[mlir][vector] Update tests for collapse 4/n (nfc) (#96214)

The main goal of this PR (and subsequent PRs), is to add more tests with
scalable vectors to:
  * vector-transfer-collapse-inner-most-dims.mlir

There's quite a few cases to consider, hence this is split into multiple
PRs. In this PR, `@outer_dyn_drop_inner_most_dim` is replaced with:
  * `@contiguous_inner_most_dynamic_outer`

I am also adding a similar test for scalable vectors. In addition,
  * `@drop_two_inner_most_dim` and
    `@drop_two_inner_most_dim_scalable_inner_dim`,

are renamed as `@contiguous_inner_most` and 
`@contiguous_inner_most_scalable_inner_dim`, respectively, to match
their counterpart for `xfer_read`.

NOTE: This PR is limited to tests for `vector.transfer_write`

This is a follow-up for: #94490, #94604, #94906
This commit is contained in:
Andrzej Warzyński 2024-06-21 08:04:40 +01:00 committed by GitHub
parent 874dcaea09
commit 218f07014a
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -1,5 +1,7 @@
// RUN: mlir-opt %s -test-vector-transfer-collapse-inner-most-dims -split-input-file | FileCheck %s
// TODO: Unify how memref and vectors are named
//-----------------------------------------------------------------------------
// 1. vector.transfer_read
//-----------------------------------------------------------------------------
@ -254,14 +256,14 @@ func.func @negative_non_unit_inner_memref_dim(%arg0: memref<4x8xf32>) -> vector<
// 2. vector.transfer_write
//-----------------------------------------------------------------------------
func.func @drop_two_inner_most_dim(%arg0: memref<1x512x16x1x1xf32>, %arg1: vector<1x16x16x1x1xf32>, %arg2: index) {
func.func @contiguous_inner_most(%arg0: memref<1x512x16x1x1xf32>, %arg1: vector<1x16x16x1x1xf32>, %arg2: index) {
%c0 = arith.constant 0 : index
vector.transfer_write %arg1, %arg0[%c0, %arg2, %c0, %c0, %c0]
{in_bounds = [true, true, true, true, true]}
: vector<1x16x16x1x1xf32>, memref<1x512x16x1x1xf32>
return
}
// CHECK: func.func @drop_two_inner_most_dim
// CHECK: func.func @contiguous_inner_most
// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[VEC:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[IDX:[a-zA-Z0-9]+]]
@ -276,14 +278,14 @@ func.func @drop_two_inner_most_dim(%arg0: memref<1x512x16x1x1xf32>, %arg1: vecto
// dim scalable. Note that this example only makes sense when "16 = [16]" (i.e.
// vscale = 1). This is assumed (implicitly) via the `in_bounds` attribute.
func.func @drop_two_inner_most_dim_scalable_inner_dim(%arg0: memref<1x512x16x1x1xf32>, %arg1: vector<1x16x[16]x1x1xf32>, %arg2: index) {
func.func @contiguous_inner_most_scalable_inner_dim(%arg0: memref<1x512x16x1x1xf32>, %arg1: vector<1x16x[16]x1x1xf32>, %arg2: index) {
%c0 = arith.constant 0 : index
vector.transfer_write %arg1, %arg0[%c0, %arg2, %c0, %c0, %c0]
{in_bounds = [true, true, true, true, true]}
: vector<1x16x[16]x1x1xf32>, memref<1x512x16x1x1xf32>
return
}
// CHECK: func.func @drop_two_inner_most_dim_scalable_inner_dim
// CHECK: func.func @contiguous_inner_most_scalable_inner_dim
// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[VEC:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[IDX:[a-zA-Z0-9]+]]
@ -325,6 +327,46 @@ func.func @negative_scalable_one_trailing_dim(%arg0: memref<1x512x16x1x1xf32>, %
// -----
func.func @contiguous_inner_most_dynamic_outer(%a: index, %b: index, %arg0: memref<?x?x16x1xf32>, %arg1: vector<8x1xf32>) {
%c0 = arith.constant 0 : index
vector.transfer_write %arg1, %arg0[%a, %b, %c0, %c0] {in_bounds = [true, true]} : vector<8x1xf32>, memref<?x?x16x1xf32>
return
}
// CHECK-LABEL: func.func @contiguous_inner_most_dynamic_outer(
// CHECK-SAME: %[[IDX_0:.*]]: index, %[[IDX_1:.*]]: index,
// CHECK-SAME: %[[MEM:.*]]: memref<?x?x16x1xf32>,
// CHECK-SAME: %[[VEC:.*]]: vector<8x1xf32>) {
// CHECK: %[[C1:.*]] = arith.constant 1 : index
// CHECK: %[[C0:.*]] = arith.constant 0 : index
// CHECK: %[[DIM0:.*]] = memref.dim %[[MEM]], %[[C0]] : memref<?x?x16x1xf32>
// CHECK: %[[DIM1:.*]] = memref.dim %[[MEM]], %[[C1]] : memref<?x?x16x1xf32>
// CHECK: %[[SV:.*]] = memref.subview %[[MEM]][0, 0, 0, 0] {{\[}}%[[DIM0]], %[[DIM1]], 16, 1] [1, 1, 1, 1] : memref<?x?x16x1xf32> to memref<?x?x16xf32, strided<[?, 16, 1], offset: ?>>
// CHECK: %[[SC:.*]] = vector.shape_cast %[[VEC]] : vector<8x1xf32> to vector<8xf32>
// CHECK: vector.transfer_write %[[SC]], %[[SV]]{{\[}}%[[IDX_0]], %[[IDX_1]], %[[C0]]] {in_bounds = [true]} : vector<8xf32>, memref<?x?x16xf32, strided<[?, 16, 1], offset: ?>>
// Same as the top example within this split, but with the outer vector
// dim scalable. Note that this example only makes sense when "8 = [8]" (i.e.
// vscale = 1). This is assumed (implicitly) via the `in_bounds` attribute.
func.func @contiguous_inner_most_dynamic_outer_scalable_inner_dim(%a: index, %b: index, %arg0: memref<?x?x16x1xf32>, %arg1: vector<[8]x1xf32>) {
%c0 = arith.constant 0 : index
vector.transfer_write %arg1, %arg0[%a, %b, %c0, %c0] {in_bounds = [true, true]} : vector<[8]x1xf32>, memref<?x?x16x1xf32>
return
}
// CHECK-LABEL: func.func @contiguous_inner_most_dynamic_outer_scalable_inner_dim(
// CHECK-SAME: %[[IDX_0:.*]]: index, %[[IDX_1:.*]]: index,
// CHECK-SAME: %[[MEM:.*]]: memref<?x?x16x1xf32>,
// CHECK-SAME: %[[VEC:.*]]: vector<[8]x1xf32>) {
// CHECK: %[[C1:.*]] = arith.constant 1 : index
// CHECK: %[[C0:.*]] = arith.constant 0 : index
// CHECK: %[[DIM0:.*]] = memref.dim %[[MEM]], %[[C0]] : memref<?x?x16x1xf32>
// CHECK: %[[DIM1:.*]] = memref.dim %[[MEM]], %[[C1]] : memref<?x?x16x1xf32>
// CHECK: %[[SV:.*]] = memref.subview %[[MEM]][0, 0, 0, 0] {{\[}}%[[DIM0]], %[[DIM1]], 16, 1] [1, 1, 1, 1] : memref<?x?x16x1xf32> to memref<?x?x16xf32, strided<[?, 16, 1], offset: ?>>
// CHECK: %[[SC:.*]] = vector.shape_cast %[[VEC]] : vector<[8]x1xf32> to vector<[8]xf32>
// CHECK: vector.transfer_write %[[SC]], %[[SV]]{{\[}}%[[IDX_0]], %[[IDX_1]], %[[C0]]] {in_bounds = [true]} : vector<[8]xf32>, memref<?x?x16xf32, strided<[?, 16, 1], offset: ?>>
// -----
func.func @drop_inner_most_dim(%arg0: memref<1x512x16x1xf32, strided<[8192, 16, 1, 1], offset: ?>>, %arg1: vector<1x16x16x1xf32>, %arg2: index) {
%c0 = arith.constant 0 : index
vector.transfer_write %arg1, %arg0[%c0, %arg2, %c0, %c0]
@ -345,27 +387,6 @@ func.func @drop_inner_most_dim(%arg0: memref<1x512x16x1xf32, strided<[8192, 16,
// -----
func.func @outer_dyn_drop_inner_most_dim(%arg0: memref<?x512x16x1xf32, strided<[8192, 16, 1, 1], offset: ?>>, %arg1: vector<1x16x16x1xf32>, %arg2: index) {
%c0 = arith.constant 0 : index
vector.transfer_write %arg1, %arg0[%arg2, %c0, %c0, %c0]
{in_bounds = [true, true, true, true]}
: vector<1x16x16x1xf32>, memref<?x512x16x1xf32, strided<[8192, 16, 1, 1], offset: ?>>
return
}
// CHECK: func.func @outer_dyn_drop_inner_most_dim
// CHECK-SAME: %[[DEST:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[VEC:[a-zA-Z0-9]+]]
// CHECK-SAME: %[[IDX:[a-zA-Z0-9]+]]
// CHECK-DAG: %[[C0:.+]] = arith.constant 0 : index
// CHECK-DAG: %[[D0:.+]] = memref.dim %[[SRC]], %[[C0]]
// CHECK: %[[SUBVIEW:.+]] = memref.subview %[[DEST]][0, 0, 0, 0] [%[[D0]], 512, 16, 1]
// CHECK-SAME: memref<?x512x16x1xf32, strided<[8192, 16, 1, 1], offset: ?>> to memref<?x512x16xf32, strided<[8192, 16, 1], offset: ?>>
// CHECK: %[[CAST:.+]] = vector.shape_cast %[[VEC]] : vector<1x16x16x1xf32> to vector<1x16x16xf32>
// CHECK: vector.transfer_write %[[CAST]], %[[SUBVIEW]]
// CHECK-SAME: [%[[IDX]], %[[C0]], %[[C0]]]
// -----
func.func @non_unit_strides(%arg0: memref<512x16x1xf32, strided<[8192, 16, 4], offset: ?>>, %arg1: vector<16x16x1xf32>, %arg2: index) {
%c0 = arith.constant 0 : index
vector.transfer_write %arg1, %arg0[%arg2, %c0, %c0]