llvm-project/mlir/lib/IR/MLIRContext.cpp

872 lines
32 KiB
C++
Raw Normal View History

//===- MLIRContext.cpp - MLIR Type Classes --------------------------------===//
//
// Copyright 2019 The MLIR Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// =============================================================================
#include "mlir/IR/MLIRContext.h"
#include "AffineExprDetail.h"
#include "AffineMapDetail.h"
#include "AttributeDetail.h"
#include "IntegerSetDetail.h"
#include "LocationDetail.h"
#include "TypeDetail.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Function.h"
#include "mlir/IR/Identifier.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/Types.h"
#include "mlir/Support/STLExtras.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/RWMutex.h"
#include "llvm/Support/raw_ostream.h"
#include <memory>
using namespace mlir;
using namespace mlir::detail;
using llvm::hash_combine;
using llvm::hash_combine_range;
/// A utility function to safely get or create a uniqued instance within the
/// given set container.
template <typename ValueT, typename DenseInfoT, typename KeyT,
typename ConstructorFn>
static ValueT safeGetOrCreate(DenseSet<ValueT, DenseInfoT> &container,
KeyT &&key, llvm::sys::SmartRWMutex<true> &mutex,
ConstructorFn &&constructorFn) {
{ // Check for an existing instance in read-only mode.
llvm::sys::SmartScopedReader<true> instanceLock(mutex);
auto it = container.find_as(key);
if (it != container.end())
return *it;
}
// Aquire a writer-lock so that we can safely create the new instance.
llvm::sys::SmartScopedWriter<true> instanceLock(mutex);
// Check for an existing instance again here, because another writer thread
// may have already created one.
auto existing = container.insert_as(ValueT(), key);
if (!existing.second)
return *existing.first;
// Otherwise, construct a new instance of the value.
return *existing.first = constructorFn();
}
/// A utility function to thread-safely get or create a uniqued instance within
/// the given vector container.
template <typename ValueT, typename ConstructorFn>
ValueT safeGetOrCreate(std::vector<ValueT> &container, unsigned position,
llvm::sys::SmartRWMutex<true> &mutex,
ConstructorFn &&constructorFn) {
{ // Check for an existing instance in read-only mode.
llvm::sys::SmartScopedReader<true> lock(mutex);
if (container.size() > position && container[position])
return container[position];
}
// Aquire a writer-lock so that we can safely create the new instance.
llvm::sys::SmartScopedWriter<true> lock(mutex);
// Check if we need to resize.
if (position >= container.size())
container.resize(position + 1, nullptr);
// Check for an existing instance again here, because another writer thread
// may have already created one.
auto *&result = container[position];
if (result)
return result;
return result = constructorFn();
}
/// A utility function to safely get or create a uniqued instance within the
/// given map container.
template <typename ContainerTy, typename KeyT, typename ConstructorFn>
static typename ContainerTy::mapped_type
safeGetOrCreate(ContainerTy &container, KeyT &&key,
llvm::sys::SmartRWMutex<true> &mutex,
ConstructorFn &&constructorFn) {
{ // Check for an existing instance in read-only mode.
llvm::sys::SmartScopedReader<true> instanceLock(mutex);
auto it = container.find(key);
if (it != container.end())
return it->second;
}
// Aquire a writer-lock so that we can safely create the new instance.
llvm::sys::SmartScopedWriter<true> instanceLock(mutex);
// Check for an existing instance again here, because another writer thread
// may have already created one.
auto *&result = container[key];
if (result)
return result;
// Otherwise, construct a new instance of the value.
return result = constructorFn();
}
namespace {
/// A builtin dialect to define types/etc that are necessary for the validity of
/// the IR.
struct BuiltinDialect : public Dialect {
BuiltinDialect(MLIRContext *context) : Dialect(/*name=*/"", context) {
addAttributes<AffineMapAttr, ArrayAttr, BoolAttr, DenseElementsAttr,
DictionaryAttr, FloatAttr, FunctionAttr, IntegerAttr,
IntegerSetAttr, OpaqueAttr, OpaqueElementsAttr,
SparseElementsAttr, StringAttr, TypeAttr, UnitAttr>();
addTypes<ComplexType, FloatType, FunctionType, IndexType, IntegerType,
MemRefType, NoneType, OpaqueType, RankedTensorType, TupleType,
UnrankedTensorType, VectorType>();
// TODO: FuncOp should be moved to a different dialect when it has been
// fully decoupled from the core.
addOperations<FuncOp>();
}
};
struct AffineMapKeyInfo : DenseMapInfo<AffineMap> {
// Affine maps are uniqued based on their dim/symbol counts and affine
// expressions.
using KeyTy = std::tuple<unsigned, unsigned, ArrayRef<AffineExpr>>;
using DenseMapInfo<AffineMap>::isEqual;
static unsigned getHashValue(const AffineMap &key) {
return getHashValue(
KeyTy(key.getNumDims(), key.getNumSymbols(), key.getResults()));
}
static unsigned getHashValue(KeyTy key) {
return hash_combine(
std::get<0>(key), std::get<1>(key),
hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()));
}
static bool isEqual(const KeyTy &lhs, AffineMap rhs) {
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
return false;
return lhs == std::make_tuple(rhs.getNumDims(), rhs.getNumSymbols(),
rhs.getResults());
}
};
struct IntegerSetKeyInfo : DenseMapInfo<IntegerSet> {
// Integer sets are uniqued based on their dim/symbol counts, affine
// expressions appearing in the LHS of constraints, and eqFlags.
using KeyTy =
std::tuple<unsigned, unsigned, ArrayRef<AffineExpr>, ArrayRef<bool>>;
using DenseMapInfo<IntegerSet>::isEqual;
static unsigned getHashValue(const IntegerSet &key) {
return getHashValue(KeyTy(key.getNumDims(), key.getNumSymbols(),
key.getConstraints(), key.getEqFlags()));
}
static unsigned getHashValue(KeyTy key) {
return hash_combine(
std::get<0>(key), std::get<1>(key),
hash_combine_range(std::get<2>(key).begin(), std::get<2>(key).end()),
hash_combine_range(std::get<3>(key).begin(), std::get<3>(key).end()));
}
static bool isEqual(const KeyTy &lhs, IntegerSet rhs) {
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
return false;
return lhs == std::make_tuple(rhs.getNumDims(), rhs.getNumSymbols(),
rhs.getConstraints(), rhs.getEqFlags());
}
};
struct CallSiteLocationKeyInfo : DenseMapInfo<CallSiteLocationStorage *> {
// Call locations are uniqued based on their held concret location
// and the caller location.
using KeyTy = std::pair<Location, Location>;
using DenseMapInfo<CallSiteLocationStorage *>::isEqual;
static unsigned getHashValue(CallSiteLocationStorage *key) {
return getHashValue(KeyTy(key->callee, key->caller));
}
static unsigned getHashValue(KeyTy key) {
return hash_combine(key.first, key.second);
}
static bool isEqual(const KeyTy &lhs, const CallSiteLocationStorage *rhs) {
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
return false;
return lhs == std::make_pair(rhs->callee, rhs->caller);
}
};
struct FusedLocKeyInfo : DenseMapInfo<FusedLocationStorage *> {
// Fused locations are uniqued based on their held locations and an optional
// metadata attribute.
using KeyTy = std::pair<ArrayRef<Location>, Attribute>;
using DenseMapInfo<FusedLocationStorage *>::isEqual;
static unsigned getHashValue(FusedLocationStorage *key) {
return getHashValue(KeyTy(key->getLocations(), key->metadata));
}
static unsigned getHashValue(KeyTy key) {
return hash_combine(hash_combine_range(key.first.begin(), key.first.end()),
key.second);
}
static bool isEqual(const KeyTy &lhs, const FusedLocationStorage *rhs) {
if (rhs == getEmptyKey() || rhs == getTombstoneKey())
return false;
return lhs == std::make_pair(rhs->getLocations(), rhs->metadata);
}
};
} // end anonymous namespace.
namespace mlir {
/// This is the implementation of the MLIRContext class, using the pImpl idiom.
/// This class is completely private to this file, so everything is public.
class MLIRContextImpl {
public:
//===--------------------------------------------------------------------===//
// Location uniquing
//===--------------------------------------------------------------------===//
// Location allocator and mutex for thread safety.
llvm::BumpPtrAllocator locationAllocator;
llvm::sys::SmartRWMutex<true> locationMutex;
/// The singleton for UnknownLoc.
UnknownLocationStorage theUnknownLoc;
/// FileLineColLoc uniquing.
DenseMap<std::tuple<const char *, unsigned, unsigned>,
FileLineColLocationStorage *>
fileLineColLocs;
/// NameLocation uniquing.
DenseMap<const char *, NameLocationStorage *> nameLocs;
/// CallLocation uniquing.
DenseSet<CallSiteLocationStorage *, CallSiteLocationKeyInfo> callLocs;
/// FusedLoc uniquing.
using FusedLocations = DenseSet<FusedLocationStorage *, FusedLocKeyInfo>;
FusedLocations fusedLocs;
//===--------------------------------------------------------------------===//
// Identifier uniquing
//===--------------------------------------------------------------------===//
// Identifier allocator and mutex for thread safety.
llvm::BumpPtrAllocator identifierAllocator;
llvm::sys::SmartRWMutex<true> identifierMutex;
//===--------------------------------------------------------------------===//
// Diagnostics
//===--------------------------------------------------------------------===//
DiagnosticEngine diagEngine;
//===--------------------------------------------------------------------===//
// Other
//===--------------------------------------------------------------------===//
/// A general purpose mutex to lock access to parts of the context that do not
/// have a more specific mutex, e.g. registry operations.
llvm::sys::SmartRWMutex<true> contextMutex;
/// This is a list of dialects that are created referring to this context.
/// The MLIRContext owns the objects.
std::vector<std::unique_ptr<Dialect>> dialects;
/// This is a mapping from operation name to AbstractOperation for registered
/// operations.
llvm::StringMap<AbstractOperation> registeredOperations;
/// This is a mapping from class identifier to Dialect for registered
/// attributes and types.
DenseMap<const ClassID *, Dialect *> registeredDialectSymbols;
/// These are identifiers uniqued into this MLIRContext.
llvm::StringMap<char, llvm::BumpPtrAllocator &> identifiers;
//===--------------------------------------------------------------------===//
// Affine uniquing
//===--------------------------------------------------------------------===//
// Affine allocator and mutex for thread safety.
llvm::BumpPtrAllocator affineAllocator;
llvm::sys::SmartRWMutex<true> affineMutex;
// Affine map uniquing.
using AffineMapSet = DenseSet<AffineMap, AffineMapKeyInfo>;
AffineMapSet affineMaps;
// Integer set uniquing.
using IntegerSets = DenseSet<IntegerSet, IntegerSetKeyInfo>;
IntegerSets integerSets;
// Affine expression uniqui'ing.
StorageUniquer affineUniquer;
//===--------------------------------------------------------------------===//
// Type uniquing
//===--------------------------------------------------------------------===//
StorageUniquer typeUniquer;
/// Cached Type Instances.
FloatType bf16Ty, f16Ty, f32Ty, f64Ty;
IndexType indexTy;
IntegerType int1Ty, int8Ty, int16Ty, int32Ty, int64Ty, int128Ty;
NoneType noneType;
//===--------------------------------------------------------------------===//
// Attribute uniquing
//===--------------------------------------------------------------------===//
StorageUniquer attributeUniquer;
/// Cached Attribute Instances.
BoolAttr falseAttr, trueAttr;
UnitAttr unitAttr;
public:
MLIRContextImpl() : identifiers(identifierAllocator) {}
};
} // end namespace mlir
MLIRContext::MLIRContext() : impl(new MLIRContextImpl()) {
new BuiltinDialect(this);
registerAllDialects(this);
// Initialize several common attributes and types to avoid the need to lock
// the context when accessing them.
//// Types.
/// Floating-point Types.
impl->bf16Ty = TypeUniquer::get<FloatType>(this, StandardTypes::BF16);
impl->f16Ty = TypeUniquer::get<FloatType>(this, StandardTypes::F16);
impl->f32Ty = TypeUniquer::get<FloatType>(this, StandardTypes::F32);
impl->f64Ty = TypeUniquer::get<FloatType>(this, StandardTypes::F64);
/// Index Type.
impl->indexTy = TypeUniquer::get<IndexType>(this, StandardTypes::Index);
/// Integer Types.
impl->int1Ty = TypeUniquer::get<IntegerType>(this, StandardTypes::Integer, 1);
impl->int8Ty = TypeUniquer::get<IntegerType>(this, StandardTypes::Integer, 8);
impl->int16Ty =
TypeUniquer::get<IntegerType>(this, StandardTypes::Integer, 16);
impl->int32Ty =
TypeUniquer::get<IntegerType>(this, StandardTypes::Integer, 32);
impl->int64Ty =
TypeUniquer::get<IntegerType>(this, StandardTypes::Integer, 64);
impl->int128Ty =
TypeUniquer::get<IntegerType>(this, StandardTypes::Integer, 128);
/// None Type.
impl->noneType = TypeUniquer::get<NoneType>(this, StandardTypes::None);
//// Attributes.
//// Note: These must be registered after the types as they may generate one
//// of the above types internally.
/// Bool Attributes.
// Note: The context is also used within the BoolAttrStorage.
impl->falseAttr = AttributeUniquer::get<BoolAttr>(
this, StandardAttributes::Bool, this, false);
impl->trueAttr = AttributeUniquer::get<BoolAttr>(
this, StandardAttributes::Bool, this, true);
/// Unit Attribute.
impl->unitAttr =
AttributeUniquer::get<UnitAttr>(this, StandardAttributes::Unit);
}
MLIRContext::~MLIRContext() {}
/// Copy the specified array of elements into memory managed by the provided
/// bump pointer allocator. This assumes the elements are all PODs.
template <typename T>
static ArrayRef<T> copyArrayRefInto(llvm::BumpPtrAllocator &allocator,
ArrayRef<T> elements) {
auto result = allocator.Allocate<T>(elements.size());
std::uninitialized_copy(elements.begin(), elements.end(), result);
return ArrayRef<T>(result, elements.size());
}
//===----------------------------------------------------------------------===//
// Diagnostic Handlers
//===----------------------------------------------------------------------===//
/// Helper function used to emit a diagnostic with an optionally empty twine
/// message. If the message is empty, then it is not inserted into the
/// diagnostic.
static InFlightDiagnostic emitDiag(MLIRContextImpl &ctx, Location location,
DiagnosticSeverity severity,
const llvm::Twine &message) {
auto diag = ctx.diagEngine.emit(location, severity);
if (!message.isTriviallyEmpty())
diag << message;
return diag;
}
InFlightDiagnostic MLIRContext::emitError(Location location) {
return emitError(location, /*message=*/{});
}
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-03 10:01:01 -07:00
InFlightDiagnostic MLIRContext::emitError(Location location,
const llvm::Twine &message) {
return emitDiag(getImpl(), location, DiagnosticSeverity::Error, message);
}
/// Emit a warning message using the diagnostic engine.
InFlightDiagnostic MLIRContext::emitWarning(Location location) {
return emitWarning(location, /*message=*/{});
}
InFlightDiagnostic MLIRContext::emitWarning(Location location,
const Twine &message) {
return emitDiag(getImpl(), location, DiagnosticSeverity::Warning, message);
}
/// Emit a remark message using the diagnostic engine.
InFlightDiagnostic MLIRContext::emitRemark(Location location) {
return emitRemark(location, /*message=*/{});
}
Introduce a new API for emitting diagnostics with Diagnostic and InFlightDiagnostic. The Diagnostic class contains all of the information necessary to report a diagnostic to the DiagnosticEngine. It should generally not be constructed directly, and instead used transitively via InFlightDiagnostic. A diagnostic is currently comprised of several different elements: * A severity level. * A source Location. * A list of DiagnosticArguments that help compose and comprise the output message. * A DiagnosticArgument represents any value that may be part of the diagnostic, e.g. string, integer, Type, Attribute, etc. * Arguments can be added to the diagnostic via the stream(<<) operator. * (In a future cl) A list of attached notes. * These are in the form of other diagnostics that provide supplemental information to the main diagnostic, but do not have context on their own. The InFlightDiagnostic class represents an RAII wrapper around a Diagnostic that is set to be reported with the diagnostic engine. This allows for the user to modify a diagnostic that is inflight. The internally wrapped diagnostic can be reported directly or automatically upon destruction. These classes allow for more natural composition of diagnostics by removing the restriction that the message of a diagnostic is comprised of a single Twine. They should also allow for nice incremental improvements to the diagnostics experience in the future, e.g. formatv style diagnostics. Simple Example: emitError(loc, "integer bitwidth is limited to " + Twine(IntegerType::kMaxWidth) + " bits"); emitError(loc) << "integer bitwidth is limited to " << IntegerType::kMaxWidth << " bits"; -- PiperOrigin-RevId: 246526439
2019-05-03 10:01:01 -07:00
InFlightDiagnostic MLIRContext::emitRemark(Location location,
const Twine &message) {
return emitDiag(getImpl(), location, DiagnosticSeverity::Remark, message);
}
/// Returns the diagnostic engine for this context.
DiagnosticEngine &MLIRContext::getDiagEngine() { return getImpl().diagEngine; }
//===----------------------------------------------------------------------===//
// Dialect and Operation Registration
//===----------------------------------------------------------------------===//
/// Return information about all registered IR dialects.
std::vector<Dialect *> MLIRContext::getRegisteredDialects() {
// Lock access to the context registry.
llvm::sys::SmartScopedReader<true> registryLock(getImpl().contextMutex);
std::vector<Dialect *> result;
result.reserve(getImpl().dialects.size());
for (auto &dialect : getImpl().dialects)
result.push_back(dialect.get());
return result;
}
/// Get a registered IR dialect with the given namespace. If none is found,
/// then return nullptr.
Dialect *MLIRContext::getRegisteredDialect(StringRef name) {
// Lock access to the context registry.
llvm::sys::SmartScopedReader<true> registryLock(getImpl().contextMutex);
for (auto &dialect : getImpl().dialects)
if (name == dialect->getNamespace())
return dialect.get();
return nullptr;
}
/// Register this dialect object with the specified context. The context
/// takes ownership of the heap allocated dialect.
void Dialect::registerDialect(MLIRContext *context) {
auto &impl = context->getImpl();
// Lock access to the context registry.
llvm::sys::SmartScopedWriter<true> registryLock(impl.contextMutex);
// Abort if dialect with namespace has already been registered.
if (llvm::any_of(impl.dialects, [this](std::unique_ptr<Dialect> &dialect) {
return dialect->getNamespace() == getNamespace();
})) {
llvm::report_fatal_error("a dialect with namespace '" +
Twine(getNamespace()) +
"' has already been registered");
}
impl.dialects.push_back(std::unique_ptr<Dialect>(this));
}
/// Return information about all registered operations. This isn't very
/// efficient, typically you should ask the operations about their properties
/// directly.
std::vector<AbstractOperation *> MLIRContext::getRegisteredOperations() {
std::vector<std::pair<StringRef, AbstractOperation *>> opsToSort;
{ // Lock access to the context registry.
llvm::sys::SmartScopedReader<true> registryLock(getImpl().contextMutex);
// We just have the operations in a non-deterministic hash table order. Dump
// into a temporary array, then sort it by operation name to get a stable
// ordering.
llvm::StringMap<AbstractOperation> &registeredOps =
getImpl().registeredOperations;
opsToSort.reserve(registeredOps.size());
for (auto &elt : registeredOps)
opsToSort.push_back({elt.first(), &elt.second});
}
llvm::array_pod_sort(opsToSort.begin(), opsToSort.end());
std::vector<AbstractOperation *> result;
result.reserve(opsToSort.size());
for (auto &elt : opsToSort)
result.push_back(elt.second);
return result;
}
void Dialect::addOperation(AbstractOperation opInfo) {
assert((getNamespace().empty() ||
opInfo.name.split('.').first == getNamespace()) &&
"op name doesn't start with dialect namespace");
assert(&opInfo.dialect == this && "Dialect object mismatch");
auto &impl = context->getImpl();
// Lock access to the context registry.
llvm::sys::SmartScopedWriter<true> registryLock(impl.contextMutex);
if (!impl.registeredOperations.insert({opInfo.name, opInfo}).second) {
llvm::errs() << "error: operation named '" << opInfo.name
<< "' is already registered.\n";
abort();
}
}
/// Register a dialect-specific symbol(e.g. type) with the current context.
void Dialect::addSymbol(const ClassID *const classID) {
auto &impl = context->getImpl();
// Lock access to the context registry.
llvm::sys::SmartScopedWriter<true> registryLock(impl.contextMutex);
if (!impl.registeredDialectSymbols.insert({classID, this}).second) {
llvm::errs() << "error: dialect symbol already registered.\n";
abort();
}
}
/// Look up the specified operation in the operation set and return a pointer
/// to it if present. Otherwise, return a null pointer.
const AbstractOperation *AbstractOperation::lookup(StringRef opName,
MLIRContext *context) {
auto &impl = context->getImpl();
// Lock access to the context registry.
llvm::sys::SmartScopedReader<true> registryLock(impl.contextMutex);
auto it = impl.registeredOperations.find(opName);
if (it != impl.registeredOperations.end())
return &it->second;
return nullptr;
}
//===----------------------------------------------------------------------===//
// Identifier uniquing
//===----------------------------------------------------------------------===//
/// Return an identifier for the specified string.
Identifier Identifier::get(StringRef str, MLIRContext *context) {
assert(!str.empty() && "Cannot create an empty identifier");
assert(str.find('\0') == StringRef::npos &&
"Cannot create an identifier with a nul character");
auto &impl = context->getImpl();
{ // Check for an existing identifier in read-only mode.
llvm::sys::SmartScopedReader<true> contextLock(impl.identifierMutex);
auto it = impl.identifiers.find(str);
if (it != impl.identifiers.end())
return Identifier(it->getKeyData());
}
// Aquire a writer-lock so that we can safely create the new instance.
llvm::sys::SmartScopedWriter<true> contextLock(impl.identifierMutex);
auto it = impl.identifiers.insert({str, char()}).first;
return Identifier(it->getKeyData());
}
//===----------------------------------------------------------------------===//
// Location uniquing
//===----------------------------------------------------------------------===//
UnknownLoc UnknownLoc::get(MLIRContext *context) {
return &context->getImpl().theUnknownLoc;
}
FileLineColLoc FileLineColLoc::get(Identifier filename, unsigned line,
unsigned column, MLIRContext *context) {
auto &impl = context->getImpl();
// Safely get or create a location instance.
auto key = std::make_tuple(filename.data(), line, column);
return safeGetOrCreate(impl.fileLineColLocs, key, impl.locationMutex, [&] {
return new (impl.locationAllocator.Allocate<FileLineColLocationStorage>())
FileLineColLocationStorage(filename, line, column);
});
}
NameLoc NameLoc::get(Identifier name, Location child, MLIRContext *context) {
auto &impl = context->getImpl();
assert(!child.isa<NameLoc>() &&
"a NameLoc cannot be used as a child of another NameLoc");
// Safely get or create a location instance.
return safeGetOrCreate(impl.nameLocs, name.data(), impl.locationMutex, [&] {
return new (impl.locationAllocator.Allocate<NameLocationStorage>())
NameLocationStorage(name, child);
});
}
CallSiteLoc CallSiteLoc::get(Location callee, Location caller,
MLIRContext *context) {
auto &impl = context->getImpl();
// Safely get or create a location instance.
auto key = std::make_pair(callee, caller);
return safeGetOrCreate(impl.callLocs, key, impl.locationMutex, [&] {
return new (impl.locationAllocator.Allocate<CallSiteLocationStorage>())
CallSiteLocationStorage(callee, caller);
});
}
Location FusedLoc::get(ArrayRef<Location> locs, Attribute metadata,
MLIRContext *context) {
// Unique the set of locations to be fused.
llvm::SmallSetVector<Location, 4> decomposedLocs;
for (auto loc : locs) {
// If the location is a fused location we decompose it if it has no
// metadata or the metadata is the same as the top level metadata.
if (auto fusedLoc = loc.dyn_cast<FusedLoc>()) {
if (fusedLoc->getMetadata() == metadata) {
// UnknownLoc's have already been removed from FusedLocs so we can
// simply add all of the internal locations.
decomposedLocs.insert(fusedLoc->getLocations().begin(),
fusedLoc->getLocations().end());
continue;
}
}
// Otherwise, only add known locations to the set.
if (!loc.isa<UnknownLoc>())
decomposedLocs.insert(loc);
}
locs = decomposedLocs.getArrayRef();
// Handle the simple cases of less than two locations.
if (locs.empty())
return UnknownLoc::get(context);
if (locs.size() == 1)
return locs.front();
auto &impl = context->getImpl();
// Safely get or create a location instance.
auto key = std::make_pair(locs, metadata);
return safeGetOrCreate(impl.fusedLocs, key, impl.locationMutex, [&] {
auto byteSize =
FusedLocationStorage::totalSizeToAlloc<Location>(locs.size());
auto rawMem = impl.locationAllocator.Allocate(
byteSize, alignof(FusedLocationStorage));
auto result = new (rawMem) FusedLocationStorage(locs.size(), metadata);
std::uninitialized_copy(locs.begin(), locs.end(),
result->getTrailingObjects<Location>());
return result;
});
}
//===----------------------------------------------------------------------===//
// Type uniquing
//===----------------------------------------------------------------------===//
static Dialect &lookupDialectForSymbol(MLIRContext *ctx,
const ClassID *const classID) {
auto &impl = ctx->getImpl();
auto it = impl.registeredDialectSymbols.find(classID);
assert(it != impl.registeredDialectSymbols.end() &&
"symbol is not registered.");
return *it->second;
}
/// Returns the storage unqiuer used for constructing type storage instances.
/// This should not be used directly.
StorageUniquer &MLIRContext::getTypeUniquer() { return getImpl().typeUniquer; }
/// Get the dialect that registered the type with the provided typeid.
Dialect &TypeUniquer::lookupDialectForType(MLIRContext *ctx,
const ClassID *const typeID) {
return lookupDialectForSymbol(ctx, typeID);
}
FloatType FloatType::get(StandardTypes::Kind kind, MLIRContext *context) {
assert(kindof(kind) && "Not a FP kind.");
switch (kind) {
case StandardTypes::BF16:
return context->getImpl().bf16Ty;
case StandardTypes::F16:
return context->getImpl().f16Ty;
case StandardTypes::F32:
return context->getImpl().f32Ty;
case StandardTypes::F64:
return context->getImpl().f64Ty;
default:
llvm_unreachable("unexpected floating-point kind");
}
}
/// Get an instance of the IndexType.
IndexType IndexType::get(MLIRContext *context) {
return context->getImpl().indexTy;
}
/// Return an existing integer type instance if one is cached within the
/// context.
static IntegerType getCachedIntegerType(unsigned width, MLIRContext *context) {
switch (width) {
case 1:
return context->getImpl().int1Ty;
case 8:
return context->getImpl().int8Ty;
case 16:
return context->getImpl().int16Ty;
case 32:
return context->getImpl().int32Ty;
case 64:
return context->getImpl().int64Ty;
case 128:
return context->getImpl().int128Ty;
default:
return IntegerType();
}
}
IntegerType IntegerType::get(unsigned width, MLIRContext *context) {
if (auto cached = getCachedIntegerType(width, context))
return cached;
return Base::get(context, StandardTypes::Integer, width);
}
IntegerType IntegerType::getChecked(unsigned width, MLIRContext *context,
Location location) {
if (auto cached = getCachedIntegerType(width, context))
return cached;
return Base::getChecked(location, context, StandardTypes::Integer, width);
}
/// Get an instance of the NoneType.
NoneType NoneType::get(MLIRContext *context) {
return context->getImpl().noneType;
}
//===----------------------------------------------------------------------===//
// Attribute uniquing
//===----------------------------------------------------------------------===//
/// Returns the storage uniquer used for constructing attribute storage
/// instances. This should not be used directly.
StorageUniquer &MLIRContext::getAttributeUniquer() {
return getImpl().attributeUniquer;
}
/// Returns a functor used to initialize new attribute storage instances.
std::function<void(AttributeStorage *)>
AttributeUniquer::getInitFn(MLIRContext *ctx, const ClassID *const attrID) {
return [ctx, attrID](AttributeStorage *storage) {
storage->initializeDialect(lookupDialectForSymbol(ctx, attrID));
// If the attribute did not provide a type, then default to NoneType.
if (!storage->getType())
storage->setType(NoneType::get(ctx));
};
}
BoolAttr BoolAttr::get(bool value, MLIRContext *context) {
return value ? context->getImpl().trueAttr : context->getImpl().falseAttr;
}
UnitAttr UnitAttr::get(MLIRContext *context) {
return context->getImpl().unitAttr;
}
//===----------------------------------------------------------------------===//
// AffineMap uniquing
//===----------------------------------------------------------------------===//
StorageUniquer &MLIRContext::getAffineUniquer() {
return getImpl().affineUniquer;
}
AffineMap AffineMap::get(unsigned dimCount, unsigned symbolCount,
ArrayRef<AffineExpr> results) {
// The number of results can't be zero.
assert(!results.empty());
auto &impl = results[0].getContext()->getImpl();
auto key = std::make_tuple(dimCount, symbolCount, results);
// Safely get or create an AffineMap instance.
return safeGetOrCreate(impl.affineMaps, key, impl.affineMutex, [&] {
auto *res = impl.affineAllocator.Allocate<detail::AffineMapStorage>();
// Copy the results into the bump pointer.
results = copyArrayRefInto(impl.affineAllocator, results);
// Initialize the memory using placement new.
new (res) detail::AffineMapStorage{dimCount, symbolCount, results};
return AffineMap(res);
});
}
//===----------------------------------------------------------------------===//
// Integer Sets: these are allocated into the bump pointer, and are immutable.
// Unlike AffineMap's, these are uniqued only if they are small.
//===----------------------------------------------------------------------===//
IntegerSet IntegerSet::get(unsigned dimCount, unsigned symbolCount,
ArrayRef<AffineExpr> constraints,
ArrayRef<bool> eqFlags) {
// The number of constraints can't be zero.
assert(!constraints.empty());
assert(constraints.size() == eqFlags.size());
auto &impl = constraints[0].getContext()->getImpl();
// A utility function to construct a new IntegerSetStorage instance.
auto constructorFn = [&] {
auto *res = impl.affineAllocator.Allocate<detail::IntegerSetStorage>();
// Copy the results and equality flags into the bump pointer.
constraints = copyArrayRefInto(impl.affineAllocator, constraints);
eqFlags = copyArrayRefInto(impl.affineAllocator, eqFlags);
// Initialize the memory using placement new.
new (res)
detail::IntegerSetStorage{dimCount, symbolCount, constraints, eqFlags};
return IntegerSet(res);
};
// If this instance is uniqued, then we handle it separately so that multiple
// threads may simulatenously access existing instances.
if (constraints.size() < IntegerSet::kUniquingThreshold) {
auto key = std::make_tuple(dimCount, symbolCount, constraints, eqFlags);
return safeGetOrCreate(impl.integerSets, key, impl.affineMutex,
constructorFn);
}
// Otherwise, aquire a writer-lock so that we can safely create the new
// instance.
llvm::sys::SmartScopedWriter<true> affineLock(impl.affineMutex);
return constructorFn();
}