llvm-project/polly/lib/CodeGen/IslExprBuilder.cpp

429 lines
13 KiB
C++
Raw Normal View History

//===------ IslExprBuilder.cpp ----- Code generate isl AST expressions ----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//
#include "polly/CodeGen/IslExprBuilder.h"
#include "polly/Support/GICHelper.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
using namespace polly;
Type *IslExprBuilder::getWidestType(Type *T1, Type *T2) {
assert(isa<IntegerType>(T1) && isa<IntegerType>(T2));
if (T1->getPrimitiveSizeInBits() < T2->getPrimitiveSizeInBits())
return T2;
else
return T1;
}
Value *IslExprBuilder::createOpUnary(__isl_take isl_ast_expr *Expr) {
assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_minus &&
"Unsupported unary operation");
Value *V;
Type *MaxType = getType(Expr);
V = create(isl_ast_expr_get_op_arg(Expr, 0));
MaxType = getWidestType(MaxType, V->getType());
if (MaxType != V->getType())
V = Builder.CreateSExt(V, MaxType);
isl_ast_expr_free(Expr);
return Builder.CreateNSWNeg(V);
}
Value *IslExprBuilder::createOpNAry(__isl_take isl_ast_expr *Expr) {
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
"isl ast expression not of type isl_ast_op");
assert(isl_ast_expr_get_op_n_arg(Expr) >= 2 &&
"We need at least two operands in an n-ary operation");
Value *V;
V = create(isl_ast_expr_get_op_arg(Expr, 0));
for (int i = 0; i < isl_ast_expr_get_op_n_arg(Expr); ++i) {
Value *OpV;
OpV = create(isl_ast_expr_get_op_arg(Expr, i));
Type *Ty = getWidestType(V->getType(), OpV->getType());
if (Ty != OpV->getType())
OpV = Builder.CreateSExt(OpV, Ty);
if (Ty != V->getType())
V = Builder.CreateSExt(V, Ty);
switch (isl_ast_expr_get_op_type(Expr)) {
default:
llvm_unreachable("This is no n-ary isl ast expression");
case isl_ast_op_max: {
Value *Cmp = Builder.CreateICmpSGT(V, OpV);
V = Builder.CreateSelect(Cmp, V, OpV);
continue;
}
case isl_ast_op_min: {
Value *Cmp = Builder.CreateICmpSLT(V, OpV);
V = Builder.CreateSelect(Cmp, V, OpV);
continue;
}
}
}
// TODO: We can truncate the result, if it fits into a smaller type. This can
// help in cases where we have larger operands (e.g. i67) but the result is
// known to fit into i64. Without the truncation, the larger i67 type may
// force all subsequent operations to be performed on a non-native type.
isl_ast_expr_free(Expr);
return V;
}
Value *IslExprBuilder::createOpAccess(isl_ast_expr *Expr) {
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
"isl ast expression not of type isl_ast_op");
assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_access &&
"not an access isl ast expression");
assert(isl_ast_expr_get_op_n_arg(Expr) >= 2 &&
"We need at least two operands to create a member access.");
// TODO: Support for multi-dimensional array.
assert(isl_ast_expr_get_op_n_arg(Expr) == 2 &&
"Multidimensional access functions are not supported yet");
Value *Base = create(isl_ast_expr_get_op_arg(Expr, 0));
assert(Base->getType()->isPointerTy() && "Access base should be a pointer");
Value *Index = create(isl_ast_expr_get_op_arg(Expr, 1));
assert(Index->getType()->isIntegerTy() &&
"Access index should be an integer");
// TODO: Change the type of base before we create the GEP.
Type *PtrElTy = Base->getType()->getPointerElementType();
assert((PtrElTy->isIntOrIntVectorTy() || PtrElTy->isFPOrFPVectorTy()) &&
"We do not yet change the type of the access base during code "
"generation.");
Twine Name = "polly.access." + Base->getName();
Value *Access = Builder.CreateGEP(Base, Index, Name);
isl_ast_expr_free(Expr);
return Access;
}
Value *IslExprBuilder::createOpBin(__isl_take isl_ast_expr *Expr) {
Value *LHS, *RHS, *Res;
Type *MaxType;
isl_ast_op_type OpType;
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
"isl ast expression not of type isl_ast_op");
assert(isl_ast_expr_get_op_n_arg(Expr) == 2 &&
"not a binary isl ast expression");
OpType = isl_ast_expr_get_op_type(Expr);
LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
MaxType = LHS->getType();
MaxType = getWidestType(MaxType, RHS->getType());
// Take the result into account when calculating the widest type.
//
// For operations such as '+' the result may require a type larger than
// the type of the individual operands. For other operations such as '/', the
// result type cannot be larger than the type of the individual operand. isl
// does not calculate correct types for these operations and we consequently
// exclude those operations here.
switch (OpType) {
case isl_ast_op_pdiv_q:
case isl_ast_op_pdiv_r:
case isl_ast_op_div:
case isl_ast_op_fdiv_q:
// Do nothing
break;
case isl_ast_op_add:
case isl_ast_op_sub:
case isl_ast_op_mul:
MaxType = getWidestType(MaxType, getType(Expr));
break;
default:
llvm_unreachable("This is no binary isl ast expression");
}
if (MaxType != RHS->getType())
RHS = Builder.CreateSExt(RHS, MaxType);
if (MaxType != LHS->getType())
LHS = Builder.CreateSExt(LHS, MaxType);
switch (OpType) {
default:
llvm_unreachable("This is no binary isl ast expression");
case isl_ast_op_add:
Res = Builder.CreateNSWAdd(LHS, RHS);
break;
case isl_ast_op_sub:
Res = Builder.CreateNSWSub(LHS, RHS);
break;
case isl_ast_op_mul:
Res = Builder.CreateNSWMul(LHS, RHS);
break;
case isl_ast_op_div:
case isl_ast_op_pdiv_q: // Dividend is non-negative
Res = Builder.CreateSDiv(LHS, RHS);
break;
case isl_ast_op_fdiv_q: { // Round towards -infty
// TODO: Review code and check that this calculation does not yield
// incorrect overflow in some bordercases.
//
// floord(n,d) ((n < 0) ? (n - d + 1) : n) / d
Value *One = ConstantInt::get(MaxType, 1);
Value *Zero = ConstantInt::get(MaxType, 0);
Value *Sum1 = Builder.CreateSub(LHS, RHS);
Value *Sum2 = Builder.CreateAdd(Sum1, One);
Value *isNegative = Builder.CreateICmpSLT(LHS, Zero);
Value *Dividend = Builder.CreateSelect(isNegative, Sum2, LHS);
Res = Builder.CreateSDiv(Dividend, RHS);
break;
}
case isl_ast_op_pdiv_r: // Dividend is non-negative
Res = Builder.CreateSRem(LHS, RHS);
break;
}
// TODO: We can truncate the result, if it fits into a smaller type. This can
// help in cases where we have larger operands (e.g. i67) but the result is
// known to fit into i64. Without the truncation, the larger i67 type may
// force all subsequent operations to be performed on a non-native type.
isl_ast_expr_free(Expr);
return Res;
}
Value *IslExprBuilder::createOpSelect(__isl_take isl_ast_expr *Expr) {
assert(isl_ast_expr_get_op_type(Expr) == isl_ast_op_select &&
"Unsupported unary isl ast expression");
Value *LHS, *RHS, *Cond;
Type *MaxType = getType(Expr);
Cond = create(isl_ast_expr_get_op_arg(Expr, 0));
LHS = create(isl_ast_expr_get_op_arg(Expr, 1));
RHS = create(isl_ast_expr_get_op_arg(Expr, 2));
MaxType = getWidestType(MaxType, LHS->getType());
MaxType = getWidestType(MaxType, RHS->getType());
if (MaxType != RHS->getType())
RHS = Builder.CreateSExt(RHS, MaxType);
if (MaxType != LHS->getType())
LHS = Builder.CreateSExt(LHS, MaxType);
// TODO: Do we want to truncate the result?
isl_ast_expr_free(Expr);
return Builder.CreateSelect(Cond, LHS, RHS);
}
Value *IslExprBuilder::createOpICmp(__isl_take isl_ast_expr *Expr) {
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
"Expected an isl_ast_expr_op expression");
Value *LHS, *RHS, *Res;
LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
Type *MaxType = LHS->getType();
MaxType = getWidestType(MaxType, RHS->getType());
if (MaxType != RHS->getType())
RHS = Builder.CreateSExt(RHS, MaxType);
if (MaxType != LHS->getType())
LHS = Builder.CreateSExt(LHS, MaxType);
switch (isl_ast_expr_get_op_type(Expr)) {
default:
llvm_unreachable("Unsupported ICmp isl ast expression");
case isl_ast_op_eq:
Res = Builder.CreateICmpEQ(LHS, RHS);
break;
case isl_ast_op_le:
Res = Builder.CreateICmpSLE(LHS, RHS);
break;
case isl_ast_op_lt:
Res = Builder.CreateICmpSLT(LHS, RHS);
break;
case isl_ast_op_ge:
Res = Builder.CreateICmpSGE(LHS, RHS);
break;
case isl_ast_op_gt:
Res = Builder.CreateICmpSGT(LHS, RHS);
break;
}
isl_ast_expr_free(Expr);
return Res;
}
Value *IslExprBuilder::createOpBoolean(__isl_take isl_ast_expr *Expr) {
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
"Expected an isl_ast_expr_op expression");
Value *LHS, *RHS, *Res;
isl_ast_op_type OpType;
OpType = isl_ast_expr_get_op_type(Expr);
assert((OpType == isl_ast_op_and || OpType == isl_ast_op_or) &&
"Unsupported isl_ast_op_type");
LHS = create(isl_ast_expr_get_op_arg(Expr, 0));
RHS = create(isl_ast_expr_get_op_arg(Expr, 1));
// Even though the isl pretty printer prints the expressions as 'exp && exp'
// or 'exp || exp', we actually code generate the bitwise expressions
// 'exp & exp' or 'exp | exp'. This forces the evaluation of both branches,
// but it is, due to the use of i1 types, otherwise equivalent. The reason
// to go for bitwise operations is, that we assume the reduced control flow
// will outweight the overhead introduced by evaluating unneeded expressions.
// The isl code generation currently does not take advantage of the fact that
// the expression after an '||' or '&&' is in some cases not evaluated.
// Evaluating it anyways does not cause any undefined behaviour.
//
// TODO: Document in isl itself, that the unconditionally evaluating the
// second part of '||' or '&&' expressions is safe.
assert(LHS->getType() == Builder.getInt1Ty() && "Expected i1 type");
assert(RHS->getType() == Builder.getInt1Ty() && "Expected i1 type");
switch (OpType) {
default:
llvm_unreachable("Unsupported boolean expression");
case isl_ast_op_and:
Res = Builder.CreateAnd(LHS, RHS);
break;
case isl_ast_op_or:
Res = Builder.CreateOr(LHS, RHS);
break;
}
isl_ast_expr_free(Expr);
return Res;
}
Value *IslExprBuilder::createOp(__isl_take isl_ast_expr *Expr) {
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_op &&
"Expression not of type isl_ast_expr_op");
switch (isl_ast_expr_get_op_type(Expr)) {
case isl_ast_op_error:
case isl_ast_op_cond:
case isl_ast_op_and_then:
case isl_ast_op_or_else:
case isl_ast_op_call:
case isl_ast_op_member:
llvm_unreachable("Unsupported isl ast expression");
case isl_ast_op_access:
return createOpAccess(Expr);
case isl_ast_op_max:
case isl_ast_op_min:
return createOpNAry(Expr);
case isl_ast_op_add:
case isl_ast_op_sub:
case isl_ast_op_mul:
case isl_ast_op_div:
case isl_ast_op_fdiv_q: // Round towards -infty
case isl_ast_op_pdiv_q: // Dividend is non-negative
case isl_ast_op_pdiv_r: // Dividend is non-negative
return createOpBin(Expr);
case isl_ast_op_minus:
return createOpUnary(Expr);
case isl_ast_op_select:
return createOpSelect(Expr);
case isl_ast_op_and:
case isl_ast_op_or:
return createOpBoolean(Expr);
case isl_ast_op_eq:
case isl_ast_op_le:
case isl_ast_op_lt:
case isl_ast_op_ge:
case isl_ast_op_gt:
return createOpICmp(Expr);
}
llvm_unreachable("Unsupported isl_ast_expr_op kind.");
}
Value *IslExprBuilder::createId(__isl_take isl_ast_expr *Expr) {
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_id &&
"Expression not of type isl_ast_expr_ident");
isl_id *Id;
Value *V;
Id = isl_ast_expr_get_id(Expr);
assert(IDToValue.count(Id) && "Identifier not found");
V = IDToValue[Id];
isl_id_free(Id);
isl_ast_expr_free(Expr);
return V;
}
IntegerType *IslExprBuilder::getType(__isl_keep isl_ast_expr *Expr) {
// XXX: We assume i64 is large enough. This is often true, but in general
// incorrect. Also, on 32bit architectures, it would be beneficial to
// use a smaller type. We can and should directly derive this information
// during code generation.
return IntegerType::get(Builder.getContext(), 64);
}
Value *IslExprBuilder::createInt(__isl_take isl_ast_expr *Expr) {
assert(isl_ast_expr_get_type(Expr) == isl_ast_expr_int &&
"Expression not of type isl_ast_expr_int");
isl_val *Val;
Value *V;
APInt APValue;
IntegerType *T;
Val = isl_ast_expr_get_val(Expr);
APValue = APIntFromVal(Val);
T = getType(Expr);
APValue = APValue.sextOrSelf(T->getBitWidth());
V = ConstantInt::get(T, APValue);
isl_ast_expr_free(Expr);
return V;
}
Value *IslExprBuilder::create(__isl_take isl_ast_expr *Expr) {
switch (isl_ast_expr_get_type(Expr)) {
case isl_ast_expr_error:
llvm_unreachable("Code generation error");
case isl_ast_expr_op:
return createOp(Expr);
case isl_ast_expr_id:
return createId(Expr);
case isl_ast_expr_int:
return createInt(Expr);
}
llvm_unreachable("Unexpected enum value");
}