Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

344 lines
13 KiB
C++
Raw Normal View History

//===- Builders.cpp - MLIR Declarative Linalg Builders --------------------===//
//
// Part of the MLIR Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Linalg/EDSC/Builders.h"
#include "mlir/Dialect/Linalg/EDSC/Intrinsics.h"
#include "mlir/Dialect/Linalg/IR/LinalgOps.h"
#include "mlir/EDSC/Builders.h"
#include "mlir/EDSC/Intrinsics.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Builders.h"
#include "mlir/Support/Functional.h"
using namespace mlir;
using namespace mlir::edsc;
using namespace mlir::edsc::intrinsics;
using namespace mlir::edsc::ops;
using namespace mlir::linalg;
using namespace mlir::loop;
mlir::edsc::LoopRangeBuilder::LoopRangeBuilder(ValueHandle *iv,
ValueHandle range) {
assert(range.getType() && "expected !linalg.range type");
assert(range.getValue().getDefiningOp() &&
"need operations to extract range parts");
auto rangeOp = cast<RangeOp>(range.getValue().getDefiningOp());
auto lb = rangeOp.min();
auto ub = rangeOp.max();
auto step = rangeOp.step();
auto forOp = OperationHandle::createOp<ForOp>(lb, ub, step);
*iv = ValueHandle(forOp.getInductionVar());
auto *body = forOp.getBody();
enter(body, /*prev=*/1);
}
mlir::edsc::LoopRangeBuilder::LoopRangeBuilder(ValueHandle *iv,
SubViewOp::Range range) {
auto forOp =
OperationHandle::createOp<ForOp>(range.offset, range.size, range.stride);
*iv = ValueHandle(forOp.getInductionVar());
auto *body = forOp.getBody();
enter(body, /*prev=*/1);
}
ValueHandle mlir::edsc::LoopRangeBuilder::
operator()(std::function<void(void)> fun) {
if (fun)
fun();
exit();
return ValueHandle::null();
}
mlir::edsc::LoopNestRangeBuilder::LoopNestRangeBuilder(
ArrayRef<ValueHandle *> ivs, ArrayRef<SubViewOp::Range> ranges) {
loops.reserve(ranges.size());
for (unsigned i = 0, e = ranges.size(); i < e; ++i) {
loops.emplace_back(ivs[i], ranges[i]);
}
assert(loops.size() == ivs.size() && "Mismatch loops vs ivs size");
}
mlir::edsc::LoopNestRangeBuilder::LoopNestRangeBuilder(
ArrayRef<ValueHandle *> ivs, ArrayRef<ValueHandle> ranges) {
loops.reserve(ranges.size());
for (unsigned i = 0, e = ranges.size(); i < e; ++i) {
loops.emplace_back(ivs[i], ranges[i]);
}
assert(loops.size() == ivs.size() && "Mismatch loops vs ivs size");
}
mlir::edsc::LoopNestRangeBuilder::LoopNestRangeBuilder(
ArrayRef<ValueHandle *> ivs, ArrayRef<Value> ranges)
: LoopNestRangeBuilder(
ivs, SmallVector<ValueHandle, 4>(ranges.begin(), ranges.end())) {}
ValueHandle LoopNestRangeBuilder::LoopNestRangeBuilder::
operator()(std::function<void(void)> fun) {
if (fun)
fun();
for (auto &lit : reverse(loops)) {
lit({});
}
return ValueHandle::null();
}
namespace mlir {
namespace edsc {
template <>
GenericLoopNestRangeBuilder<loop::ForOp>::GenericLoopNestRangeBuilder(
ArrayRef<edsc::ValueHandle *> ivs, ArrayRef<Value> ranges) {
builder = std::make_unique<LoopNestRangeBuilder>(ivs, ranges);
}
template <>
GenericLoopNestRangeBuilder<AffineForOp>::GenericLoopNestRangeBuilder(
ArrayRef<ValueHandle *> ivs, ArrayRef<Value> ranges) {
SmallVector<ValueHandle, 4> lbs;
SmallVector<ValueHandle, 4> ubs;
SmallVector<int64_t, 4> steps;
for (Value range : ranges) {
assert(range.getType() && "expected linalg.range type");
assert(range.getDefiningOp() && "need operations to extract range parts");
RangeOp rangeOp = cast<RangeOp>(range.getDefiningOp());
lbs.emplace_back(ValueHandle(rangeOp.min()));
ubs.emplace_back(ValueHandle(rangeOp.max()));
steps.emplace_back(ValueHandle(rangeOp.step()));
}
builder = std::make_unique<AffineLoopNestBuilder>(ivs, lbs, ubs, steps);
}
} // namespace edsc
} // namespace mlir
static void getMaxDimIndex(ArrayRef<StructuredIndexed> structuredIndices,
unsigned &pos) {
for (auto sidx : structuredIndices) {
for (auto expr : sidx.getExprs()) {
expr.walk([&pos](AffineExpr e) {
if (auto d = e.dyn_cast<AffineDimExpr>())
pos = std::max(pos, d.getPosition());
});
}
}
}
Operation *mlir::edsc::makeGenericLinalgOp(
ArrayRef<IterType> iteratorTypes, ArrayRef<StructuredIndexed> inputs,
ArrayRef<StructuredIndexed> outputs,
function_ref<void(ArrayRef<BlockArgument>)> regionBuilder,
ArrayRef<Value> otherValues, ArrayRef<Attribute> otherAttributes) {
auto &builder = edsc::ScopedContext::getBuilder();
auto *ctx = builder.getContext();
unsigned nInputs = inputs.size();
unsigned nOutputs = outputs.size();
unsigned maxPos = 0;
getMaxDimIndex(inputs, maxPos);
getMaxDimIndex(outputs, maxPos);
// maxPos is 0 indexed, need to turn this into a count (i.e. +1)
unsigned nDims = maxPos + 1;
SmallVector<AffineMap, 4> maps;
maps.reserve(nInputs + nOutputs);
for (auto in : inputs)
maps.push_back(
AffineMap::get(/*dimCount=*/nDims, /*symbolCount=*/0, in.getExprs()));
for (auto out : outputs)
maps.push_back(
AffineMap::get(/*dimCount=*/nDims, /*symbolCount=*/0, out.getExprs()));
unsigned nViews = nInputs + nOutputs;
SmallVector<Value, 4> values;
values.reserve(nViews);
values.append(inputs.begin(), inputs.end());
values.append(outputs.begin(), outputs.end());
auto iteratorStrTypes = functional::map(toString, iteratorTypes);
// clang-format off
auto *op =
edsc::ScopedContext::getBuilder()
.create<linalg::GenericOp>(
edsc::ScopedContext::getLocation(),
ArrayRef<Type>{}, // TODO(ntv): support tensors
values,
IntegerAttr::get(IntegerType::get(64, ctx), nInputs),
IntegerAttr::get(IntegerType::get(64, ctx), nOutputs),
builder.getAffineMapArrayAttr(maps),
builder.getStrArrayAttr(iteratorStrTypes),
StringAttr() /*doc*/,
FlatSymbolRefAttr() /*fun*/,
StringAttr() /*library_call*/
/* TODO: other attributes in op */
)
.getOperation();
// clang-format on
using namespace edsc;
SmallVector<Type, 4> blockTypes;
blockTypes.reserve(values.size());
for (auto it : llvm::enumerate(values))
blockTypes.push_back((it.index() < nViews)
? getElementTypeOrSelf(it.value())
: it.value().getType());
assert(op->getNumRegions() == 1);
assert(op->getRegion(0).empty());
OpBuilder opBuilder(op);
ScopedContext scope(opBuilder, op->getLoc());
BlockHandle b;
auto handles = makeValueHandles(blockTypes);
BlockBuilder(&b, op->getRegion(0),
makeHandlePointers(MutableArrayRef<ValueHandle>(handles)))(
[&] { regionBuilder(b.getBlock()->getArguments()); });
assert(op->getRegion(0).getBlocks().size() == 1);
return op;
}
void mlir::edsc::ops::macRegionBuilder(ArrayRef<BlockArgument> args) {
using edsc::op::operator+;
using edsc::op::operator*;
assert(args.size() == 3 && "expected 3 block arguments");
ValueHandle a(args[0]), b(args[1]), c(args[2]);
linalg_yield((c + a * b).getValue());
}
Operation *mlir::edsc::ops::linalg_pointwise(UnaryPointwiseOpBuilder unaryOp,
StructuredIndexed I,
StructuredIndexed O) {
SmallVector<edsc::IterType, 4> iterTypes(O.getExprs().size(),
edsc::IterType::Parallel);
auto fun = [&unaryOp](ArrayRef<BlockArgument> args) {
assert(args.size() == 2 && "expected 2 block arguments");
ValueHandle a(args[0]);
linalg_yield(unaryOp(a));
};
return makeGenericLinalgOp(iterTypes, {I}, {O}, fun);
}
Operation *mlir::edsc::ops::linalg_pointwise_tanh(StructuredIndexed I,
StructuredIndexed O) {
;
using edsc::intrinsics::tanh;
UnaryPointwiseOpBuilder unOp([](ValueHandle a) -> Value { return tanh(a); });
return linalg_pointwise(unOp, I, O);
}
/// Binary pointwise operation (with broadcast) entry point.
Operation *mlir::edsc::ops::linalg_pointwise(BinaryPointwiseOpBuilder binaryOp,
StructuredIndexed I1,
StructuredIndexed I2,
StructuredIndexed O) {
SmallVector<edsc::IterType, 4> iterTypes(O.getExprs().size(),
edsc::IterType::Parallel);
auto fun = [&binaryOp](ArrayRef<BlockArgument> args) {
assert(args.size() == 3 && "expected 3 block arguments");
ValueHandle a(args[0]), b(args[1]);
linalg_yield(binaryOp(a, b));
};
return makeGenericLinalgOp(iterTypes, {I1, I2}, {O}, fun);
}
Operation *mlir::edsc::ops::linalg_pointwise_add(StructuredIndexed I1,
StructuredIndexed I2,
StructuredIndexed O) {
using edsc::op::operator+;
BinaryPointwiseOpBuilder binOp(
[](ValueHandle a, ValueHandle b) -> Value { return a + b; });
return linalg_pointwise(binOp, I1, I2, O);
}
Operation *mlir::edsc::ops::linalg_pointwise_max(StructuredIndexed I1,
StructuredIndexed I2,
StructuredIndexed O) {
BinaryPointwiseOpBuilder binOp([](ValueHandle a, ValueHandle b) -> Value {
using edsc::intrinsics::select;
using edsc::op::operator>;
return select(a > b, a, b).getValue();
});
return linalg_pointwise(binOp, I1, I2, O);
}
Operation *mlir::edsc::ops::linalg_matmul(ValueHandle vA, ValueHandle vB,
ValueHandle vC) {
// clang-format off
AffineExpr m, n, k;
bindDims(ScopedContext::getContext(), m, n, k);
StructuredIndexed A(vA), B(vB), C(vC);
return makeGenericLinalgOp(
{IterType::Parallel, IterType::Parallel, IterType::Reduction},
{A({m, k}), B({k, n})},
{C({m, n})},
macRegionBuilder);
// clang-format on
}
Operation *mlir::edsc::ops::linalg_conv_nhwc(ValueHandle vI, ValueHandle vW,
ValueHandle vO,
ArrayRef<int> strides,
ArrayRef<int> dilations) {
MLIRContext *ctx = ScopedContext::getContext();
// TODO(ntv) some template magic to make everything rank-polymorphic.
assert((dilations.empty() || dilations.size() == 2) && "only 2-D conv atm");
assert((strides.empty() || strides.size() == 2) && "only 2-D conv atm");
// Some short names.
auto par = IterType::Parallel;
auto red = IterType::Reduction;
auto s = strides;
auto d = dilations;
AffineExpr b, f, h, w, kh, kw, c;
bindDims(ctx, b, f, h, w, kh, kw, c);
unsigned numDims = c.cast<AffineDimExpr>().getPosition() + 1;
StructuredIndexed I(vI), W(vW), O(vO);
// clang-format off
return makeGenericLinalgOp(
{par, par, par, par, red, red, red}, {
I({b,
// Roundtrip to flattened form to serve as canonicalization and ensure
// consistent ordering of subexpressions.
simplifyAffineExpr(s[0] * h + d[0] * kh, numDims, 0),
simplifyAffineExpr(s[1] * w + d[1] * kw, numDims, 0),
c}),
W({kh, kw, c, f})}, {
O({b, h, w, f})},
macRegionBuilder);
// clang-format on
}
Operation *mlir::edsc::ops::linalg_dilated_conv_nhwc(
ValueHandle vI, ValueHandle vW, ValueHandle vO, int depth_multiplier,
ArrayRef<int> strides, ArrayRef<int> dilations) {
MLIRContext *ctx = ScopedContext::getContext();
// TODO(ntv) some template magic to make everything rank-polymorphic.
assert((dilations.empty() || dilations.size() == 2) && "only 2-D conv atm");
assert((strides.empty() || strides.size() == 2) && "only 2-D conv atm");
// Some short names.
auto par = IterType::Parallel;
auto red = IterType::Reduction;
auto s = strides;
auto d = dilations;
// clang-format off
AffineExpr b, dm, c, h, w, kh, kw;
bindDims(ctx, b, dm, c, h, w, kh, kw);
unsigned numDims = kw.cast<AffineDimExpr>().getPosition() + 1;
StructuredIndexed I(vI), W(vW), O(vO);
return makeGenericLinalgOp(
{par, par, par, par, par, red, red}, {
I({b,
// Roundtrip to flattened form to serve as canonicalization and ensure
// consistent ordering of subexpressions.
simplifyAffineExpr(s[0] * h + d[0] * kh, numDims, 0),
simplifyAffineExpr(s[1] * w + d[1] * kw, numDims, 0),
c}),
W({kh, kw, c, dm})}, {
O({b, h, w, simplifyAffineExpr(c * depth_multiplier + dm, numDims, 0)})},
macRegionBuilder);
// clang-format on
}