Revert "[mlir][linalg] Introduce transpose semantic to 'linalg.matmul' ops. (#104783)"

This reverts commit 03483737a7a2d72a257a5ab6ff01748ad9cf0f75 and
99c8557, which is a fix-up on top of the former.

I'm reverting because this commit broke two tests:
  mlir/test/python/integration/dialects/linalg/opsrun.py
  mlir/test/python/integration/dialects/transform.py
See https://lab.llvm.org/buildbot/#/builders/138/builds/4872

I'm not familiar with the tests, so I'm leaving it to the original author
to either remove or adapt the broken tests, as discussed here:
  https://github.com/llvm/llvm-project/pull/104783#issuecomment-2406390905
This commit is contained in:
Emilio Cota 2024-10-11 05:08:23 -04:00
parent 72f339de45
commit 1276ce9e97
14 changed files with 182 additions and 943 deletions

View File

@ -684,16 +684,6 @@ def LinalgStructuredInterface
return;
}]
>,
InterfaceMethod<
/*desc=*/[{
Return true if the user has supplied an explicit indexing maps for this op.
}],
/*retTy=*/"bool",
/*methodName=*/"hasUserDefinedMaps",
/*args=*/(ins),
/*methodBody=*/"",
/*defaultImplementation=*/[{ return false; }]
>,
//===------------------------------------------------------------------===//
// Linalg generalization hooks.
//===------------------------------------------------------------------===//

View File

@ -1065,6 +1065,78 @@ structured_op: !LinalgStructuredOpConfig
- !ScalarExpression
scalar_arg: rhs
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: matmul
cpp_class_name: MatmulOp
doc: |-
Performs a matrix multiplication of two 2D inputs.
Numeric casting is performed on the operands to the inner multiply, promoting
them to the same data type as the accumulator/output.
implements:
- LinalgContractionOpInterface
structured_op: !LinalgStructuredOpConfig
args:
- !LinalgOperandDefConfig
name: A
kind: input_tensor
type_var: T1
shape_map: affine_map<()[s0, s1, s2] -> (s0, s1)>
- !LinalgOperandDefConfig
name: B
kind: input_tensor
type_var: T2
shape_map: affine_map<()[s0, s1, s2] -> (s1, s2)>
- !LinalgOperandDefConfig
name: C
kind: output_tensor
type_var: U
shape_map: affine_map<()[s0, s1, s2] -> (s0, s2)>
- !LinalgOperandDefConfig
name: cast
kind: type_fn_attr
default_fn: cast_signed
indexing_maps: !LinalgIndexingMapsConfig
static_indexing_maps:
- affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0, d2)>
- affine_map<(d0, d1, d2)[s0, s1, s2] -> (d2, d1)>
- affine_map<(d0, d1, d2)[s0, s1, s2] -> (d0, d1)>
iterator_types:
- parallel
- parallel
- reduction
assignments:
- !ScalarAssign
arg: C
value: !ScalarExpression
scalar_fn:
kind: binary
fn_name: add
operands:
- !ScalarExpression
scalar_arg: C
- !ScalarExpression
scalar_fn:
kind: binary
fn_name: mul
operands:
- !ScalarExpression
scalar_fn:
kind: type
attr_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: A
- !ScalarExpression
scalar_fn:
kind: type
attr_name: cast
type_var: U
operands:
- !ScalarExpression
scalar_arg: B
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: quantized_matmul
cpp_class_name: QuantizedMatmulOp

View File

@ -535,140 +535,6 @@ def BroadcastOp : LinalgStructuredBase_Op<"broadcast", [
let hasCanonicalizer = 1;
}
//===----------------------------------------------------------------------===//
// Op definition for MatmulOp
//===----------------------------------------------------------------------===//
def MatmulOp : LinalgStructuredBase_Op<"matmul", [
AttrSizedOperandSegments,
LinalgContractionOpInterface]> {
let summary = [{
Performs a matrix multiplication of two 2D inputs without broadcast or transpose.
}];
let description = [{
Numeric casting is performed on the operands to the inner multiply,
promoting them to the same data type as the accumulator/output.
Broadcast and Transpose semantics can be appiled by specifying the explicit attribute
'indexing_maps' as shown below.This is a list attribute, so the list must include all
the maps if specified.
Example Transpose:
```
linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d2, d0)>, // transpose
affine_map<(d0, d1, d2) -> (d2, d1)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%arg0, %arg1 : memref<5x3xf32>,memref<5x7xf32>)
outs(%arg2: memref<3x7xf32>)
```
Example Broadcast:
```
linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d2)>, // broadcast
affine_map<(d0, d1, d2) -> (d2, d1)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%arg0, %arg1 : memref<3xf32>, memref<5x7xf32>)
outs(%arg2: memref<3x7xf32>)
```
Example Broadcast and transpose:
```
linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d2, d0)>, // transpose
affine_map<(d0, d1, d2) -> (d2)>, // broadcast
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%arg0, %arg1 : memref<5x3xf32>, memref<7xf32>) outs(%arg2: memref<3x7xf32>)
}];
let arguments = (ins
Variadic<AnyType>:$inputs,
Variadic<AnyShaped>:$outputs,
DefaultValuedOptionalAttr<AffineMapArrayAttr, "{}">:$indexing_maps,
DefaultValuedOptionalAttr<TypeFnAttr, "TypeFn::cast_signed">:$cast
);
let results = (outs Variadic<AnyRankedTensor>:$result_tensors);
let regions = (region AnyRegion:$region);
let skipDefaultBuilders = 1;
let builders = [
OpBuilder<
(ins "ValueRange":$inputs, "ValueRange":$outputs,
CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
[{
buildStructuredOp($_builder, $_state, std::nullopt, inputs, outputs,
attributes, MatmulOp::getRegionBuilder());
}]>,
OpBuilder<
(ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
"ValueRange":$outputs,
CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
[{
buildStructuredOp($_builder, $_state, resultTensorTypes,
inputs, outputs, attributes, MatmulOp::getRegionBuilder());
}]>,
OpBuilder<
(ins "TypeRange":$resultTensorTypes, "ValueRange":$operands,
CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
[{
$_state.addOperands(operands);
$_state.addAttributes(attributes);
$_state.addTypes(resultTensorTypes);
(void)$_state.addRegion();
}]>,
OpBuilder<
(ins "TypeRange":$resultTensorTypes, "ValueRange":$inputs,
"ValueRange":$outputs,
"Attribute":$cast, CArg<"ArrayRef<NamedAttribute>", "{}">:$attributes),
[{
$_state.addAttribute("cast", cast);
buildStructuredOp($_builder, $_state, resultTensorTypes, inputs, outputs,
attributes, MatmulOp::getRegionBuilder());
}]>
];
let hasCustomAssemblyFormat = 1;
let hasFolder = 1;
let hasVerifier = 1;
let extraClassDeclaration = structuredOpsBaseDecls # [{
SmallVector<utils::IteratorType> getIteratorTypesArray();
/// Implements the block region builder.
static void regionBuilder(ImplicitLocOpBuilder &b,
Block &block, ArrayRef<NamedAttribute> attrs);
/// Returns a list of AffineMap with the typical matmul indexing charactristic.
SmallVector<AffineMap> getDefaultIndexingMaps();
/// Returns true if the given broadcast map \p bcastMap is valid for this op.
bool isValidLhsRhsBroadcastMap(AffineMap bcastMap);
static std::function<void(ImplicitLocOpBuilder &,
Block &, ArrayRef<NamedAttribute>)>
getRegionBuilder() {
return regionBuilder;
}
::mlir::MutableOperandRange getDpsInitsMutable() {
return getOutputsMutable();
}
// Generic methods.
static unsigned getNumRegionArgs();
std::string getLibraryCallName();
bool hasDynamicIndexingMaps();
/// Check if the op has broadcast and/or transpose semantic. Returns true if the
/// user defined indexing maps are not equal to default map.
bool hasUserDefinedMaps();
}];
}
//===----------------------------------------------------------------------===//
// Named Linalg ops, implemented as a declarative configurations of generic ops.
//===----------------------------------------------------------------------===//

View File

@ -15,20 +15,13 @@
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinTypeInterfaces.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/TypeUtilities.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <optional>
using namespace mlir;
using namespace mlir::linalg;
@ -1149,6 +1142,7 @@ int64_t LinalgOp::getIndexingMapIndex(OpOperand *opOperand) {
LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
LinalgOp linalgOp = cast<LinalgOp>(op);
// Mixed tensor/buffer operands are not allowed.
if (!linalgOp.hasPureTensorSemantics() &&
!linalgOp.hasPureBufferSemantics() && op->getNumOperands() > 0)
@ -1168,8 +1162,6 @@ LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
<< ") to be equal to the number of input/output operands ("
<< linalgOp->getNumOperands() << ")";
// Set this flag if this op has user defined maps. This is required to guard
// the below error condition which assume default indexing maps.
for (OpOperand &opOperand : linalgOp->getOpOperands()) {
AffineMap indexingMap = linalgOp.getMatchingIndexingMap(&opOperand);
@ -1186,13 +1178,13 @@ LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
<< " dim(s) to match the number of loops";
int64_t rank = linalgOp.getRank(&opOperand);
if (indexingMap.getNumResults() != rank)
return op->emitOpError("expected operand rank (")
<< rank << ") to match the result rank of indexing_map #"
<< opOperand.getOperandNumber() << " ("
<< indexingMap.getNumResults() << ")";
}
SmallVector<unsigned> redDims;
linalgOp.getReductionDims(redDims);
@ -1202,8 +1194,9 @@ LogicalResult mlir::linalg::detail::verifyStructuredOpInterface(Operation *op) {
// Check if given shapes match to inferred shapes.
SmallVector<int64_t, 4> endLoopRangeValues = linalgOp.getStaticLoopRanges();
SmallVector<int64_t, 4> startLoopRangeValues(endLoopRangeValues.size(), 0);
// Verify only static cases since we can't get exact dimension sizes and
// loop ranges for dynamic cases in this stage.
// Verify only static cases since we can't get exact dimension sizes and loop
// ranges for dynamic cases in this stage.
if (llvm::none_of(endLoopRangeValues, ShapedType::isDynamic)) {
for (int64_t &range : endLoopRangeValues)
range -= 1;

View File

@ -27,7 +27,6 @@
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypeInterfaces.h"
#include "mlir/IR/Matchers.h"
@ -38,17 +37,12 @@
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/LogicalResult.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <optional>
using namespace mlir;
@ -155,36 +149,15 @@ static void fillStructuredOpRegion(OpBuilder &opBuilder, Region &region,
// iterator_types is an auto-generated method.
}
/// Helper to create a typical indexing map for MatmulOp. Returns a list of
/// AffineMap.
static SmallVector<AffineMap, 3>
getDefaultIndexingMapsForMatmul(MLIRContext *context) {
AffineExpr d0, d1, d2;
SmallVector<AffineMap, 3> indexingMaps;
bindDims(context, d0, d1, d2);
indexingMaps.push_back(AffineMap::get(3, 0, {d0, d2}, context));
indexingMaps.push_back(AffineMap::get(3, 0, {d2, d1}, context));
indexingMaps.push_back(AffineMap::get(3, 0, {d0, d1}, context));
return indexingMaps;
}
/// Wrapper to return the typical indexing map array attribute for MatmulOp.
static SmallVector<Attribute> getDefaultIndexingMapAttr(MLIRContext *context) {
return llvm::map_to_vector(
getDefaultIndexingMapsForMatmul(context),
[](AffineMap map) -> Attribute { return AffineMapAttr::get(map); });
}
/// Creates a structured operation given `inputs`, `outputs`, and `attributes`.
/// The result types are derived automatically if `resultTensorTypes` is none.
/// The body of the operation is filled using `regionBuilder`. All ods-gen
/// created structured operations use the method to implement their builders.
static void buildStructuredOp(
OpBuilder &b, OperationState &state,
std::optional<TypeRange> resultTensorTypes, ValueRange inputs,
ValueRange outputs, ArrayRef<NamedAttribute> attributes,
RegionBuilderFn regionBuilder,
std::optional<ArrayRef<AffineMap>> indexingMaps = std::nullopt) {
static void buildStructuredOp(OpBuilder &b, OperationState &state,
std::optional<TypeRange> resultTensorTypes,
ValueRange inputs, ValueRange outputs,
ArrayRef<NamedAttribute> attributes,
RegionBuilderFn regionBuilder) {
// Derive the result types if needed.
SmallVector<Type> derivedResultTypes =
resultTensorTypes.value_or(TypeRange());
@ -195,20 +168,6 @@ static void buildStructuredOp(
state.addOperands(inputs);
state.addOperands(outputs);
state.addTypes(derivedResultTypes);
// Initialize indexingMaps, for MatmulOp.
SmallVector<Attribute, 3> indexingMapsAttrVal;
if (indexingMaps.has_value()) {
for (mlir::AffineMap map : *indexingMaps) {
// Convert each AffineMap to an AffineMapAttr
indexingMapsAttrVal.push_back(AffineMapAttr::get(map));
}
state.addAttribute("indexing_maps", b.getArrayAttr(indexingMapsAttrVal));
} else {
indexingMapsAttrVal = getDefaultIndexingMapAttr(b.getContext());
state.addAttribute("indexing_maps", b.getArrayAttr(indexingMapsAttrVal));
}
state.addAttributes(attributes);
state.addAttribute(
"operandSegmentSizes",
@ -340,48 +299,11 @@ static ParseResult parseNamedStructuredOp(OpAsmParser &parser,
OperationState &result,
unsigned numRegionArgs,
RegionBuilderFn regionBuilder) {
SmallVector<Attribute, 3> indexingMapsAttr;
Attribute mapAttr;
if (succeeded(parser.parseOptionalKeyword("indexing_maps"))) {
if (parser.parseEqual())
return failure();
if (parser.parseLSquare())
return failure();
do {
if (parser.parseAttribute(mapAttr))
return failure();
if (!isa<AffineMapAttr>(mapAttr)) {
return parser.emitError(parser.getCurrentLocation(),
"expected affine map attribute");
}
indexingMapsAttr.push_back(mapAttr);
if (parser.parseOptionalComma())
break;
} while (true);
if (parser.parseRSquare())
return failure();
}
// Initialize indexingMaps, if not supplied explicitly.
if (indexingMapsAttr.empty()) {
indexingMapsAttr = getDefaultIndexingMapAttr(result.getContext());
}
result.addAttribute("indexing_maps",
parser.getBuilder().getArrayAttr(indexingMapsAttr));
// TODO: Enable when ods-gen supports captures.
SmallVector<Type, 1> inputTypes, outputTypes;
if (parseCommonStructuredOpParts(parser, result, inputTypes, outputTypes))
return failure();
// Parse optional attributes.
if (parser.parseOptionalAttrDict(result.attributes))
return failure();
// TODO: consider merging results parsing into region parsing.
// Need to wait for declarative assembly resolution to decide.
SmallVector<Type, 1> outputTensorsTypes;
@ -407,9 +329,13 @@ static void printNamedStructuredOpResults(OpAsmPrinter &p,
}
static void printNamedStructuredOp(OpAsmPrinter &p, Operation *op,
ValueRange inputs, ValueRange outputs,
ArrayRef<StringRef> elidedAttrs = {}) {
p.printOptionalAttrDict(op->getAttrs(), elidedAttrs);
ValueRange inputs, ValueRange outputs) {
p.printOptionalAttrDict(
op->getAttrs(),
/*elidedAttrs=*/{"operandSegmentSizes",
// See generated code in
// LinalgNamedStructuredOps.yamlgen.cpp.inc
"linalg.memoized_indexing_maps"});
// Printing is shared with generic ops, except for the region and
// attributes.
@ -3456,168 +3382,3 @@ Operation *LinalgDialect::materializeConstant(OpBuilder &builder,
Location loc) {
return arith::ConstantOp::materialize(builder, value, type, loc);
}
/// Returns true if the result AffineExpr of the \p explicitMap is same as \p
/// defaultMap.
static bool isValidResultDimExprs(AffineMap explictMap, AffineMap defaultMap) {
auto explicitRange = explictMap.getResults();
auto defaultRange = defaultMap.getResults();
DenseSet<AffineExpr> explicitSet(explicitRange.begin(), explicitRange.end());
DenseSet<AffineExpr> defaultSet(defaultRange.begin(), defaultRange.end());
llvm::set_union(explicitSet, defaultSet);
return explicitSet == defaultSet;
}
/// Returns true if the \p explictMap is broadcasted with respect to the
/// \p defaultMap.
static bool isBroadcasted(AffineMap explictMap, AffineMap defaultMap) {
return explictMap.getNumResults() < defaultMap.getNumResults();
}
/// Verifies the broadcast and transpose semantic sepecified by the explicit
/// indexing map for the MatmulOp \p op for each operand specified by \p
/// opIndex.
static LogicalResult verifyExtendedMatmulSemantic(MatmulOp matmulOp,
unsigned opIndex) {
SmallVector<AffineMap, 3> opIndexingMaps = matmulOp.getIndexingMapsArray();
SmallVector<AffineMap, 3> defaultIndexingMaps =
matmulOp.getDefaultIndexingMaps();
auto opIndexingMap = opIndexingMaps[opIndex];
auto defaultIndexingMap = defaultIndexingMaps[opIndex];
// Check general validity of indexing map results.
if (!isValidResultDimExprs(opIndexingMap, defaultIndexingMap))
return matmulOp->emitOpError()
<< "Unexpected dim expression in map result.";
// Check if the requested broadcast is valid.
if (isBroadcasted(opIndexingMap, defaultIndexingMap)) {
if (!matmulOp.isValidLhsRhsBroadcastMap(opIndexingMap)) {
return matmulOp->emitOpError()
<< "Invalid broadcast requested, should be (d2).";
}
return success();
}
return success();
}
namespace mlir {
namespace linalg {
//===----------------------------------------------------------------------===//
// MatMulOp
//===----------------------------------------------------------------------===//
SmallVector<utils::IteratorType> MatmulOp::getIteratorTypesArray() {
return SmallVector<utils::IteratorType>{utils::IteratorType::parallel,
utils::IteratorType::parallel,
utils::IteratorType::reduction};
}
unsigned MatmulOp::getNumRegionArgs() { return 3; }
std::string MatmulOp::getLibraryCallName() {
return generateLibraryCallName(getOperation());
}
bool MatmulOp::hasDynamicIndexingMaps() { return true; }
/// Check if the op has broadcast and/or transpose semantic. Returns true if the
/// user defined indexing maps are not equal to default map.
bool MatmulOp::hasUserDefinedMaps() {
SmallVector<AffineMap, 3> defaultMaps = getDefaultIndexingMaps();
SmallVector<AffineMap, 3> explicitMaps = getIndexingMapsArray();
return defaultMaps != explicitMaps;
}
/// Implements the block region builder for the MatmulOp. This is called by
/// 'fillStructuredOpRegion'.
void MatmulOp::regionBuilder(ImplicitLocOpBuilder &b, Block &block,
ArrayRef<NamedAttribute> attrs) {
assert(3 > 0 && block.getNumArguments() == 3 &&
"MatmulOp regionBuilder expects 3 (>=0) args");
RegionBuilderHelper helper(b, block);
SmallVector<Value> yields;
TypeFn castVal = TypeFn::cast_signed;
auto castIter = llvm::find_if(attrs, [&](const NamedAttribute &attr) {
return attr.getName() == "cast";
});
if (castIter != attrs.end()) {
if (auto attr = llvm::dyn_cast<TypeFnAttr>(castIter->getValue()))
castVal = attr.getValue();
}
Value value1 = helper.buildTypeFn(castVal, block.getArgument(2).getType(),
block.getArgument(0));
Value value2 = helper.buildTypeFn(castVal, block.getArgument(2).getType(),
block.getArgument(1));
Value value3 = helper.buildBinaryFn(BinaryFn::mul, value1, value2);
Value value4 =
helper.buildBinaryFn(BinaryFn::add, block.getArgument(2), value3);
yields.push_back(value4);
helper.yieldOutputs(yields);
}
/// Returns a list of AffineMap with the typical matmul indexing charactristic.
SmallVector<AffineMap> MatmulOp::getDefaultIndexingMaps() {
MLIRContext *context = this->getContext();
return getDefaultIndexingMapsForMatmul(context);
}
/// Returns true if the given broadcast map \p bcastMap is valid for this op.
bool MatmulOp::isValidLhsRhsBroadcastMap(AffineMap bcastMap) {
assert(bcastMap.getNumResults() == 1 && "Expected single result dim expr.");
AffineExpr exp = bcastMap.getResult(0);
// Invalid map if the common dimension of matmul not found.
return exp.isFunctionOfDim(bcastMap.getNumDims() - 1);
}
ParseResult MatmulOp::parse(OpAsmParser &parser, OperationState &result) {
return parseNamedStructuredOp(parser, result, MatmulOp::getNumRegionArgs(),
MatmulOp::getRegionBuilder());
}
void MatmulOp::print(OpAsmPrinter &p) {
SmallVector<StringRef, 3> elidedAttrs = {
"operandSegmentSizes", "linalg.memoized_indexing_maps", "indexing_maps"};
printNamedStructuredOp(p, getOperation(), getInputs(), getOutputs(),
elidedAttrs);
SmallVector<Attribute, 3> indexingMaps =
getDefaultIndexingMapAttr(getContext());
if (!llvm::equal(getIndexingMaps(), indexingMaps)) {
p << " indexing_maps = [";
llvm::interleaveComma(getIndexingMaps(), p,
[&](Attribute attr) { p.printAttribute(attr); });
p << "]";
}
}
/// Verify the user defined indexing maps.
LogicalResult MatmulOp::verify() {
// Verification of pure matmul is handled by verifyStructuredOpInterface().
if (!hasUserDefinedMaps())
return success();
for (unsigned opIndex = 0; opIndex < 2; opIndex++) {
if (failed(verifyExtendedMatmulSemantic(*this, opIndex)))
return failure();
}
return success();
}
LogicalResult MatmulOp::fold(FoldAdaptor, SmallVectorImpl<OpFoldResult> &) {
return memref::foldMemRefCast(*this);
}
void MatmulOp::getEffects(
SmallVectorImpl<SideEffects::EffectInstance<MemoryEffects::Effect>>
&effects) {
if (hasPureTensorSemantics())
return;
getGenericEffectsImpl(effects, cast<LinalgOp>(getOperation()));
}
Speculation::Speculatability MatmulOp::getSpeculatability() {
return getGenericSpeculatabilityImpl(cast<LinalgOp>(getOperation()));
}
} // namespace linalg
} // namespace mlir

View File

@ -31,13 +31,6 @@ using namespace mlir::linalg;
FailureOr<Operation *> mlir::linalg::transposeMatmul(RewriterBase &rewriter,
linalg::MatmulOp matmulOp,
bool transposeLHS) {
// Check to not let go the matmul with extended semantic, through this
// transform.
if (matmulOp.hasUserDefinedMaps()) {
return rewriter.notifyMatchFailure(
matmulOp, "only matmul ops with non-extended semantics are supported");
}
if (!bufferization::hasTensorSemantics(matmulOp))
return rewriter.notifyMatchFailure(
matmulOp, "only matmul ops with tensors are supported");

View File

@ -2071,11 +2071,6 @@ vectorizeScalableVectorPrecondition(Operation *op,
return failure();
}
// Check to not let go the matmul with extended semantic, through this
// transform.
if (linalgOp.hasUserDefinedMaps())
return failure();
// Cond 4: Only the following ops are supported in the
// presence of scalable vectors
return success(isElementwise(linalgOp) || isa<linalg::MatmulOp>(op) ||

View File

@ -821,12 +821,6 @@ DiagnosedSilenceableFailure transform::RewriteMatmulAsMmaSyncOp::applyToOne(
bool fail = true;
// TODO: more robust detection of matmulOp, with transposes etc.
if (isa_and_nonnull<linalg::MatmulOp>(linalgOp.getOperation())) {
// Check to not let go the matmul with extended semantic, through this
// transform.
if (linalgOp.hasUserDefinedMaps()) {
return emitSilenceableError()
<< "only matmul ops with non-extended semantics are supported";
}
Location loc = linalgOp.getLoc();
// TODO: more robust computation of laneId, for now assume a single warp.
Value laneId = rewriter.create<gpu::ThreadIdOp>(

View File

@ -383,6 +383,23 @@ def select(
O[None] = TernaryFn.select(cond[None], lhs[None], rhs[None])
@linalg_structured_op
def matmul(
A=TensorDef(T1, S.M, S.K),
B=TensorDef(T2, S.K, S.N),
C=TensorDef(U, S.M, S.N, output=True),
cast=TypeFnAttrDef(default=TypeFn.cast_signed),
):
"""Performs a matrix multiplication of two 2D inputs.
Numeric casting is performed on the operands to the inner multiply, promoting
them to the same data type as the accumulator/output.
"""
domain(D.m, D.n, D.k)
implements(ContractionOpInterface)
C[D.m, D.n] += cast(U, A[D.m, D.k]) * cast(U, B[D.k, D.n])
@linalg_structured_op
def quantized_matmul(
A=TensorDef(T1, S.M, S.K),

View File

@ -29,34 +29,6 @@ func.func @generalize_matmul_buffer(%A : memref<16x8xf32>, %B: memref<8x32xf32>,
// -----
func.func @matmul_bcast_a(%arg0: memref<5xf32>, %arg1: memref<5x7xf32>, %arg2: memref<3x7xf32>) {
linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d2)>,
affine_map<(d0, d1, d2) -> (d2, d1)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%arg0, %arg1 : memref<5xf32>, memref<5x7xf32>) outs(%arg2: memref<3x7xf32>)
return
}
// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d2)>
// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d2, d1)>
// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
// CHECK-LABEL: func.func @matmul_bcast_a(
// CHECK-SAME: %[[VAL_0:.*]]: memref<5xf32>,
// CHECK-SAME: %[[VAL_1:.*]]: memref<5x7xf32>,
// CHECK-SAME: %[[VAL_2:.*]]: memref<3x7xf32>) {
// CHECK: linalg.generic {indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]], iterator_types = ["parallel", "parallel", "reduction"]} ins(%[[VAL_0]], %[[VAL_1]] : memref<5xf32>, memref<5x7xf32>) outs(%[[VAL_2]] : memref<3x7xf32>) {
// CHECK: ^bb0(%[[VAL_3:.*]]: f32, %[[VAL_4:.*]]: f32, %[[VAL_5:.*]]: f32):
// CHECK: %[[VAL_6:.*]] = arith.mulf %[[VAL_3]], %[[VAL_4]] : f32
// CHECK: %[[VAL_7:.*]] = arith.addf %[[VAL_5]], %[[VAL_6]] : f32
// CHECK: linalg.yield %[[VAL_7]] : f32
// CHECK: }
// CHECK: return
// CHECK: }
// -----
func.func @generalize_matmul_tensor(%A : tensor<16x8xf32>, %B: tensor<8x32xf32>, %C: tensor<16x32xf32>) -> tensor<16x32xf32> {
%0 = linalg.matmul ins(%A, %B: tensor<16x8xf32>, tensor<8x32xf32>)
outs(%C: tensor<16x32xf32>) -> tensor<16x32xf32>
@ -919,86 +891,3 @@ func.func @fill_tensor(%f: f32, %v: vector<2x4xf32>) -> (tensor<f32>, tensor<vec
return %0, %1: tensor<f32>, tensor<vector<2x4xf32>>
}
// -----
// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d2, d0)>
// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d2, d1)>
// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
// CHECK-LABEL: func.func @matmul_transpose_a_explicit(
// CHECK-SAME: %[[VAL_0:.*]]: memref<5x3xf32>,
// CHECK-SAME: %[[VAL_1:.*]]: memref<5x7xf32>,
// CHECK-SAME: %[[VAL_2:.*]]: memref<3x7xf32>) {
// CHECK: linalg.generic {indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]], iterator_types = ["parallel", "parallel", "reduction"]}
// CHECK: arith.mulf
// CHECK: arith.addf
func.func @matmul_transpose_a_explicit(%arg0: memref<5x3xf32>, %arg1: memref<5x7xf32>, %arg2: memref<3x7xf32>) {
linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d2, d0)>,
affine_map<(d0, d1, d2) -> (d2, d1)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%arg0, %arg1 : memref<5x3xf32>, memref<5x7xf32>)
outs(%arg2: memref<3x7xf32>)
return
}
// -----
// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d0, d2)>
// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d1, d2)>
// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
// CHECK-LABEL: func.func @matmul_transpose_b_explicit(
// CHECK-SAME: %[[VAL_0:.*]]: memref<3x5xf32>,
// CHECK-SAME: %[[VAL_1:.*]]: memref<7x5xf32>,
// CHECK-SAME: %[[VAL_2:.*]]: memref<3x7xf32>) {
// CHECK: linalg.generic {indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]], iterator_types = ["parallel", "parallel", "reduction"]}
// CHECK: arith.mulf
// CHECK: arith.addf
func.func @matmul_transpose_b_explicit(%arg0: memref<3x5xf32>, %arg1: memref<7x5xf32>, %arg2: memref<3x7xf32>) {
linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d0, d2)>,
affine_map<(d0, d1, d2) -> (d1, d2)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%arg0, %arg1 : memref<3x5xf32>, memref<7x5xf32>)
outs(%arg2: memref<3x7xf32>)
return
}
// -----
// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d2, d0)>
// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d1, d2)>
// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
// CHECK-LABEL: func.func @matmul_transpose_a_b_explicit(
// CHECK-SAME: %[[VAL_0:.*]]: memref<5x3xf32>,
// CHECK-SAME: %[[VAL_1:.*]]: memref<7x5xf32>,
// CHECK-SAME: %[[VAL_2:.*]]: memref<3x7xf32>) {
// CHECK: linalg.generic {indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]], iterator_types = ["parallel", "parallel", "reduction"]}
// CHECK: arith.mulf
// CHECK: arith.addf
func.func @matmul_transpose_a_b_explicit(%arg0: memref<5x3xf32>, %arg1: memref<7x5xf32>, %arg2: memref<3x7xf32>) {
linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d2, d0)>,
affine_map<(d0, d1, d2) -> (d1, d2)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%arg0, %arg1 : memref<5x3xf32>, memref<7x5xf32>)
outs(%arg2: memref<3x7xf32>)
return
}
// -----

View File

@ -361,165 +361,6 @@ func.func @invalid_static_matmul(%arg0: memref<2x4xf32>, %arg1: memref<3x4xf32>,
// -----
func.func @invalid_indexing_maps_matmul(%arg0: memref<2x4xf32>, %arg1: memref<3x4xf32>, %arg2: memref<2x4xf32>) {
// expected-error @+1 {{expected attribute value}}
linalg.matmul indexing_maps = [
,
affine_map<(d0, d1, d2) -> (d2, d1)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%arg0, %arg1 : memref<2x4xf32>, memref<3x4xf32>)
outs(%arg2 :memref<2x4xf32>)
return
}
// -----
func.func @invalid_matmul_dim_a(%arg0: memref<5x5xf32>, %arg1: memref<5x5xf32>, %arg2: memref<5x5xf32>) {
// expected-error @+1 {{Unexpected dim expression in map result}}
linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d1, d2)>,
affine_map<(d0, d1, d2) -> (d2, d1)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%arg0, %arg1 : memref<5x5xf32>, memref<5x5xf32>) outs(%arg2: memref<5x5xf32>)
return
}
// -----
func.func @invalid_matmul_dim_b(%arg0: memref<5x5xf32>, %arg1: memref<5x5xf32>, %arg2: memref<5x5xf32>) {
// expected-error @+1 {{Unexpected dim expression in map result}}
linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d0, d2)>,
affine_map<(d0, d1, d2) -> (d2, d0)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%arg0, %arg1 : memref<5x5xf32>, memref<5x5xf32>) outs(%arg2: memref<5x5xf32>)
return
}
// -----
func.func @invalid_transpose_a_matmul(%lhs: tensor<4x1xf32>, %rhs: tensor<1x64xf32>, %init: tensor<4x64xf32>) -> tensor<4x64xf32> {
// expected-error @+1 {{inferred input/output operand #1 has shape's dimension #0 to be 4, but found 1}}
%0 = linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d2, d0)>,
affine_map<(d0, d1, d2) -> (d2, d1)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%lhs, %rhs : tensor<4x1xf32>, tensor<1x64xf32>)
outs(%init : tensor<4x64xf32>) -> tensor<4x64xf32>
return %0: tensor<4x64xf32>
}
// -----
func.func @invalid_transpose_b_matmul(%lhs: tensor<4x1xf32>, %rhs: tensor<1x64xf32>, %init: tensor<4x64xf32>) -> tensor<4x64xf32> {
// expected-error @+1 {{inferred input/output operand #1 has shape's dimension #1 to be 1, but found 64}}
%0 = linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d0, d2)>,
affine_map<(d0, d1, d2) -> (d1, d2)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%lhs, %rhs : tensor<4x1xf32>, tensor<1x64xf32>)
outs(%init : tensor<4x64xf32>) -> tensor<4x64xf32>
return %0: tensor<4x64xf32>
}
// -----
func.func @invalid_bcast_a(%arg0: memref<3xf32>, %arg1: memref<5x7xf32>, %arg2: memref<3x7xf32>) {
// expected-error @+1 {{'linalg.matmul' op Invalid broadcast requested, should be (d2)}}
linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d0)>,
affine_map<(d0, d1, d2) -> (d1, d2)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%arg0, %arg1 : memref<3xf32>, memref<5x7xf32>) outs(%arg2: memref<3x7xf32>)
return
}
// -----
func.func @invalid_bcast_b(%arg0: memref<3x5xf32>, %arg1: memref<7xf32>, %arg2: memref<3x7xf32>) {
// expected-error @+1 {{'linalg.matmul' op Invalid broadcast requested, should be (d2)}}
linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d0, d2)>,
affine_map<(d0, d1, d2) -> (d1)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%arg0, %arg1 : memref<3x5xf32>, memref<7xf32>) outs(%arg2: memref<3x7xf32>)
return
}
// -----
func.func @invalid_bcast_a_rank_mismatch(%arg0: memref<3x5xf32>, %arg1: memref<5x7xf32>, %arg2: memref<3x7xf32>) {
// expected-error @+1 {{'linalg.matmul' op expected operand rank (2) to match the result rank of indexing_map #0 (1)}}
linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d2)>,
affine_map<(d0, d1, d2) -> (d2, d1)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%arg0, %arg1 : memref<3x5xf32>, memref<5x7xf32>) outs(%arg2: memref<3x7xf32>)
return
}
// -----
func.func @invalid_bcast_b_rank_mismatch(%arg0: memref<3x5xf32>, %arg1: memref<5x7xf32>, %arg2: memref<3x7xf32>) {
// expected-error @+1 {{'linalg.matmul' op expected operand rank (2) to match the result rank of indexing_map #1 (1)}}
linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d0, d2)>,
affine_map<(d0, d1, d2) -> (d2)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%arg0, %arg1 : memref<3x5xf32>, memref<5x7xf32>) outs(%arg2: memref<3x7xf32>)
return
}
// -----
func.func @invalid_matmul_bcast_b_transpose_a(%arg0: memref<5x3xf32>, %arg1: memref<7xf32>, %arg2: memref<3x7xf32>) {
// expected-error @+1 {{inferred input/output operand #1 has shape's dimension #0 to be 5, but found 7}}
linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d2, d0)>,
affine_map<(d0, d1, d2) -> (d2)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%arg0, %arg1 : memref<5x3xf32>, memref<7xf32>) outs(%arg2: memref<3x7xf32>)
return
}
// -----
func.func @invalid_matmul_bcast_b_transpose_a_wrong_dim(%arg0: memref<3x5xf32>, %arg1: memref<5xf32>, %arg2: memref<3x7xf32>) {
// expected-error @+1 {{'linalg.matmul' op Unexpected dim expression in map result.}}
linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d1, d2)>,
affine_map<(d0, d1, d2) -> (d2)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%arg0, %arg1 : memref<3x5xf32>, memref<5xf32>) outs(%arg2: memref<3x7xf32>)
return
}
// -----
func.func @invalid_indexing_maps_placement_matmul(%lhs: tensor<4x1xf32>, %rhs: tensor<1x64xf32>, %init: tensor<4x64xf32>) {
// expected-error @+2 {{custom op 'indexing_maps' is unknown (tried 'func.indexing_maps' as well)}}
linalg.matmul ins(%lhs, %rhs : tensor<4x1xf32>, tensor<1x64xf32>) outs(%init : tensor<4x64xf32>)
indexing_maps = [
affine_map<(d0, d1, d2) -> (d0, d2)>,
affine_map<(d0, d1, d2) -> (d2, d1)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
return
}
// -----
func.func @invalid_static_2d_conv(%input : memref<1x3x4x2xf32>, %filter: memref<3x2x2x1xf32>, %output: memref<1x2x3x1xf32>) {
// expected-error @+1 {{inferred input/output operand #0 has shape's dimension #1 to be greater than or equal to 4, but found 3}}
linalg.conv_2d_nhwc_hwcf

View File

@ -1201,249 +1201,6 @@ func.func @matmul_transpose_a(%arg0: memref<5x3xf32>, %arg1: memref<5x7xf32>, %a
// -----
// CHECK-LABEL: func @matmul_transpose_a_explicit
// CHECK: linalg.matmul
// CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<5x3xf32>, memref<5x7xf32>)
// CHECK-SAME: outs(%{{.+}} : memref<3x7xf32>)
func.func @matmul_transpose_a_explicit(%arg0: memref<5x3xf32>, %arg1: memref<5x7xf32>, %arg2: memref<3x7xf32>) {
linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d2, d0)>,
affine_map<(d0, d1, d2) -> (d2, d1)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%arg0, %arg1 : memref<5x3xf32>, memref<5x7xf32>)
outs(%arg2: memref<3x7xf32>)
return
}
// -----
func.func @matmul_transpose_b_explicit(%arg0: memref<3x5xf32>, %arg1: memref<7x5xf32>, %arg2: memref<3x7xf32>) {
linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d0, d2)>,
affine_map<(d0, d1, d2) -> (d1, d2)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%arg0, %arg1 : memref<3x5xf32>, memref<7x5xf32>)
outs(%arg2: memref<3x7xf32>)
return
}
// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d0, d2)>
// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d1, d2)>
// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
// CHECK-LABEL: func.func @matmul_transpose_b_explicit(
// CHECK-SAME: %[[VAL_0:.*]]: memref<3x5xf32>,
// CHECK-SAME: %[[VAL_1:.*]]: memref<7x5xf32>,
// CHECK-SAME: %[[VAL_2:.*]]: memref<3x7xf32>) {
// CHECK: linalg.matmul ins(%[[VAL_0]], %[[VAL_1]] : memref<3x5xf32>, memref<7x5xf32>) outs(%[[VAL_2]] : memref<3x7xf32>) indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]]
// CHECK: return
// CHECK: }
// -----
func.func @matmul_transpose_a_b_explicit(%arg0: memref<5x3xf32>, %arg1: memref<7x5xf32>, %arg2: memref<3x7xf32>) {
linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d2, d0)>,
affine_map<(d0, d1, d2) -> (d1, d2)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%arg0, %arg1 : memref<5x3xf32>, memref<7x5xf32>)
outs(%arg2: memref<3x7xf32>)
return
}
// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d2, d0)>
// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d1, d2)>
// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
// CHECK-LABEL: func.func @matmul_transpose_a_b_explicit(
// CHECK-SAME: %[[VAL_0:.*]]: memref<5x3xf32>,
// CHECK-SAME: %[[VAL_1:.*]]: memref<7x5xf32>,
// CHECK-SAME: %[[VAL_2:.*]]: memref<3x7xf32>) {
// CHECK: linalg.matmul ins(%[[VAL_0]], %[[VAL_1]] : memref<5x3xf32>, memref<7x5xf32>) outs(%[[VAL_2]] : memref<3x7xf32>) indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]]
// CHECK: return
// CHECK: }
// -----
func.func @matmul_bcast_a(%arg0: memref<5xf32>, %arg1: memref<5x7xf32>, %arg2: memref<3x7xf32>) {
linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d2)>,
affine_map<(d0, d1, d2) -> (d2, d1)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%arg0, %arg1 : memref<5xf32>, memref<5x7xf32>) outs(%arg2: memref<3x7xf32>)
return
}
// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d2)>
// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d2, d1)>
// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
// CHECK-LABEL: func @matmul_bcast_a
// CHECK: linalg.matmul
// CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<5xf32>, memref<5x7xf32>)
// CHECK-SAME: outs(%{{.+}} : memref<3x7xf32>)
// -----
func.func @matmul_bcast_a_dim1(%arg0: memref<5xf32>, %arg1: memref<5x7xf32>, %arg2: memref<3x7xf32>) {
linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d2)>,
affine_map<(d0, d1, d2) -> (d2, d1)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%arg0, %arg1 : memref<5xf32>, memref<5x7xf32>) outs(%arg2: memref<3x7xf32>)
return
}
// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d2)>
// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d2, d1)>
// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
// CHECK-LABEL: func @matmul_bcast_a_dim1
// CHECK: linalg.matmul
// CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<5xf32>, memref<5x7xf32>)
// CHECK-SAME: outs(%{{.+}} : memref<3x7xf32>)
// -----
func.func @matmul_bcast_b(%arg0: memref<3x5xf32>, %arg1: memref<5xf32>, %arg2: memref<3x7xf32>) {
linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d0, d2)>,
affine_map<(d0, d1, d2) -> (d2)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%arg0, %arg1 : memref<3x5xf32>, memref<5xf32>) outs(%arg2: memref<3x7xf32>)
return
}
// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d0, d2)>
// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d2)>
// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
// CHECK-LABEL: func @matmul_bcast_b
// CHECK: linalg.matmul
// CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<3x5xf32>, memref<5xf32>)
// CHECK-SAME: outs(%{{.+}} : memref<3x7xf32>)
// -----
func.func @matmul_bcast_a_b(%arg0: memref<5xf32>, %arg1: memref<5xf32>, %arg2: memref<3x7xf32>) {
linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d2)>,
affine_map<(d0, d1, d2) -> (d2)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%arg0, %arg1 : memref<5xf32>, memref<5xf32>) outs(%arg2: memref<3x7xf32>)
return
}
// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d2)>
// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
// CHECK-LABEL: func.func @matmul_bcast_a_b(
// CHECK-SAME: %[[VAL_0:.*]]: memref<5xf32>, %[[VAL_1:.*]]: memref<5xf32>,
// CHECK-SAME: %[[VAL_2:.*]]: memref<3x7xf32>) {
// CHECK: linalg.matmul ins(%[[VAL_0]], %[[VAL_1]] : memref<5xf32>, memref<5xf32>) outs(%[[VAL_2]] : memref<3x7xf32>) indexing_maps = [#[[$ATTR_0]], #[[$ATTR_0]], #[[$ATTR_1]]]
// CHECK: return
// CHECK: }
// -----
func.func @matmul_bcast_b_dim1(%arg0: memref<3x5xf32>, %arg1: memref<5xf32>, %arg2: memref<3x7xf32>) {
linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d0, d2)>,
affine_map<(d0, d1, d2) -> (d2)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%arg0, %arg1 : memref<3x5xf32>, memref<5xf32>) outs(%arg2: memref<3x7xf32>)
return
}
// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d0, d2)>
// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d2)>
// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
// CHECK-LABEL: func @matmul_bcast_b_dim1
// CHECK: linalg.matmul
// CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<3x5xf32>, memref<5xf32>)
// CHECK-SAME: outs(%{{.+}} : memref<3x7xf32>)
// -----
func.func @dynamic_matmul_bcast_a(%arg0: memref<?xf32>, %arg1: memref<?x?xf32>, %arg2: memref<?x?xf32>) {
linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d2)>,
affine_map<(d0, d1, d2) -> (d2, d1)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%arg0, %arg1 : memref<?xf32>, memref<?x?xf32>) outs(%arg2: memref<?x?xf32>)
return
}
// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d2)>
// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d2, d1)>
// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
// CHECK-LABEL: func.func @dynamic_matmul_bcast_a(
// CHECK-SAME: %[[VAL_0:.*]]: memref<?xf32>,
// CHECK-SAME: %[[VAL_1:.*]]: memref<?x?xf32>,
// CHECK-SAME: %[[VAL_2:.*]]: memref<?x?xf32>) {
// CHECK: linalg.matmul ins(%[[VAL_0]], %[[VAL_1]] : memref<?xf32>, memref<?x?xf32>) outs(%[[VAL_2]] : memref<?x?xf32>) indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]]
// CHECK: return
// CHECK: }
// -----
func.func @matmul_bcast_a_transpose_b(%arg0: memref<5xf32>, %arg1: memref<7x5xf32>, %arg2: memref<3x7xf32>) {
linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d2)>,
affine_map<(d0, d1, d2) -> (d1, d2)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%arg0, %arg1 : memref<5xf32>, memref<7x5xf32>) outs(%arg2: memref<3x7xf32>)
return
}
// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d2)>
// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d1, d2)>
// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
// CHECK-LABEL: func.func @matmul_bcast_a_transpose_b(
// CHECK-SAME: %[[VAL_0:.*]]: memref<5xf32>,
// CHECK-SAME: %[[VAL_1:.*]]: memref<7x5xf32>,
// CHECK-SAME: %[[VAL_2:.*]]: memref<3x7xf32>) {
// CHECK: linalg.matmul ins(%[[VAL_0]], %[[VAL_1]] : memref<5xf32>, memref<7x5xf32>) outs(%[[VAL_2]] : memref<3x7xf32>) indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]]
// CHECK: return
// CHECK: }
// -----
func.func @matmul_bcast_b_transpose_a(%arg0: memref<5x3xf32>, %arg1: memref<5xf32>, %arg2: memref<3x7xf32>) {
linalg.matmul indexing_maps = [
affine_map<(d0, d1, d2) -> (d2, d0)>,
affine_map<(d0, d1, d2) -> (d2)>,
affine_map<(d0, d1, d2) -> (d0, d1)>
]
ins(%arg0, %arg1 : memref<5x3xf32>, memref<5xf32>) outs(%arg2: memref<3x7xf32>)
return
}
// CHECK: #[[$ATTR_0:.+]] = affine_map<(d0, d1, d2) -> (d2, d0)>
// CHECK: #[[$ATTR_1:.+]] = affine_map<(d0, d1, d2) -> (d2)>
// CHECK: #[[$ATTR_2:.+]] = affine_map<(d0, d1, d2) -> (d0, d1)>
// CHECK-LABEL: func.func @matmul_bcast_b_transpose_a(
// CHECK-SAME: %[[VAL_0:.*]]: memref<5x3xf32>,
// CHECK-SAME: %[[VAL_1:.*]]: memref<5xf32>,
// CHECK-SAME: %[[VAL_2:.*]]: memref<3x7xf32>) {
// CHECK: linalg.matmul ins(%[[VAL_0]], %[[VAL_1]] : memref<5x3xf32>, memref<5xf32>) outs(%[[VAL_2]] : memref<3x7xf32>) indexing_maps = [#[[$ATTR_0]], #[[$ATTR_1]], #[[$ATTR_2]]]
// CHECK: return
// CHECK: }
// -----
// CHECK-LABEL: func @matmul_transpose_b
// CHECK: linalg.matmul_transpose_b
// CHECK-SAME: ins(%{{.+}}, %{{.+}} : memref<3x5xf32>, memref<7x5xf32>)

View File

@ -84,6 +84,81 @@ def testNamedStructuredOpCustomForm():
print(module)
# CHECK-LABEL: TEST: testNamedStructuredOpGenericForm
@run
def testNamedStructuredOpGenericForm():
with Context() as ctx, Location.unknown():
module = Module.create()
f32 = F32Type.get()
with InsertionPoint(module.body):
@func.FuncOp.from_py_func(
RankedTensorType.get((4, 16), f32), RankedTensorType.get((16, 8), f32)
)
def named_form(lhs, rhs):
init_result = tensor.empty([4, 8], f32)
# CHECK: "linalg.matmul"(%{{.*}})
# CHECK-SAME: cast = #linalg.type_fn<cast_signed>
# CHECK-SAME: operandSegmentSizes = array<i32: 2, 1>
# CHECK-NEXT: ^bb0(%{{.*}}: f32, %{{.*}}: f32, %{{.*}}: f32):
# CHECK-NEXT: arith.mulf{{.*}} (f32, f32) -> f32
# CHECK-NEXT: arith.addf{{.*}} (f32, f32) -> f32
# CHECK-NEXT: linalg.yield{{.*}} (f32) -> ()
# CHECK-NEXT: (tensor<4x16xf32>, tensor<16x8xf32>, tensor<4x8xf32>) -> tensor<4x8xf32>
return linalg.matmul(lhs, rhs, outs=[init_result])
module.operation.print(print_generic_op_form=True)
# CHECK-LABEL: TEST: testNamedStructuredAsGenericOp
@run
def testNamedStructuredAsGenericOp():
with Context() as ctx, Location.unknown():
module = Module.create()
f32 = F32Type.get()
with InsertionPoint(module.body):
@func.FuncOp.from_py_func(
RankedTensorType.get((4, 16), f32), RankedTensorType.get((16, 8), f32)
)
def generic_form(lhs, rhs):
init_result = tensor.EmptyOp([4, 8], f32)
# CHECK: linalg.generic
return linalg.matmul(
lhs, rhs, outs=[init_result.result], emit_generic=True
)
print(module)
# CHECK-LABEL: TEST: testOpResultFromOtherOp
@run
def testOpResultFromOtherOp():
with Context(), Location.unknown():
module = Module.create()
f32 = F32Type.get()
with InsertionPoint(module.body):
@func.FuncOp.from_py_func(
RankedTensorType.get((4, 16), f32), RankedTensorType.get((16, 8), f32)
)
def pass_an_op_directly(arg0, arg1):
one = arith.ConstantOp(F32Type.get(), 1.0)
# CHECK: %[[LHS:.*]] = linalg.fill
lhs = linalg.fill(one, outs=[arg0])
# CHECK: %[[RHS:.*]] = linalg.fill
rhs = linalg.fill(one, outs=[arg1])
# CHECK: %[[INIT:.*]] = tensor.empty
init = tensor.EmptyOp([4, 8], f32)
# CHECK: linalg.matmul
# CHECK: ins(%[[LHS]], %[[RHS]]
# CHECK: outs(%[[INIT]]
return linalg.matmul(lhs, rhs, outs=init)
print(module)
# CHECK-LABEL: TEST: testIdentityRegionOps
@run
def testIdentityRegionOps():

View File

@ -681,11 +681,7 @@ ParseResult {0}::parse(OpAsmParser &parser, OperationState &result) {{
{0}::getNumRegionArgs(), {0}::getRegionBuilder());
}
void {0}::print(OpAsmPrinter &p) {{
SmallVector<StringRef, 3> elidedAttrs = {{"operandSegmentSizes",
"linalg.memoized_indexing_maps",
"indexing_maps"};
::printNamedStructuredOp(p, getOperation(), getInputs(), getOutputs(),
elidedAttrs);
::printNamedStructuredOp(p, getOperation(), getInputs(), getOutputs());
}
)FMT";