sizeof(uint64_t) bytes for each of the ranges, plus an extra
// pair of uint64_t's for the terminating, zero-length range.
// Does not include size field itself.
uint32_t Size = 8 + 4 + 2 * sizeof(uint64_t) * (AddressRanges.size() + 1);
// Header field #1: set size.
support::endian::write(RangesStream, Size, support::little);
// Header field #2: version number, 2 as per the specification.
support::endian::write(RangesStream, static_cast<uint16_t>(2),
support::little);
assert(CUMap.count(Offset) && "Original CU offset is not found in CU Map");
// Header field #3: debug info offset of the correspondent compile unit.
support::endian::write(
RangesStream, static_cast<uint32_t>(CUMap.find(Offset)->second.Offset),
support::little);
// Header field #4: address size.
// 8 since we only write ELF64 binaries for now.
RangesStream << char(8);
// Header field #5: segment size of target architecture.
RangesStream << char(0);
// Padding before address table - 4 bytes in the 64-bit-pointer case.
support::endian::write(RangesStream, static_cast<uint32_t>(0),
support::little);
writeAddressRanges(RangesStream, AddressRanges, true);
}
}
DebugAddrWriter::DebugAddrWriter(BinaryContext *BC) : BC(BC) {
Buffer = std::make_unique<AddressSectionBuffer>();
AddressStream = std::make_unique<raw_svector_ostream>(*Buffer);
}
void DebugAddrWriter::AddressForDWOCU::dump() {
std::vector<IndexAddressPair> SortedMap(indexToAddressBegin(),
indexToAdddessEnd());
// Sorting address in increasing order of indices.
llvm::sort(SortedMap, llvm::less_first());
for (auto &Pair : SortedMap)
dbgs() << Twine::utohexstr(Pair.second) << "\t" << Pair.first << "\n";
}
uint32_t DebugAddrWriter::getIndexFromAddress(uint64_t Address, DWARFUnit &CU) {
std::lock_guard<std::mutex> Lock(WriterMutex);
const uint64_t CUID = getCUID(CU);
if (!AddressMaps.count(CUID))
AddressMaps[CUID] = AddressForDWOCU();
AddressForDWOCU &Map = AddressMaps[CUID];
auto Entry = Map.find(Address);
if (Entry == Map.end()) {
auto Index = Map.getNextIndex();
Entry = Map.insert(Address, Index).first;
}
return Entry->second;
}
// Case1) Address is not in map insert in to AddresToIndex and IndexToAddres
// Case2) Address is in the map but Index is higher or equal. Need to update
// IndexToAddrss. Case3) Address is in the map but Index is lower. Need to
// update AddressToIndex and IndexToAddress
void DebugAddrWriter::addIndexAddress(uint64_t Address, uint32_t Index,
DWARFUnit &CU) {
std::lock_guard<std::mutex> Lock(WriterMutex);
const uint64_t CUID = getCUID(CU);
AddressForDWOCU &Map = AddressMaps[CUID];
auto Entry = Map.find(Address);
if (Entry != Map.end()) {
if (Entry->second > Index)
Map.updateAddressToIndex(Address, Index);
Map.updateIndexToAddrss(Address, Index);
} else {
Map.insert(Address, Index);
}
}
static void updateAddressBase(DIEBuilder &DIEBlder, DebugAddrWriter &AddrWriter,
DWARFUnit &CU, const uint64_t Offset) {
DIE *Die = DIEBlder.getUnitDIEbyUnit(CU);
DIEValue GnuAddrBaseAttrInfo = Die->findAttribute(dwarf::DW_AT_GNU_addr_base);
DIEValue AddrBaseAttrInfo = Die->findAttribute(dwarf::DW_AT_addr_base);
dwarf::Form BaseAttrForm;
dwarf::Attribute BaseAttr;
// For cases where Skeleton CU does not have DW_AT_GNU_addr_base
if (!GnuAddrBaseAttrInfo && CU.getVersion() < 5)
return;
if (GnuAddrBaseAttrInfo) {
BaseAttrForm = GnuAddrBaseAttrInfo.getForm();
BaseAttr = GnuAddrBaseAttrInfo.getAttribute();
}
if (AddrBaseAttrInfo) {
BaseAttrForm = AddrBaseAttrInfo.getForm();
BaseAttr = AddrBaseAttrInfo.getAttribute();
}
if (GnuAddrBaseAttrInfo || AddrBaseAttrInfo) {
DIEBlder.replaceValue(Die, BaseAttr, BaseAttrForm, DIEInteger(Offset));
} else if (CU.getVersion() >= 5) {
// A case where we were not using .debug_addr section, but after update
// now using it.
DIEBlder.addValue(Die, dwarf::DW_AT_addr_base, dwarf::DW_FORM_sec_offset,
DIEInteger(Offset));
}
}
void DebugAddrWriter::update(DIEBuilder &DIEBlder, DWARFUnit &CU) {
// Handling the case wehre debug information is a mix of Debug fission and
// monolitic.
if (!CU.getDWOId())
return;
const uint64_t CUID = getCUID(CU);
auto AM = AddressMaps.find(CUID);
// Adding to map even if it did not contribute to .debug_addr.
// The Skeleton CU might still have DW_AT_GNU_addr_base.
uint64_t Offset = Buffer->size();
// If does not exist this CUs DWO section didn't contribute to .debug_addr.
if (AM == AddressMaps.end())
return;
std::vector<IndexAddressPair> SortedMap(AM->second.indexToAddressBegin(),
AM->second.indexToAdddessEnd());
// Sorting address in increasing order of indices.
llvm::sort(SortedMap, llvm::less_first());
uint8_t AddrSize = CU.getAddressByteSize();
uint32_t Counter = 0;
auto WriteAddress = [&](uint64_t Address) -> void {
++Counter;
switch (AddrSize) {
default:
assert(false && "Address Size is invalid.");
break;
case 4:
support::endian::write(*AddressStream, static_cast<uint32_t>(Address),
support::little);
break;
case 8:
support::endian::write(*AddressStream, Address, support::little);
break;
}
};
for (const IndexAddressPair &Val : SortedMap) {
while (Val.first > Counter)
WriteAddress(0);
WriteAddress(Val.second);
}
updateAddressBase(DIEBlder, *this, CU, Offset);
}
void DebugAddrWriterDwarf5::update(DIEBuilder &DIEBlder, DWARFUnit &CU) {
// Need to layout all sections within .debug_addr
// Within each section sort Address by index.
const endianness Endian =
BC->DwCtx->isLittleEndian() ? support::little : support::big;
const DWARFSection &AddrSec = BC->DwCtx->getDWARFObj().getAddrSection();
DWARFDataExtractor AddrData(BC->DwCtx->getDWARFObj(), AddrSec, Endian, 0);
DWARFDebugAddrTable AddrTable;
DIDumpOptions DumpOpts;
constexpr uint32_t HeaderSize = 8;
const uint64_t CUID = getCUID(CU);
const uint8_t AddrSize = CU.getAddressByteSize();
auto AMIter = AddressMaps.find(CUID);
// A case where CU has entry in .debug_addr, but we don't modify addresses
// for it.
if (AMIter == AddressMaps.end()) {
AMIter = AddressMaps.insert({CUID, AddressForDWOCU()}).first;
std::optional<uint64_t> BaseOffset = CU.getAddrOffsetSectionBase();
if (!BaseOffset)
return;
// Address base offset is to the first entry.
// The size of header is 8 bytes.
uint64_t Offset = *BaseOffset - HeaderSize;
auto Iter = UnmodifiedAddressOffsets.find(Offset);
if (Iter != UnmodifiedAddressOffsets.end()) {
updateAddressBase(DIEBlder, *this, CU, Iter->getSecond());
return;
}
UnmodifiedAddressOffsets[Offset] = Buffer->size() + HeaderSize;
if (Error Err = AddrTable.extract(AddrData, &Offset, 5, AddrSize,
DumpOpts.WarningHandler)) {
DumpOpts.RecoverableErrorHandler(std::move(Err));
return;
}
uint32_t Index = 0;
for (uint64_t Addr : AddrTable.getAddressEntries())
AMIter->second.insert(Addr, Index++);
}
updateAddressBase(DIEBlder, *this, CU, Buffer->size() + HeaderSize);
std::vector<IndexAddressPair> SortedMap(AMIter->second.indexToAddressBegin(),
AMIter->second.indexToAdddessEnd());
// Sorting address in increasing order of indices.
llvm::sort(SortedMap, llvm::less_first());
// Writing out Header
const uint32_t Length = SortedMap.size() * AddrSize + 4;
support::endian::write(*AddressStream, Length, Endian);
support::endian::write(*AddressStream, static_cast<uint16_t>(5), Endian);
support::endian::write(*AddressStream, static_cast<uint8_t>(AddrSize),
Endian);
support::endian::write(*AddressStream, static_cast<uint8_t>(0), Endian);
uint32_t Counter = 0;
auto writeAddress = [&](uint64_t Address) -> void {
++Counter;
switch (AddrSize) {
default:
llvm_unreachable("Address Size is invalid.");
break;
case 4:
support::endian::write(*AddressStream, static_cast<uint32_t>(Address),
Endian);
break;
case 8:
support::endian::write(*AddressStream, Address, Endian);
break;
}
};
for (const IndexAddressPair &Val : SortedMap) {
while (Val.first > Counter)
writeAddress(0);
writeAddress(Val.second);
}
}
void DebugLocWriter::init() {
LocBuffer = std::make_unique<DebugBufferVector>();
LocStream = std::make_unique<raw_svector_ostream>(*LocBuffer);
// Writing out empty location list to which all references to empty location
// lists will point.
if (!LocSectionOffset && DwarfVersion < 5) {
const char Zeroes[16] = {0};
*LocStream << StringRef(Zeroes, 16);
LocSectionOffset += 16;
}
}
uint32_t DebugLocWriter::LocSectionOffset = 0;
void DebugLocWriter::addList(DIEBuilder &DIEBldr, DIE &Die, DIEValue &AttrInfo,
DebugLocationsVector &LocList) {
if (LocList.empty()) {
replaceLocValbyForm(DIEBldr, Die, AttrInfo, AttrInfo.getForm(),
DebugLocWriter::EmptyListOffset);
return;
}
// Since there is a separate DebugLocWriter for each thread,
// we don't need a lock to read the SectionOffset and update it.
const uint32_t EntryOffset = LocSectionOffset;
for (const DebugLocationEntry &Entry : LocList) {
support::endian::write(*LocStream, static_cast<uint64_t>(Entry.LowPC),
support::little);
support::endian::write(*LocStream, static_cast<uint64_t>(Entry.HighPC),
support::little);
support::endian::write(*LocStream, static_cast<uint16_t>(Entry.Expr.size()),
support::little);
*LocStream << StringRef(reinterpret_cast<const char *>(Entry.Expr.data()),
Entry.Expr.size());
LocSectionOffset += 2 * 8 + 2 + Entry.Expr.size();
}
LocStream->write_zeros(16);
LocSectionOffset += 16;
LocListDebugInfoPatches.push_back({0xdeadbeee, EntryOffset}); // never seen
// use
replaceLocValbyForm(DIEBldr, Die, AttrInfo, AttrInfo.getForm(), EntryOffset);
}
std::unique_ptr<DebugBufferVector> DebugLocWriter::getBuffer() {
return std::move(LocBuffer);
}
// DWARF 4: 2.6.2
void DebugLocWriter::finalize(DIEBuilder &DIEBldr, DIE &Die) {}
static void writeEmptyListDwarf5(raw_svector_ostream &Stream) {
support::endian::write(Stream, static_cast<uint32_t>(4), support::little);
support::endian::write(Stream, static_cast<uint8_t>(dwarf::DW_LLE_start_end),
support::little);
const char Zeroes[16] = {0};
Stream << StringRef(Zeroes, 16);
encodeULEB128(0, Stream);
support::endian::write(
Stream, static_cast<uint8_t>(dwarf::DW_LLE_end_of_list), support::little);
}
static void writeLegacyLocList(DIEValue &AttrInfo,
DebugLocationsVector &LocList,
DIEBuilder &DIEBldr, DIE &Die,
DebugAddrWriter &AddrWriter,
DebugBufferVector LocBuffer, DWARFUnit &CU,
raw_svector_ostream &LocStream) {
if (LocList.empty()) {
replaceLocValbyForm(DIEBldr, Die, AttrInfo, AttrInfo.getForm(),
DebugLocWriter::EmptyListOffset);
return;
}
const uint32_t EntryOffset = LocBuffer.size();
for (const DebugLocationEntry &Entry : LocList) {
support::endian::write(LocStream,
static_cast<uint8_t>(dwarf::DW_LLE_startx_length),
support::little);
const uint32_t Index = AddrWriter.getIndexFromAddress(Entry.LowPC, CU);
encodeULEB128(Index, LocStream);
support::endian::write(LocStream,
static_cast<uint32_t>(Entry.HighPC - Entry.LowPC),
support::little);
support::endian::write(LocStream, static_cast<uint16_t>(Entry.Expr.size()),
support::little);
LocStream << StringRef(reinterpret_cast<const char *>(Entry.Expr.data()),
Entry.Expr.size());
}
support::endian::write(LocStream,
static_cast<uint8_t>(dwarf::DW_LLE_end_of_list),
support::little);
replaceLocValbyForm(DIEBldr, Die, AttrInfo, AttrInfo.getForm(), EntryOffset);
}
static void writeDWARF5LocList(uint32_t &NumberOfEntries, DIEValue &AttrInfo,
DebugLocationsVector &LocList, DIE &Die,
DIEBuilder &DIEBldr, DebugAddrWriter &AddrWriter,
DebugBufferVector &LocBodyBuffer,
std::vector<uint32_t> &RelativeLocListOffsets,
DWARFUnit &CU,
raw_svector_ostream &LocBodyStream) {
replaceLocValbyForm(DIEBldr, Die, AttrInfo, dwarf::DW_FORM_loclistx,
NumberOfEntries);
RelativeLocListOffsets.push_back(LocBodyBuffer.size());
++NumberOfEntries;
if (LocList.empty()) {
writeEmptyListDwarf5(LocBodyStream);
return;
}
std::vector<uint64_t> OffsetsArray;
bool WrittenStartxLength = false;
auto writeExpression = [&](uint32_t Index) -> void {
const DebugLocationEntry &Entry = LocList[Index];
encodeULEB128(Entry.Expr.size(), LocBodyStream);
LocBodyStream << StringRef(
reinterpret_cast<const char *>(Entry.Expr.data()), Entry.Expr.size());
};
for (unsigned I = 0; I < LocList.size();) {
WrittenStartxLength = false;
if (emitWithBase<DebugLocationsVector, dwarf::LoclistEntries,
DebugLocationEntry>(
LocBodyStream, LocList, AddrWriter, CU, I,
dwarf::DW_LLE_base_addressx, dwarf::DW_LLE_offset_pair,
dwarf::DW_LLE_end_of_list, writeExpression))
continue;
const DebugLocationEntry &Entry = LocList[I];
support::endian::write(LocBodyStream,
static_cast<uint8_t>(dwarf::DW_LLE_startx_length),
support::little);
const uint32_t Index = AddrWriter.getIndexFromAddress(Entry.LowPC, CU);
encodeULEB128(Index, LocBodyStream);
encodeULEB128(Entry.HighPC - Entry.LowPC, LocBodyStream);
writeExpression(I);
++I;
WrittenStartxLength = true;
}
if (WrittenStartxLength)
support::endian::write(LocBodyStream,
static_cast<uint8_t>(dwarf::DW_LLE_end_of_list),
support::little);
}
void DebugLoclistWriter::addList(DIEBuilder &DIEBldr, DIE &Die,
DIEValue &AttrInfo,
DebugLocationsVector &LocList) {
if (DwarfVersion < 5)
writeLegacyLocList(AttrInfo, LocList, DIEBldr, Die, *AddrWriter, *LocBuffer,
CU, *LocStream);
else
writeDWARF5LocList(NumberOfEntries, AttrInfo, LocList, Die, DIEBldr,
*AddrWriter, *LocBodyBuffer, RelativeLocListOffsets, CU,
*LocBodyStream);
}
uint32_t DebugLoclistWriter::LoclistBaseOffset = 0;
void DebugLoclistWriter::finalizeDWARF5(DIEBuilder &DIEBldr, DIE &Die) {
if (LocBodyBuffer->empty()) {
DIEValue LocListBaseAttrInfo =
Die.findAttribute(dwarf::DW_AT_loclists_base);
// Pointing to first one, because it doesn't matter. There are no uses of it
// in this CU.
if (!isSplitDwarf() && LocListBaseAttrInfo.getType())
DIEBldr.replaceValue(&Die, dwarf::DW_AT_loclists_base,
LocListBaseAttrInfo.getForm(),
DIEInteger(getDWARF5RngListLocListHeaderSize()));
return;
}
std::unique_ptr<DebugBufferVector> LocArrayBuffer =
std::make_unique<DebugBufferVector>();
std::unique_ptr<raw_svector_ostream> LocArrayStream =
std::make_unique<raw_svector_ostream>(*LocArrayBuffer);
const uint32_t SizeOfArraySection = NumberOfEntries * sizeof(uint32_t);
// Write out IndexArray
for (uint32_t RelativeOffset : RelativeLocListOffsets)
support::endian::write(
*LocArrayStream,
static_cast<uint32_t>(SizeOfArraySection + RelativeOffset),
support::little);
std::unique_ptr<DebugBufferVector> Header = getDWARF5Header(
{static_cast<uint32_t>(SizeOfArraySection + LocBodyBuffer.get()->size()),
5, 8, 0, NumberOfEntries});
*LocStream << *Header;
*LocStream << *LocArrayBuffer;
*LocStream << *LocBodyBuffer;
if (!isSplitDwarf()) {
DIEValue LocListBaseAttrInfo =
Die.findAttribute(dwarf::DW_AT_loclists_base);
if (LocListBaseAttrInfo.getType()) {
DIEBldr.replaceValue(
&Die, dwarf::DW_AT_loclists_base, LocListBaseAttrInfo.getForm(),
DIEInteger(LoclistBaseOffset + getDWARF5RngListLocListHeaderSize()));
} else {
DIEBldr.addValue(&Die, dwarf::DW_AT_loclists_base,
dwarf::DW_FORM_sec_offset,
DIEInteger(LoclistBaseOffset + Header->size()));
}
LoclistBaseOffset += LocBuffer->size();
}
clearList(RelativeLocListOffsets);
clearList(*LocArrayBuffer);
clearList(*LocBodyBuffer);
}
void DebugLoclistWriter::finalize(DIEBuilder &DIEBldr, DIE &Die) {
if (DwarfVersion >= 5)
finalizeDWARF5(DIEBldr, Die);
}
DebugAddrWriter *DebugLoclistWriter::AddrWriter = nullptr;
static std::string encodeLE(size_t ByteSize, uint64_t NewValue) {
std::string LE64(ByteSize, 0);
for (size_t I = 0; I < ByteSize; ++I) {
LE64[I] = NewValue & 0xff;
NewValue >>= 8;
}
return LE64;
}
void SimpleBinaryPatcher::addBinaryPatch(uint64_t Offset,
std::string &&NewValue,
uint32_t OldValueSize) {
Patches.emplace_back(Offset, std::move(NewValue));
}
void SimpleBinaryPatcher::addBytePatch(uint64_t Offset, uint8_t Value) {
auto Str = std::string(1, Value);
Patches.emplace_back(Offset, std::move(Str));
}
void SimpleBinaryPatcher::addLEPatch(uint64_t Offset, uint64_t NewValue,
size_t ByteSize) {
Patches.emplace_back(Offset, encodeLE(ByteSize, NewValue));
}
void SimpleBinaryPatcher::addUDataPatch(uint64_t Offset, uint64_t Value,
uint32_t OldValueSize) {
std::string Buff;
raw_string_ostream OS(Buff);
encodeULEB128(Value, OS, OldValueSize);
Patches.emplace_back(Offset, std::move(Buff));
}
void SimpleBinaryPatcher::addLE64Patch(uint64_t Offset, uint64_t NewValue) {
addLEPatch(Offset, NewValue, 8);
}
void SimpleBinaryPatcher::addLE32Patch(uint64_t Offset, uint32_t NewValue,
uint32_t OldValueSize) {
addLEPatch(Offset, NewValue, 4);
}
std::string SimpleBinaryPatcher::patchBinary(StringRef BinaryContents) {
std::string BinaryContentsStr = std::string(BinaryContents);
for (const auto &Patch : Patches) {
uint32_t Offset = Patch.first;
const std::string &ByteSequence = Patch.second;
assert(Offset + ByteSequence.size() <= BinaryContents.size() &&
"Applied patch runs over binary size.");
for (uint64_t I = 0, Size = ByteSequence.size(); I < Size; ++I) {
BinaryContentsStr[Offset + I] = ByteSequence[I];
}
}
return BinaryContentsStr;
}
void DebugStrOffsetsWriter::initialize(
const DWARFSection &StrOffsetsSection,
const std::optional<StrOffsetsContributionDescriptor> Contr) {
if (!Contr)
return;
const uint8_t DwarfOffsetByteSize = Contr->getDwarfOffsetByteSize();
assert(DwarfOffsetByteSize == 4 &&
"Dwarf String Offsets Byte Size is not supported.");
uint32_t Index = 0;
for (uint64_t Offset = 0; Offset < Contr->Size; Offset += DwarfOffsetByteSize)
IndexToAddressMap[Index++] = support::endian::read32le(
StrOffsetsSection.Data.data() + Contr->Base + Offset);
}
void DebugStrOffsetsWriter::updateAddressMap(uint32_t Index, uint32_t Address) {
assert(IndexToAddressMap.count(Index) > 0 && "Index is not found.");
IndexToAddressMap[Index] = Address;
StrOffsetSectionWasModified = true;
}
void DebugStrOffsetsWriter::finalizeSection(DWARFUnit &Unit,
DIEBuilder &DIEBldr) {
if (IndexToAddressMap.empty())
return;
std::optional<AttrInfo> AttrVal =
findAttributeInfo(Unit.getUnitDIE(), dwarf::DW_AT_str_offsets_base);
assert(AttrVal && "DW_AT_str_offsets_base not present.");
std::optional<uint64_t> Val = AttrVal->V.getAsSectionOffset();
assert(Val && "DW_AT_str_offsets_base Value not present.");
DIE &Die = *DIEBldr.getUnitDIEbyUnit(Unit);
DIEValue StrListBaseAttrInfo =
Die.findAttribute(dwarf::DW_AT_str_offsets_base);
auto RetVal = ProcessedBaseOffsets.find(*Val);
// Handling re-use of str-offsets section.
if (RetVal == ProcessedBaseOffsets.end() || StrOffsetSectionWasModified) {
// Writing out the header for each section.
support::endian::write(*StrOffsetsStream, CurrentSectionSize + 4,
support::little);
support::endian::write(*StrOffsetsStream, static_cast<uint16_t>(5),
support::little);
support::endian::write(*StrOffsetsStream, static_cast<uint16_t>(0),
support::little);
uint64_t BaseOffset = StrOffsetsBuffer->size();
ProcessedBaseOffsets[*Val] = BaseOffset;
if (StrListBaseAttrInfo.getType())
DIEBldr.replaceValue(&Die, dwarf::DW_AT_str_offsets_base,
StrListBaseAttrInfo.getForm(),
DIEInteger(BaseOffset));
for (const auto &Entry : IndexToAddressMap)
support::endian::write(*StrOffsetsStream, Entry.second, support::little);
} else {
DIEBldr.replaceValue(&Die, dwarf::DW_AT_str_offsets_base,
StrListBaseAttrInfo.getForm(),
DIEInteger(RetVal->second));
}
StrOffsetSectionWasModified = false;
IndexToAddressMap.clear();
}
void DebugStrWriter::create() {
StrBuffer = std::make_unique<DebugStrBufferVector>();
StrStream = std::make_unique<raw_svector_ostream>(*StrBuffer);
}
void DebugStrWriter::initialize() {
auto StrSection = BC.DwCtx->getDWARFObj().getStrSection();
(*StrStream) << StrSection;
}
uint32_t DebugStrWriter::addString(StringRef Str) {
std::lock_guard<std::mutex> Lock(WriterMutex);
if (StrBuffer->empty())
initialize();
auto Offset = StrBuffer->size();
(*StrStream) << Str;
StrStream->write_zeros(1);
return Offset;
}
static void emitDwarfSetLineAddrAbs(MCStreamer &OS,
MCDwarfLineTableParams Params,
int64_t LineDelta, uint64_t Address,
int PointerSize) {
// emit the sequence to set the address
OS.emitIntValue(dwarf::DW_LNS_extended_op, 1);
OS.emitULEB128IntValue(PointerSize + 1);
OS.emitIntValue(dwarf::DW_LNE_set_address, 1);
OS.emitIntValue(Address, PointerSize);
// emit the sequence for the LineDelta (from 1) and a zero address delta.
MCDwarfLineAddr::Emit(&OS, Params, LineDelta, 0);
}
static inline void emitBinaryDwarfLineTable(
MCStreamer *MCOS, MCDwarfLineTableParams Params,
const DWARFDebugLine::LineTable *Table,
const std::vector<DwarfLineTable::RowSequence> &InputSequences) {
if (InputSequences.empty())
return;
constexpr uint64_t InvalidAddress = UINT64_MAX;
unsigned FileNum = 1;
unsigned LastLine = 1;
unsigned Column = 0;
unsigned Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0;
unsigned Isa = 0;
unsigned Discriminator = 0;
uint64_t LastAddress = InvalidAddress;
uint64_t PrevEndOfSequence = InvalidAddress;
const MCAsmInfo *AsmInfo = MCOS->getContext().getAsmInfo();
auto emitEndOfSequence = [&](uint64_t Address) {
MCDwarfLineAddr::Emit(MCOS, Params, INT64_MAX, Address - LastAddress);
FileNum = 1;
LastLine = 1;
Column = 0;
Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0;
Isa = 0;
Discriminator = 0;
LastAddress = InvalidAddress;
};
for (const DwarfLineTable::RowSequence &Sequence : InputSequences) {
const uint64_t SequenceStart =
Table->Rows[Sequence.FirstIndex].Address.Address;
// Check if we need to mark the end of the sequence.
if (PrevEndOfSequence != InvalidAddress && LastAddress != InvalidAddress &&
PrevEndOfSequence != SequenceStart) {
emitEndOfSequence(PrevEndOfSequence);
}
for (uint32_t RowIndex = Sequence.FirstIndex;
RowIndex <= Sequence.LastIndex; ++RowIndex) {
const DWARFDebugLine::Row &Row = Table->Rows[RowIndex];
int64_t LineDelta = static_cast<int64_t>(Row.Line) - LastLine;
const uint64_t Address = Row.Address.Address;
if (FileNum != Row.File) {
FileNum = Row.File;
MCOS->emitInt8(dwarf::DW_LNS_set_file);
MCOS->emitULEB128IntValue(FileNum);
}
if (Column != Row.Column) {
Column = Row.Column;
MCOS->emitInt8(dwarf::DW_LNS_set_column);
MCOS->emitULEB128IntValue(Column);
}
if (Discriminator != Row.Discriminator &&
MCOS->getContext().getDwarfVersion() >= 4) {
Discriminator = Row.Discriminator;
unsigned Size = getULEB128Size(Discriminator);
MCOS->emitInt8(dwarf::DW_LNS_extended_op);
MCOS->emitULEB128IntValue(Size + 1);
MCOS->emitInt8(dwarf::DW_LNE_set_discriminator);
MCOS->emitULEB128IntValue(Discriminator);
}
if (Isa != Row.Isa) {
Isa = Row.Isa;
MCOS->emitInt8(dwarf::DW_LNS_set_isa);
MCOS->emitULEB128IntValue(Isa);
}
if (Row.IsStmt != Flags) {
Flags = Row.IsStmt;
MCOS->emitInt8(dwarf::DW_LNS_negate_stmt);
}
if (Row.BasicBlock)
MCOS->emitInt8(dwarf::DW_LNS_set_basic_block);
if (Row.PrologueEnd)
MCOS->emitInt8(dwarf::DW_LNS_set_prologue_end);
if (Row.EpilogueBegin)
MCOS->emitInt8(dwarf::DW_LNS_set_epilogue_begin);
// The end of the sequence is not normal in the middle of the input
// sequence, but could happen, e.g. for assembly code.
if (Row.EndSequence) {
emitEndOfSequence(Address);
} else {
if (LastAddress == InvalidAddress)
emitDwarfSetLineAddrAbs(*MCOS, Params, LineDelta, Address,
AsmInfo->getCodePointerSize());
else
MCDwarfLineAddr::Emit(MCOS, Params, LineDelta, Address - LastAddress);
LastAddress = Address;
LastLine = Row.Line;
}
Discriminator = 0;
}
PrevEndOfSequence = Sequence.EndAddress;
}
// Finish with the end of the sequence.
if (LastAddress != InvalidAddress)
emitEndOfSequence(PrevEndOfSequence);
}
// This function is similar to the one from MCDwarfLineTable, except it handles
// end-of-sequence entries differently by utilizing line entries with
// DWARF2_FLAG_END_SEQUENCE flag.
static inline void emitDwarfLineTable(
MCStreamer *MCOS, MCSection *Section,
const MCLineSection::MCDwarfLineEntryCollection &LineEntries) {
unsigned FileNum = 1;
unsigned LastLine = 1;
unsigned Column = 0;
unsigned Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0;
unsigned Isa = 0;
unsigned Discriminator = 0;
MCSymbol *LastLabel = nullptr;
const MCAsmInfo *AsmInfo = MCOS->getContext().getAsmInfo();
// Loop through each MCDwarfLineEntry and encode the dwarf line number table.
for (const MCDwarfLineEntry &LineEntry : LineEntries) {
if (LineEntry.getFlags() & DWARF2_FLAG_END_SEQUENCE) {
MCOS->emitDwarfAdvanceLineAddr(INT64_MAX, LastLabel, LineEntry.getLabel(),
AsmInfo->getCodePointerSize());
FileNum = 1;
LastLine = 1;
Column = 0;
Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0;
Isa = 0;
Discriminator = 0;
LastLabel = nullptr;
continue;
}
int64_t LineDelta = static_cast<int64_t>(LineEntry.getLine()) - LastLine;
if (FileNum != LineEntry.getFileNum()) {
FileNum = LineEntry.getFileNum();
MCOS->emitInt8(dwarf::DW_LNS_set_file);
MCOS->emitULEB128IntValue(FileNum);
}
if (Column != LineEntry.getColumn()) {
Column = LineEntry.getColumn();
MCOS->emitInt8(dwarf::DW_LNS_set_column);
MCOS->emitULEB128IntValue(Column);
}
if (Discriminator != LineEntry.getDiscriminator() &&
MCOS->getContext().getDwarfVersion() >= 2) {
Discriminator = LineEntry.getDiscriminator();
unsigned Size = getULEB128Size(Discriminator);
MCOS->emitInt8(dwarf::DW_LNS_extended_op);
MCOS->emitULEB128IntValue(Size + 1);
MCOS->emitInt8(dwarf::DW_LNE_set_discriminator);
MCOS->emitULEB128IntValue(Discriminator);
}
if (Isa != LineEntry.getIsa()) {
Isa = LineEntry.getIsa();
MCOS->emitInt8(dwarf::DW_LNS_set_isa);
MCOS->emitULEB128IntValue(Isa);
}
if ((LineEntry.getFlags() ^ Flags) & DWARF2_FLAG_IS_STMT) {
Flags = LineEntry.getFlags();
MCOS->emitInt8(dwarf::DW_LNS_negate_stmt);
}
if (LineEntry.getFlags() & DWARF2_FLAG_BASIC_BLOCK)
MCOS->emitInt8(dwarf::DW_LNS_set_basic_block);
if (LineEntry.getFlags() & DWARF2_FLAG_PROLOGUE_END)
MCOS->emitInt8(dwarf::DW_LNS_set_prologue_end);
if (LineEntry.getFlags() & DWARF2_FLAG_EPILOGUE_BEGIN)
MCOS->emitInt8(dwarf::DW_LNS_set_epilogue_begin);
MCSymbol *Label = LineEntry.getLabel();
// At this point we want to emit/create the sequence to encode the delta
// in line numbers and the increment of the address from the previous
// Label and the current Label.
MCOS->emitDwarfAdvanceLineAddr(LineDelta, LastLabel, Label,
AsmInfo->getCodePointerSize());
Discriminator = 0;
LastLine = LineEntry.getLine();
LastLabel = Label;
}
assert(LastLabel == nullptr && "end of sequence expected");
}
void DwarfLineTable::emitCU(MCStreamer *MCOS, MCDwarfLineTableParams Params,
std::optional<MCDwarfLineStr> &LineStr,
BinaryContext &BC) const {
if (!RawData.empty()) {
assert(MCLineSections.getMCLineEntries().empty() &&
InputSequences.empty() &&
"cannot combine raw data with new line entries");
MCOS->emitLabel(getLabel());
MCOS->emitBytes(RawData);
return;
}
MCSymbol *LineEndSym = Header.Emit(MCOS, Params, LineStr).second;
// Put out the line tables.
for (const auto &LineSec : MCLineSections.getMCLineEntries())
emitDwarfLineTable(MCOS, LineSec.first, LineSec.second);
// Emit line tables for the original code.
emitBinaryDwarfLineTable(MCOS, Params, InputTable, InputSequences);
// This is the end of the section, so set the value of the symbol at the end
// of this section (that was used in a previous expression).
MCOS->emitLabel(LineEndSym);
}
// Helper function to parse .debug_line_str, and populate one we are using.
// For functions that we do not modify we output them as raw data.
// Re-constructing .debug_line_str so that offsets are correct for those
// debug line tables.
// Bonus is that when we output a final binary we can re-use .debug_line_str
// section. So we don't have to do the SHF_ALLOC trick we did with
// .debug_line.
static void parseAndPopulateDebugLineStr(BinarySection &LineStrSection,
MCDwarfLineStr &LineStr,
BinaryContext &BC) {
DataExtractor StrData(LineStrSection.getContents(),
BC.DwCtx->isLittleEndian(), 0);
uint64_t Offset = 0;
while (StrData.isValidOffset(Offset)) {
const uint64_t StrOffset = Offset;
Error Err = Error::success();
const char *CStr = StrData.getCStr(&Offset, &Err);
if (Err) {
errs() << "BOLT-ERROR: could not extract string from .debug_line_str";
continue;
}
const size_t NewOffset = LineStr.addString(CStr);
assert(StrOffset == NewOffset &&
"New offset in .debug_line_str doesn't match original offset");
}
}
void DwarfLineTable::emit(BinaryContext &BC, MCStreamer &Streamer) {
MCAssembler &Assembler =
static_cast<MCObjectStreamer *>(&Streamer)->getAssembler();
MCDwarfLineTableParams Params = Assembler.getDWARFLinetableParams();
auto &LineTables = BC.getDwarfLineTables();
// Bail out early so we don't switch to the debug_line section needlessly and
// in doing so create an unnecessary (if empty) section.
if (LineTables.empty())
return;
// In a v5 non-split line table, put the strings in a separate section.
std::optional<MCDwarfLineStr> LineStr;
ErrorOr<BinarySection &> LineStrSection =
BC.getUniqueSectionByName(".debug_line_str");
// Some versions of GCC output DWARF5 .debug_info, but DWARF4 or lower
// .debug_line, so need to check if section exists.
if (LineStrSection) {
LineStr.emplace(*BC.Ctx);
parseAndPopulateDebugLineStr(*LineStrSection, *LineStr, BC);
}
// Switch to the section where the table will be emitted into.
Streamer.switchSection(BC.MOFI->getDwarfLineSection());
const uint16_t DwarfVersion = BC.Ctx->getDwarfVersion();
// Handle the rest of the Compile Units.
for (auto &CUIDTablePair : LineTables) {
Streamer.getContext().setDwarfVersion(
CUIDTablePair.second.getDwarfVersion());
CUIDTablePair.second.emitCU(&Streamer, Params, LineStr, BC);
}
// Resetting DWARF version for rest of the flow.
BC.Ctx->setDwarfVersion(DwarfVersion);
// Still need to write the section out for the ExecutionEngine, and temp in
// memory object we are constructing.
[BOLT] Move from RuntimeDyld to JITLink RuntimeDyld has been deprecated in favor of JITLink. [1] This patch replaces all uses of RuntimeDyld in BOLT with JITLink. Care has been taken to minimize the impact on the code structure in order to ease the inspection of this (rather large) changeset. Since BOLT relied on the RuntimeDyld API in multiple places, this wasn't always possible though and I'll explain the changes in code structure first. Design note: BOLT uses a JIT linker to perform what essentially is static linking. No linked code is ever executed; the result of linking is simply written back to an executable file. For this reason, I restricted myself to the use of the core JITLink library and avoided ORC as much as possible. RuntimeDyld contains methods for loading objects (loadObject) and symbol lookup (getSymbol). Since JITLink doesn't provide a class with a similar interface, the BOLTLinker abstract class was added to implement it. It was added to Core since both the Rewrite and RuntimeLibs libraries make use of it. Wherever a RuntimeDyld object was used before, it was replaced with a BOLTLinker object. There is one major difference between the RuntimeDyld and BOLTLinker interfaces: in JITLink, section allocation and the application of fixups (relocation) happens in a single call (jitlink::link). That is, there is no separate method like finalizeWithMemoryManagerLocking in RuntimeDyld. BOLT used to remap sections between allocating (loadObject) and linking them (finalizeWithMemoryManagerLocking). This doesn't work anymore with JITLink. Instead, BOLTLinker::loadObject accepts a callback that is called before fixups are applied which is used to remap sections. The actual implementation of the BOLTLinker interface lives in the JITLinkLinker class in the Rewrite library. It's the only part of the BOLT code that should directly interact with the JITLink API. For loading object, JITLinkLinker first creates a LinkGraph (jitlink::createLinkGraphFromObject) and then links it (jitlink::link). For the latter, it uses a custom JITLinkContext with the following properties: - Use BOLT's ExecutableFileMemoryManager. This one was updated to implement the JITLinkMemoryManager interface. Since BOLT never executes code, its finalization step is a no-op. - Pass config: don't use the default target passes since they modify DWARF sections in a way that seems incompatible with BOLT. Also run a custom pre-prune pass that makes sure sections without symbols are not pruned by JITLink. - Implement symbol lookup. This used to be implemented by BOLTSymbolResolver. - Call the section mapper callback before the final linking step. - Copy symbol values when the LinkGraph is resolved. Symbols are stored inside JITLinkLinker to ensure that later objects (i.e., instrumentation libraries) can find them. This functionality used to be provided by RuntimeDyld but I did not find a way to use JITLink directly for this. Some more minor points of interest: - BinarySection::SectionID: JITLink doesn't have something equivalent to RuntimeDyld's Section IDs. Instead, sections can only be referred to by name. Hence, SectionID was updated to a string. - There seem to be no tests for Mach-O. I've tested a small hello-world style binary but not more than that. - On Mach-O, JITLink "normalizes" section names to include the segment name. I had to parse the section name back from this manually which feels slightly hacky. [1] https://reviews.llvm.org/D145686#4222642 Reviewed By: rafauler Differential Revision: https://reviews.llvm.org/D147544
2023-06-15 10:52:11 +02:00
if (LineStr)
LineStr->emitSection(&Streamer);
}
} // namespace bolt
} // namespace llvm