[mlir][linalg][python] Add max operation in OpDSL

Add the max operation to the OpDSL and introduce a max pooling operation to test the implementation. As MLIR has no builtin max operation, the max function is lowered to a compare and select pair.

Differential Revision: https://reviews.llvm.org/D105203
This commit is contained in:
Tobias Gysi 2021-07-02 06:45:34 +00:00
parent 0c53f602d5
commit 3b95400f78
7 changed files with 178 additions and 15 deletions

View File

@ -1,4 +1,3 @@
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: matmul
@ -594,6 +593,77 @@ structured_op: !LinalgStructuredOpConfig
- !ScalarExpression
scalar_arg: I
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: pooling_nhwc_max_poly
cpp_class_name: PoolingNhwcMaxPolyOp
doc: |-
Performs max pooling.
Numeric casting is performed on the input operand, promoting it to the same
data type as the accumulator/output.
structured_op: !LinalgStructuredOpConfig
args:
- !LinalgOperandDefConfig
name: I
usage: InputOperand
type_var: T1
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] ->
(s0, s1, s2, s3)>
- !LinalgOperandDefConfig
name: K
usage: InputOperand
type_var: T2
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] ->
(s4, s5)>
- !LinalgOperandDefConfig
name: O
usage: OutputOperand
type_var: U
shape_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11] ->
(s0, s6, s7, s3)>
- !LinalgOperandDefConfig
name: strides
usage: IndexAttribute
type_var: I64
attribute_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11]
-> (s8, s9)>
- !LinalgOperandDefConfig
name: dilations
usage: IndexAttribute
type_var: I64
attribute_map: affine_map<()[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11]
-> (s10, s11)>
indexing_maps: !LinalgIndexingMapsConfig
static_indexing_maps:
- affine_map<(d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9,
s10, s11] -> (d0, d1 * s8 + d3 * s10, d2 * s9 + d4 * s11, d5)>
- affine_map<(d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9,
s10, s11] -> (d3, d4)>
- affine_map<(d0, d1, d2, d3, d4, d5)[s0, s1, s2, s3, s4, s5, s6, s7, s8, s9,
s10, s11] -> (d0, d1, d2, d5)>
iterator_types:
- parallel
- parallel
- parallel
- reduction
- reduction
- parallel
assignments:
- !ScalarAssign
arg: O
value: !ScalarExpression
scalar_apply:
fn_name: max
operands:
- !ScalarExpression
scalar_arg: O
- !ScalarExpression
symbolic_cast:
type_var: U
operands:
- !ScalarExpression
scalar_arg: I
--- !LinalgOpConfig
metadata: !LinalgOpMetadata
name: fill_rng_2d
cpp_class_name: FillRng2DOp

View File

@ -274,6 +274,21 @@ public:
llvm_unreachable("unsupported non numeric type");
}
Value applyfn__max(Value lhs, Value rhs) {
OpBuilder builder = getBuilder();
if (isFloatingPoint(lhs)) {
Value condition =
builder.create<CmpFOp>(lhs.getLoc(), CmpFPredicate::OGT, lhs, rhs);
return builder.create<SelectOp>(lhs.getLoc(), condition, lhs, rhs);
}
if (isInteger(lhs)) {
Value condition =
builder.create<CmpIOp>(lhs.getLoc(), CmpIPredicate::sgt, lhs, rhs);
return builder.create<SelectOp>(lhs.getLoc(), condition, lhs, rhs);
}
llvm_unreachable("unsupported non numeric type");
}
void yieldOutputs(ValueRange values) {
assert(!values.empty() && "linalg ops must yield outputs");
if (values.empty())

View File

@ -307,6 +307,18 @@ class _BodyBuilder:
return std.MulIOp(lhs.type, lhs, rhs).result
raise NotImplementedError("Unsupported 'mul' operand: {lhs}")
def _eval_max(self, lhs: Value, rhs: Value) -> Value:
i1 = IntegerType.get_signless(1)
if _is_floating_point_type(lhs.type):
ogt_attr = IntegerAttr.get(IntegerType.get_signless(64), 2)
cond = std.CmpFOp(i1, ogt_attr, lhs, rhs).result
return std.SelectOp(lhs.type, cond, lhs, rhs).result
if _is_integer_type(lhs.type) or _is_index_type(lhs.type):
sgt_attr = IntegerAttr.get(IntegerType.get_signless(64), 4)
cond = std.CmpIOp(i1, sgt_attr, lhs, rhs).result
return std.SelectOp(lhs.type, cond, lhs, rhs).result
raise NotImplementedError("Unsupported 'max' operand: {lhs}")
def _infer_structured_outs(op_config: LinalgStructuredOpConfig,
in_arg_defs: Sequence[OperandDefConfig],

View File

@ -148,6 +148,24 @@ def pooling_nhwc_sum_poly(
U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW, D.c])
@linalg_structured_op
def pooling_nhwc_max_poly(
I=TensorDef(T1, S.N, S.H, S.W, S.C),
K=TensorDef(T2, S.KH, S.KW, index_dims=[D.kh, D.kw]),
O=TensorDef(U, S.N, S.OH, S.OW, S.C, output=True),
strides=AttributeDef(S.SH, S.SW),
dilations=AttributeDef(S.DH, S.DW)):
"""Performs max pooling.
Numeric casting is performed on the input operand, promoting it to the same
data type as the accumulator/output.
"""
domain(D.n, D.oh, D.ow, D.kh, D.kw, D.c)
O[D.n, D.oh, D.ow, D.c] = ReduceFn.max(D.kh, D.kw)(
cast(U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW,
D.c]))
@linalg_structured_op
def fill_rng_2d(
min=ScalarDef(F64),

View File

@ -60,6 +60,36 @@ func @generalize_depthwise_conv_2d_input_nhwc_filter_hwc_poly_i32(%input : tenso
// -----
func @generalize_pooling_nhwc_max_poly_f32(%input : tensor<1x4x16x1xf32>, %shape: tensor<2x2xf32>, %output: tensor<1x2x4x1xf32>) -> tensor<1x2x4x1xf32> {
%0 = linalg.pooling_nhwc_max_poly {dilations = dense<[1, 2]> : tensor<2xi64>, strides = dense<[2, 4]> : tensor<2xi64>}
ins(%input, %shape : tensor<1x4x16x1xf32>, tensor<2x2xf32>) outs(%output : tensor<1x2x4x1xf32>) -> tensor<1x2x4x1xf32>
return %0: tensor<1x2x4x1xf32>
}
// CHECK-LABEL: @generalize_pooling_nhwc_max_poly_f32
// CHECK: ^{{.*}}(%[[IN_ARG:.+]]: f32, %[[SHAPE_ARG:.+]]: f32, %[[OUT_ARG:.+]]: f32)
// CHECK-NEXT: %[[COND:.+]] = cmpf ogt, %[[OUT_ARG]], %[[IN_ARG]] : f32
// CHECK-NEXT: %[[MAX:.+]] = select %[[COND]], %[[OUT_ARG]], %[[IN_ARG]] : f32
// CHECK-NEXT: linalg.yield %[[MAX]] : f32
// CHECK-NEXT: -> tensor<1x2x4x1xf32>
// -----
func @generalize_pooling_nhwc_max_poly_i32(%input : tensor<1x4x16x1xi32>, %shape: tensor<2x2xi32>, %output: tensor<1x2x4x1xi32>) -> tensor<1x2x4x1xi32> {
%0 = linalg.pooling_nhwc_max_poly {dilations = dense<[1, 2]> : tensor<2xi64>, strides = dense<[2, 4]> : tensor<2xi64>}
ins(%input, %shape : tensor<1x4x16x1xi32>, tensor<2x2xi32>) outs(%output : tensor<1x2x4x1xi32>) -> tensor<1x2x4x1xi32>
return %0: tensor<1x2x4x1xi32>
}
// CHECK-LABEL: @generalize_pooling_nhwc_max_poly_i32
// CHECK: ^{{.*}}(%[[IN_ARG:.+]]: i32, %[[SHAPE_ARG:.+]]: i32, %[[OUT_ARG:.+]]: i32)
// CHECK-NEXT: %[[COND:.+]] = cmpi sgt, %[[OUT_ARG]], %[[IN_ARG]] : i32
// CHECK-NEXT: %[[MAX:.+]] = select %[[COND]], %[[OUT_ARG]], %[[IN_ARG]] : i32
// CHECK-NEXT: linalg.yield %[[MAX]] : i32
// CHECK-NEXT: -> tensor<1x2x4x1xi32>
// -----
func @generalize_pooling_nhwc_sum_poly_f32(%input : tensor<1x4x16x1xf32>, %shape: tensor<2x2xf32>, %output: tensor<1x2x4x1xf32>) -> tensor<1x2x4x1xf32> {
%0 = linalg.pooling_nhwc_sum_poly {dilations = dense<[1, 2]> : tensor<2xi64>, strides = dense<[2, 4]> : tensor<2xi64>}
ins(%input, %shape : tensor<1x4x16x1xf32>, tensor<2x2xf32>) outs(%output : tensor<1x2x4x1xf32>) -> tensor<1x2x4x1xf32>

View File

@ -50,8 +50,9 @@ def pooling_poly(
strides=AttributeDef(S.SH, S.SW),
dilations=AttributeDef(S.DH, S.DW)):
domain(D.n, D.oh, D.ow, D.kh, D.kw, D.c)
O[D.n, D.oh, D.ow, D.c] += cast(
U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW, D.c])
O[D.n, D.oh, D.ow, D.c] = ReduceFn.max(D.kh, D.kw)(
cast(U, I[D.n, D.oh * S.SH + D.kh * S.DH, D.ow * S.SW + D.kw * S.DW,
D.c]))
@linalg_structured_op
@ -221,8 +222,9 @@ with Context() as ctx, Location.unknown():
# CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "reduction", "reduction", "parallel"]
# CHECK: ^{{.*}}(%[[IN:.+]]: f32, %[[SHAPE:.+]]: f32, %[[OUT:.+]]: i32)
# CHECK-NEXT: %[[IN_CAST:.+]] = fptosi %[[IN:.+]] : f32 to i32
# CHECK-NEXT: %[[SUM:.+]] = addi %[[OUT]], %[[IN_CAST]] : i32
# CHECK-NEXT: linalg.yield %[[SUM]] : i32
# CHECK-NEXT: %[[COND:.+]] = cmpi sgt, %[[OUT]], %[[IN_CAST:.+]] : i32
# CHECK-NEXT: %[[MAX:.+]] = select %[[COND]], %[[OUT]], %[[IN_CAST:.+]] : i32
# CHECK-NEXT: linalg.yield %[[MAX]] : i32
# CHECK-NEXT: -> tensor<2x4xi32>
@builtin.FuncOp.from_py_func(
RankedTensorType.get((4, 16), f32), RankedTensorType.get((2, 2), f32),
@ -231,6 +233,22 @@ with Context() as ctx, Location.unknown():
return pooling_poly(
input, shape, outs=[init_result], strides=[2, 4], dilations=[1, 2])
# CHECK-LABEL: @test_f32f32_pooling
# CHECK: linalg.generic
# CHECK-SAME: indexing_maps = [#[[$CONV_MAP_I]], #[[$POOL_MAP_K]], #[[$CONV_MAP_O]]]
# CHECK-SAME: iterator_types = ["parallel", "parallel", "parallel", "reduction", "reduction", "parallel"]
# CHECK: ^{{.*}}(%[[IN:.+]]: f32, %[[SHAPE:.+]]: f32, %[[OUT:.+]]: f32)
# CHECK-NEXT: %[[COND:.+]] = cmpf ogt, %[[OUT]], %[[IN:.+]] : f32
# CHECK-NEXT: %[[MAX:.+]] = select %[[COND]], %[[OUT]], %[[IN:.+]] : f32
# CHECK-NEXT: linalg.yield %[[MAX]] : f32
# CHECK-NEXT: -> tensor<2x4xf32>
@builtin.FuncOp.from_py_func(
RankedTensorType.get((4, 16), f32), RankedTensorType.get((2, 2), f32),
RankedTensorType.get((2, 4), f32))
def test_f32f32_pooling(input, shape, init_result):
return pooling_poly(
input, shape, outs=[init_result], strides=[2, 4], dilations=[1, 2])
# CHECK-LABEL: @test_i32_fill_rng
# CHECK: ^{{.*}}(%[[MIN:.+]]: f64, %[[MAX:.+]]: f64, %[[SEED:.+]]: i32, %{{.*}}
# CHECK-DAG: %[[IDX0:.+]] = linalg.index 0 : index

View File

@ -85,6 +85,7 @@ func @main() -> i32 attributes {llvm.emit_c_interface} {
pooling_boiler = """
func @main() -> i32 attributes {llvm.emit_c_interface} {
%v0 = constant 0 : i32
%v42 = constant 42.0 : f64
%v1 = constant 1.0 : f64
%input = memref.alloc() : memref<1x4x16x1xf64>
@ -94,10 +95,12 @@ func @main() -> i32 attributes {llvm.emit_c_interface} {
linalg.fill(%v1, %shape) : f64, memref<2x2xf64>
linalg.fill(%v0, %output) : i32, memref<1x2x4x1xi32>
%c0 = constant 0 : index
memref.store %v42, %input[%c0, %c0, %c0, %c0] : memref<1x4x16x1xf64>
call @pooling_on_buffers(%input, %shape, %output) :
(memref<1x4x16x1xf64>, memref<2x2xf64>, memref<1x2x4x1xi32>) -> ()
%c0 = constant 0 : index
%0 = memref.load %output[%c0, %c0, %c0, %c0] : memref<1x2x4x1xi32>
// TODO: FFI-based solution to allow testing and printing with python code.
@ -105,6 +108,7 @@ func @main() -> i32 attributes {llvm.emit_c_interface} {
}
"""
def transform(module, boilerplate):
import mlir.conversions
import mlir.dialects.linalg.passes
@ -308,12 +312,8 @@ def test_pooling_builtin():
MemRefType.get((1, 4, 16, 1), f64), MemRefType.get((2, 2), f64),
MemRefType.get((1, 2, 4, 1), i32))
def pooling_on_buffers(input, shape, output):
linalg.pooling_nhwc_sum_poly(
input,
shape,
outs=[output],
strides=[2, 4],
dilations=[1, 2])
linalg.pooling_nhwc_max_poly(
input, shape, outs=[output], strides=[2, 4], dilations=[1, 2])
execution_engine = ExecutionEngine(transform(module, pooling_boiler))
@ -325,7 +325,7 @@ def test_pooling_builtin():
execution_engine.invoke("main", res)
log("RESULT: ", res[0])
# CHECK: RESULT: 4
# CHECK: RESULT: 42
test_pooling_builtin()
@ -342,7 +342,7 @@ def test_pooling_generic():
MemRefType.get((1, 4, 16, 1), f64), MemRefType.get((2, 2), f64),
MemRefType.get((1, 2, 4, 1), i32))
def pooling_on_buffers(input, shape, output):
linalg.pooling_nhwc_sum_poly(
linalg.pooling_nhwc_max_poly(
input,
shape,
outs=[output],
@ -360,7 +360,7 @@ def test_pooling_generic():
execution_engine.invoke("main", res)
log("RESULT: ", res[0])
# CHECK: RESULT: 4
# CHECK: RESULT: 42
test_pooling_generic()