[LV] Vectorize histogram operations (#99851)

This patch implements autovectorization support for the 'all-in-one'
histogram intrinsic, which seems to have more support than the
'standalone' intrinsic. See
https://discourse.llvm.org/t/rfc-vectorization-support-for-histogram-count-operations/74788/
for an overview of the work and my notes on the tradeoffs between the
two approaches.
This commit is contained in:
Graham Hunter 2024-09-27 13:08:55 +01:00 committed by GitHub
parent 28416b7174
commit 6f1a8c2da2
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
14 changed files with 1810 additions and 2 deletions

View File

@ -224,6 +224,18 @@ private:
Instruction *ExactFPMathInst = nullptr;
};
/// This holds details about a histogram operation -- a load -> update -> store
/// sequence where each lane in a vector might be updating the same element as
/// another lane.
struct HistogramInfo {
LoadInst *Load;
Instruction *Update;
StoreInst *Store;
HistogramInfo(LoadInst *Load, Instruction *Update, StoreInst *Store)
: Load(Load), Update(Update), Store(Store) {}
};
/// LoopVectorizationLegality checks if it is legal to vectorize a loop, and
/// to what vectorization factor.
/// This class does not look at the profitability of vectorization, only the
@ -408,6 +420,20 @@ public:
unsigned getNumStores() const { return LAI->getNumStores(); }
unsigned getNumLoads() const { return LAI->getNumLoads(); }
/// Returns a HistogramInfo* for the given instruction if it was determined
/// to be part of a load -> update -> store sequence where multiple lanes
/// may be working on the same memory address.
std::optional<const HistogramInfo *> getHistogramInfo(Instruction *I) const {
for (const HistogramInfo &HGram : Histograms)
if (HGram.Load == I || HGram.Update == I || HGram.Store == I)
return &HGram;
return std::nullopt;
}
/// Returns a list of all known histogram operations in the loop.
bool hasHistograms() const { return !Histograms.empty(); }
PredicatedScalarEvolution *getPredicatedScalarEvolution() const {
return &PSE;
}
@ -472,6 +498,11 @@ private:
/// Returns true if the loop is vectorizable
bool canVectorizeMemory();
/// If LAA cannot determine whether all dependences are safe, we may be able
/// to further analyse some IndirectUnsafe dependences and if they match a
/// certain pattern (like a histogram) then we may still be able to vectorize.
bool canVectorizeIndirectUnsafeDependences();
/// Return true if we can vectorize this loop using the IF-conversion
/// transformation.
bool canVectorizeWithIfConvert();
@ -593,6 +624,11 @@ private:
/// conditional assumes.
SmallPtrSet<const Instruction *, 8> MaskedOp;
/// Contains all identified histogram operations, which are sequences of
/// load -> update -> store instructions where multiple lanes in a vector
/// may work on the same memory location.
SmallVector<HistogramInfo, 1> Histograms;
/// BFI and PSI are used to check for profile guided size optimizations.
BlockFrequencyInfo *BFI;
ProfileSummaryInfo *PSI;

View File

@ -79,6 +79,10 @@ static cl::opt<LoopVectorizeHints::ScalableForceKind>
"Scalable vectorization is available and favored when the "
"cost is inconclusive.")));
static cl::opt<bool> EnableHistogramVectorization(
"enable-histogram-loop-vectorization", cl::init(false), cl::Hidden,
cl::desc("Enables autovectorization of some loops containing histograms"));
/// Maximum vectorization interleave count.
static const unsigned MaxInterleaveFactor = 16;
@ -1051,6 +1055,133 @@ bool LoopVectorizationLegality::canVectorizeInstrs() {
return true;
}
/// Find histogram operations that match high-level code in loops:
/// \code
/// buckets[indices[i]]+=step;
/// \endcode
///
/// It matches a pattern starting from \p HSt, which Stores to the 'buckets'
/// array the computed histogram. It uses a BinOp to sum all counts, storing
/// them using a loop-variant index Load from the 'indices' input array.
///
/// On successful matches it updates the STATISTIC 'HistogramsDetected',
/// regardless of hardware support. When there is support, it additionally
/// stores the BinOp/Load pairs in \p HistogramCounts, as well the pointers
/// used to update histogram in \p HistogramPtrs.
static bool findHistogram(LoadInst *LI, StoreInst *HSt, Loop *TheLoop,
const PredicatedScalarEvolution &PSE,
SmallVectorImpl<HistogramInfo> &Histograms) {
// Store value must come from a Binary Operation.
Instruction *HPtrInstr = nullptr;
BinaryOperator *HBinOp = nullptr;
if (!match(HSt, m_Store(m_BinOp(HBinOp), m_Instruction(HPtrInstr))))
return false;
// BinOp must be an Add or a Sub modifying the bucket value by a
// loop invariant amount.
// FIXME: We assume the loop invariant term is on the RHS.
// Fine for an immediate/constant, but maybe not a generic value?
Value *HIncVal = nullptr;
if (!match(HBinOp, m_Add(m_Load(m_Specific(HPtrInstr)), m_Value(HIncVal))) &&
!match(HBinOp, m_Sub(m_Load(m_Specific(HPtrInstr)), m_Value(HIncVal))))
return false;
// Make sure the increment value is loop invariant.
if (!TheLoop->isLoopInvariant(HIncVal))
return false;
// The address to store is calculated through a GEP Instruction.
GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(HPtrInstr);
if (!GEP)
return false;
// Restrict address calculation to constant indices except for the last term.
Value *HIdx = nullptr;
for (Value *Index : GEP->indices()) {
if (HIdx)
return false;
if (!isa<ConstantInt>(Index))
HIdx = Index;
}
if (!HIdx)
return false;
// Check that the index is calculated by loading from another array. Ignore
// any extensions.
// FIXME: Support indices from other sources than a linear load from memory?
// We're currently trying to match an operation looping over an array
// of indices, but there could be additional levels of indirection
// in place, or possibly some additional calculation to form the index
// from the loaded data.
Value *VPtrVal;
if (!match(HIdx, m_ZExtOrSExtOrSelf(m_Load(m_Value(VPtrVal)))))
return false;
// Make sure the index address varies in this loop, not an outer loop.
const auto *AR = dyn_cast<SCEVAddRecExpr>(PSE.getSE()->getSCEV(VPtrVal));
if (!AR || AR->getLoop() != TheLoop)
return false;
// Ensure we'll have the same mask by checking that all parts of the histogram
// (gather load, update, scatter store) are in the same block.
LoadInst *IndexedLoad = cast<LoadInst>(HBinOp->getOperand(0));
BasicBlock *LdBB = IndexedLoad->getParent();
if (LdBB != HBinOp->getParent() || LdBB != HSt->getParent())
return false;
LLVM_DEBUG(dbgs() << "LV: Found histogram for: " << *HSt << "\n");
// Store the operations that make up the histogram.
Histograms.emplace_back(IndexedLoad, HBinOp, HSt);
return true;
}
bool LoopVectorizationLegality::canVectorizeIndirectUnsafeDependences() {
// For now, we only support an IndirectUnsafe dependency that calculates
// a histogram
if (!EnableHistogramVectorization)
return false;
// Find a single IndirectUnsafe dependency.
const MemoryDepChecker::Dependence *IUDep = nullptr;
const MemoryDepChecker &DepChecker = LAI->getDepChecker();
const auto *Deps = DepChecker.getDependences();
// If there were too many dependences, LAA abandons recording them. We can't
// proceed safely if we don't know what the dependences are.
if (!Deps)
return false;
for (const MemoryDepChecker::Dependence &Dep : *Deps) {
// Ignore dependencies that are either known to be safe or can be
// checked at runtime.
if (MemoryDepChecker::Dependence::isSafeForVectorization(Dep.Type) !=
MemoryDepChecker::VectorizationSafetyStatus::Unsafe)
continue;
// We're only interested in IndirectUnsafe dependencies here, where the
// address might come from a load from memory. We also only want to handle
// one such dependency, at least for now.
if (Dep.Type != MemoryDepChecker::Dependence::IndirectUnsafe || IUDep)
return false;
IUDep = &Dep;
}
if (!IUDep)
return false;
// For now only normal loads and stores are supported.
LoadInst *LI = dyn_cast<LoadInst>(IUDep->getSource(DepChecker));
StoreInst *SI = dyn_cast<StoreInst>(IUDep->getDestination(DepChecker));
if (!LI || !SI)
return false;
LLVM_DEBUG(dbgs() << "LV: Checking for a histogram on: " << *SI << "\n");
return findHistogram(LI, SI, TheLoop, LAI->getPSE(), Histograms);
}
bool LoopVectorizationLegality::canVectorizeMemory() {
LAI = &LAIs.getInfo(*TheLoop);
const OptimizationRemarkAnalysis *LAR = LAI->getReport();
@ -1062,7 +1193,7 @@ bool LoopVectorizationLegality::canVectorizeMemory() {
}
if (!LAI->canVectorizeMemory())
return false;
return canVectorizeIndirectUnsafeDependences();
if (LAI->hasLoadStoreDependenceInvolvingLoopInvariantAddress()) {
reportVectorizationFailure("We don't allow storing to uniform addresses",

View File

@ -6508,8 +6508,33 @@ LoopVectorizationCostModel::getInstructionCost(Instruction *I,
// We've proven all lanes safe to speculate, fall through.
[[fallthrough]];
case Instruction::Add:
case Instruction::Sub: {
auto Info = Legal->getHistogramInfo(I);
if (Info && VF.isVector()) {
const HistogramInfo *HGram = Info.value();
// Assume that a non-constant update value (or a constant != 1) requires
// a multiply, and add that into the cost.
InstructionCost MulCost = TTI::TCC_Free;
ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1));
if (!RHS || RHS->getZExtValue() != 1)
MulCost = TTI.getArithmeticInstrCost(Instruction::Mul, VectorTy);
// Find the cost of the histogram operation itself.
Type *PtrTy = VectorType::get(HGram->Load->getPointerOperandType(), VF);
Type *ScalarTy = I->getType();
Type *MaskTy = VectorType::get(Type::getInt1Ty(I->getContext()), VF);
IntrinsicCostAttributes ICA(Intrinsic::experimental_vector_histogram_add,
Type::getVoidTy(I->getContext()),
{PtrTy, ScalarTy, MaskTy});
// Add the costs together with the add/sub operation.
return TTI.getIntrinsicInstrCost(
ICA, TargetTransformInfo::TCK_RecipThroughput) +
MulCost + TTI.getArithmeticInstrCost(I->getOpcode(), VectorTy);
}
[[fallthrough]];
}
case Instruction::FAdd:
case Instruction::Sub:
case Instruction::FSub:
case Instruction::Mul:
case Instruction::FMul:
@ -8426,6 +8451,30 @@ VPWidenRecipe *VPRecipeBuilder::tryToWiden(Instruction *I,
};
}
VPHistogramRecipe *
VPRecipeBuilder::tryToWidenHistogram(const HistogramInfo *HI,
ArrayRef<VPValue *> Operands) {
// FIXME: Support other operations.
unsigned Opcode = HI->Update->getOpcode();
assert((Opcode == Instruction::Add || Opcode == Instruction::Sub) &&
"Histogram update operation must be an Add or Sub");
SmallVector<VPValue *, 3> HGramOps;
// Bucket address.
HGramOps.push_back(Operands[1]);
// Increment value.
HGramOps.push_back(getVPValueOrAddLiveIn(HI->Update->getOperand(1)));
// In case of predicated execution (due to tail-folding, or conditional
// execution, or both), pass the relevant mask.
if (Legal->isMaskRequired(HI->Store))
HGramOps.push_back(getBlockInMask(HI->Store->getParent()));
return new VPHistogramRecipe(Opcode,
make_range(HGramOps.begin(), HGramOps.end()),
HI->Store->getDebugLoc());
}
void VPRecipeBuilder::fixHeaderPhis() {
BasicBlock *OrigLatch = OrigLoop->getLoopLatch();
for (VPHeaderPHIRecipe *R : PhisToFix) {
@ -8549,6 +8598,10 @@ VPRecipeBuilder::tryToCreateWidenRecipe(Instruction *Instr,
if (auto *CI = dyn_cast<CallInst>(Instr))
return tryToWidenCall(CI, Operands, Range);
if (StoreInst *SI = dyn_cast<StoreInst>(Instr))
if (auto HistInfo = Legal->getHistogramInfo(SI))
return tryToWidenHistogram(*HistInfo, Operands);
if (isa<LoadInst>(Instr) || isa<StoreInst>(Instr))
return tryToWidenMemory(Instr, Operands, Range);
@ -9998,6 +10051,19 @@ bool LoopVectorizePass::processLoop(Loop *L) {
InterleaveLoop = false;
}
// If there is a histogram in the loop, do not just interleave without
// vectorizing. The order of operations will be incorrect without the
// histogram intrinsics, which are only used for recipes with VF > 1.
if (!VectorizeLoop && InterleaveLoop && LVL.hasHistograms()) {
LLVM_DEBUG(dbgs() << "LV: Not interleaving without vectorization due "
<< "to histogram operations.\n");
IntDiagMsg = std::make_pair(
"HistogramPreventsScalarInterleaving",
"Unable to interleave without vectorization due to constraints on "
"the order of histogram operations");
InterleaveLoop = false;
}
// Override IC if user provided an interleave count.
IC = UserIC > 0 ? UserIC : IC;

View File

@ -21,6 +21,7 @@ namespace llvm {
class LoopVectorizationLegality;
class LoopVectorizationCostModel;
class TargetLibraryInfo;
struct HistogramInfo;
/// Helper class to create VPRecipies from IR instructions.
class VPRecipeBuilder {
@ -103,6 +104,13 @@ class VPRecipeBuilder {
VPWidenRecipe *tryToWiden(Instruction *I, ArrayRef<VPValue *> Operands,
VPBasicBlock *VPBB);
/// Makes Histogram count operations safe for vectorization, by emitting a
/// llvm.experimental.vector.histogram.add intrinsic in place of the
/// Load + Add|Sub + Store operations that perform the histogram in the
/// original scalar loop.
VPHistogramRecipe *tryToWidenHistogram(const HistogramInfo *HI,
ArrayRef<VPValue *> Operands);
public:
VPRecipeBuilder(VPlan &Plan, Loop *OrigLoop, const TargetLibraryInfo *TLI,
LoopVectorizationLegality *Legal,

View File

@ -907,6 +907,7 @@ public:
case VPRecipeBase::VPWidenLoadSC:
case VPRecipeBase::VPWidenStoreEVLSC:
case VPRecipeBase::VPWidenStoreSC:
case VPRecipeBase::VPHistogramSC:
// TODO: Widened stores don't define a value, but widened loads do. Split
// the recipes to be able to make widened loads VPSingleDefRecipes.
return false;
@ -1664,6 +1665,51 @@ public:
#endif
};
/// A recipe representing a sequence of load -> update -> store as part of
/// a histogram operation. This means there may be aliasing between vector
/// lanes, which is handled by the llvm.experimental.vector.histogram family
/// of intrinsics. The only update operations currently supported are
/// 'add' and 'sub' where the other term is loop-invariant.
class VPHistogramRecipe : public VPRecipeBase {
/// Opcode of the update operation, currently either add or sub.
unsigned Opcode;
public:
template <typename IterT>
VPHistogramRecipe(unsigned Opcode, iterator_range<IterT> Operands,
DebugLoc DL = {})
: VPRecipeBase(VPDef::VPHistogramSC, Operands, DL), Opcode(Opcode) {}
~VPHistogramRecipe() override = default;
VPHistogramRecipe *clone() override {
return new VPHistogramRecipe(Opcode, operands(), getDebugLoc());
}
VP_CLASSOF_IMPL(VPDef::VPHistogramSC);
/// Produce a vectorized histogram operation.
void execute(VPTransformState &State) override;
/// Return the cost of this VPHistogramRecipe.
InstructionCost computeCost(ElementCount VF,
VPCostContext &Ctx) const override;
unsigned getOpcode() const { return Opcode; }
/// Return the mask operand if one was provided, or a null pointer if all
/// lanes should be executed unconditionally.
VPValue *getMask() const {
return getNumOperands() == 3 ? getOperand(2) : nullptr;
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
/// Print the recipe
void print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const override;
#endif
};
/// A recipe for widening select instructions.
struct VPWidenSelectRecipe : public VPSingleDefRecipe {
template <typename IterT>

View File

@ -22,6 +22,7 @@
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/VectorBuilder.h"
@ -1025,6 +1026,94 @@ void VPWidenCallRecipe::print(raw_ostream &O, const Twine &Indent,
O << ")";
}
}
#endif
void VPHistogramRecipe::execute(VPTransformState &State) {
State.setDebugLocFrom(getDebugLoc());
IRBuilderBase &Builder = State.Builder;
Value *Address = State.get(getOperand(0));
Value *IncAmt = State.get(getOperand(1), /*IsScalar=*/true);
VectorType *VTy = cast<VectorType>(Address->getType());
// The histogram intrinsic requires a mask even if the recipe doesn't;
// if the mask operand was omitted then all lanes should be executed and
// we just need to synthesize an all-true mask.
Value *Mask = nullptr;
if (VPValue *VPMask = getMask())
Mask = State.get(VPMask);
else
Mask =
Builder.CreateVectorSplat(VTy->getElementCount(), Builder.getInt1(1));
// If this is a subtract, we want to invert the increment amount. We may
// add a separate intrinsic in future, but for now we'll try this.
if (Opcode == Instruction::Sub)
IncAmt = Builder.CreateNeg(IncAmt);
else
assert(Opcode == Instruction::Add && "only add or sub supported for now");
State.Builder.CreateIntrinsic(Intrinsic::experimental_vector_histogram_add,
{VTy, IncAmt->getType()},
{Address, IncAmt, Mask});
}
InstructionCost VPHistogramRecipe::computeCost(ElementCount VF,
VPCostContext &Ctx) const {
// FIXME: Take the gather and scatter into account as well. For now we're
// generating the same cost as the fallback path, but we'll likely
// need to create a new TTI method for determining the cost, including
// whether we can use base + vec-of-smaller-indices or just
// vec-of-pointers.
assert(VF.isVector() && "Invalid VF for histogram cost");
Type *AddressTy = Ctx.Types.inferScalarType(getOperand(0));
VPValue *IncAmt = getOperand(1);
Type *IncTy = Ctx.Types.inferScalarType(IncAmt);
VectorType *VTy = VectorType::get(IncTy, VF);
// Assume that a non-constant update value (or a constant != 1) requires
// a multiply, and add that into the cost.
InstructionCost MulCost =
Ctx.TTI.getArithmeticInstrCost(Instruction::Mul, VTy);
if (IncAmt->isLiveIn()) {
ConstantInt *CI = dyn_cast<ConstantInt>(IncAmt->getLiveInIRValue());
if (CI && CI->getZExtValue() == 1)
MulCost = TTI::TCC_Free;
}
// Find the cost of the histogram operation itself.
Type *PtrTy = VectorType::get(AddressTy, VF);
Type *MaskTy = VectorType::get(Type::getInt1Ty(Ctx.LLVMCtx), VF);
IntrinsicCostAttributes ICA(Intrinsic::experimental_vector_histogram_add,
Type::getVoidTy(Ctx.LLVMCtx),
{PtrTy, IncTy, MaskTy});
// Add the costs together with the add/sub operation.
return Ctx.TTI.getIntrinsicInstrCost(
ICA, TargetTransformInfo::TCK_RecipThroughput) +
MulCost + Ctx.TTI.getArithmeticInstrCost(Opcode, VTy);
}
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
void VPHistogramRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {
O << Indent << "WIDEN-HISTOGRAM buckets: ";
getOperand(0)->printAsOperand(O, SlotTracker);
if (Opcode == Instruction::Sub)
O << ", dec: ";
else {
assert(Opcode == Instruction::Add);
O << ", inc: ";
}
getOperand(1)->printAsOperand(O, SlotTracker);
if (VPValue *Mask = getMask()) {
O << ", mask: ";
Mask->printAsOperand(O, SlotTracker);
}
}
void VPWidenSelectRecipe::print(raw_ostream &O, const Twine &Indent,
VPSlotTracker &SlotTracker) const {

View File

@ -358,6 +358,7 @@ public:
VPWidenEVLSC,
VPWidenSelectSC,
VPBlendSC,
VPHistogramSC,
// START: Phi-like recipes. Need to be kept together.
VPWidenPHISC,
VPPredInstPHISC,

View File

@ -0,0 +1,104 @@
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --version 3
; RUN: opt < %s -mattr=+sve2 -passes=loop-vectorize,instcombine -enable-histogram-loop-vectorization -sve-gather-overhead=2 -sve-scatter-overhead=2 -epilogue-vectorization-minimum-VF=4 -debug-only=loop-vectorize -force-vector-interleave=1 -S 2>&1 | FileCheck %s
; REQUIRES: asserts
target triple = "aarch64-unknown-linux-gnu"
define void @simple_histogram(ptr noalias %buckets, ptr readonly %indices, i64 %N) {
; CHECK-LABEL: define void @simple_histogram(
; CHECK-SAME: ptr noalias [[BUCKETS:%.*]], ptr readonly [[INDICES:%.*]], i64 [[N:%.*]]) #[[ATTR0:[0-9]+]] {
; CHECK-NEXT: iter.check:
; CHECK-NEXT: [[TMP0:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP1:%.*]] = shl i64 [[TMP0]], 1
; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[N]], [[TMP1]]
; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_PH:%.*]]
; CHECK: vector.main.loop.iter.check:
; CHECK-NEXT: [[TMP6:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP3:%.*]] = shl i64 [[TMP6]], 2
; CHECK-NEXT: [[MIN_ITERS_CHECK1:%.*]] = icmp ult i64 [[N]], [[TMP3]]
; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK1]], label [[VEC_EPILOG_PH:%.*]], label [[VECTOR_PH1:%.*]]
; CHECK: vector.ph:
; CHECK-NEXT: [[TMP2:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP7:%.*]] = shl i64 [[TMP2]], 2
; CHECK-NEXT: [[N_MOD_VF:%.*]] = urem i64 [[N]], [[TMP7]]
; CHECK-NEXT: [[N_VEC:%.*]] = sub i64 [[N]], [[N_MOD_VF]]
; CHECK-NEXT: [[TMP4:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP5:%.*]] = shl i64 [[TMP4]], 2
; CHECK-NEXT: br label [[VECTOR_BODY:%.*]]
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH1]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[TMP8:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[INDEX]]
; CHECK-NEXT: [[WIDE_LOAD1:%.*]] = load <vscale x 4 x i32>, ptr [[TMP8]], align 4
; CHECK-NEXT: [[TMP14:%.*]] = zext <vscale x 4 x i32> [[WIDE_LOAD1]] to <vscale x 4 x i64>
; CHECK-NEXT: [[TMP15:%.*]] = getelementptr inbounds i32, ptr [[BUCKETS]], <vscale x 4 x i64> [[TMP14]]
; CHECK-NEXT: call void @llvm.experimental.vector.histogram.add.nxv4p0.i32(<vscale x 4 x ptr> [[TMP15]], i32 1, <vscale x 4 x i1> shufflevector (<vscale x 4 x i1> insertelement (<vscale x 4 x i1> poison, i1 true, i64 0), <vscale x 4 x i1> poison, <vscale x 4 x i32> zeroinitializer))
; CHECK-NEXT: [[INDEX_NEXT]] = add nuw i64 [[INDEX]], [[TMP5]]
; CHECK-NEXT: [[TMP11:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]]
; CHECK-NEXT: br i1 [[TMP11]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]], !llvm.loop [[LOOP0:![0-9]+]]
; CHECK: middle.block:
; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 [[N_MOD_VF]], 0
; CHECK-NEXT: br i1 [[CMP_N]], label [[FOR_EXIT:%.*]], label [[VEC_EPILOG_ITER_CHECK:%.*]]
; CHECK: vec.epilog.iter.check:
; CHECK-NEXT: [[TMP22:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP23:%.*]] = shl i64 [[TMP22]], 1
; CHECK-NEXT: [[MIN_EPILOG_ITERS_CHECK:%.*]] = icmp ult i64 [[N_MOD_VF]], [[TMP23]]
; CHECK-NEXT: br i1 [[MIN_EPILOG_ITERS_CHECK]], label [[SCALAR_PH]], label [[VEC_EPILOG_PH]]
; CHECK: vec.epilog.ph:
; CHECK-NEXT: [[VEC_EPILOG_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[VEC_EPILOG_ITER_CHECK]] ], [ 0, [[VECTOR_PH]] ]
; CHECK-NEXT: [[TMP24:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP25:%.*]] = shl i64 [[TMP24]], 1
; CHECK-NEXT: [[N_MOD_VF2:%.*]] = urem i64 [[N]], [[TMP25]]
; CHECK-NEXT: [[N_VEC3:%.*]] = sub i64 [[N]], [[N_MOD_VF2]]
; CHECK-NEXT: [[TMP16:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP17:%.*]] = shl i64 [[TMP16]], 1
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: vec.epilog.vector.body:
; CHECK-NEXT: [[INDEX4:%.*]] = phi i64 [ [[VEC_EPILOG_RESUME_VAL]], [[VEC_EPILOG_PH]] ], [ [[INDEX_NEXT6:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[TMP18:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[INDEX4]]
; CHECK-NEXT: [[WIDE_LOAD5:%.*]] = load <vscale x 2 x i32>, ptr [[TMP18]], align 4
; CHECK-NEXT: [[TMP19:%.*]] = zext <vscale x 2 x i32> [[WIDE_LOAD5]] to <vscale x 2 x i64>
; CHECK-NEXT: [[TMP20:%.*]] = getelementptr inbounds i32, ptr [[BUCKETS]], <vscale x 2 x i64> [[TMP19]]
; CHECK-NEXT: call void @llvm.experimental.vector.histogram.add.nxv2p0.i32(<vscale x 2 x ptr> [[TMP20]], i32 1, <vscale x 2 x i1> shufflevector (<vscale x 2 x i1> insertelement (<vscale x 2 x i1> poison, i1 true, i64 0), <vscale x 2 x i1> poison, <vscale x 2 x i32> zeroinitializer))
; CHECK-NEXT: [[INDEX_NEXT6]] = add nuw i64 [[INDEX4]], [[TMP17]]
; CHECK-NEXT: [[TMP21:%.*]] = icmp eq i64 [[INDEX_NEXT6]], [[N_VEC3]]
; CHECK-NEXT: br i1 [[TMP21]], label [[VEC_EPILOG_MIDDLE_BLOCK:%.*]], label [[FOR_BODY]], !llvm.loop [[LOOP3:![0-9]+]]
; CHECK: vec.epilog.middle.block:
; CHECK-NEXT: [[CMP_N7:%.*]] = icmp eq i64 [[N_MOD_VF2]], 0
; CHECK-NEXT: br i1 [[CMP_N7]], label [[FOR_EXIT]], label [[SCALAR_PH]]
; CHECK: vec.epilog.scalar.ph:
; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC3]], [[VEC_EPILOG_MIDDLE_BLOCK]] ], [ [[N_VEC]], [[VEC_EPILOG_ITER_CHECK]] ], [ 0, [[ITER_CHECK:%.*]] ]
; CHECK-NEXT: br label [[FOR_BODY1:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[IV:%.*]] = phi i64 [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ], [ [[IV_NEXT:%.*]], [[FOR_BODY1]] ]
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[IV]]
; CHECK-NEXT: [[TMP12:%.*]] = load i32, ptr [[ARRAYIDX]], align 4
; CHECK-NEXT: [[IDXPROM1:%.*]] = zext i32 [[TMP12]] to i64
; CHECK-NEXT: [[ARRAYIDX2:%.*]] = getelementptr inbounds i32, ptr [[BUCKETS]], i64 [[IDXPROM1]]
; CHECK-NEXT: [[TMP13:%.*]] = load i32, ptr [[ARRAYIDX2]], align 4
; CHECK-NEXT: [[INC:%.*]] = add nsw i32 [[TMP13]], 1
; CHECK-NEXT: store i32 [[INC]], ptr [[ARRAYIDX2]], align 4
; CHECK-NEXT: [[IV_NEXT]] = add nuw nsw i64 [[IV]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[IV_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_EXIT]], label [[FOR_BODY1]], !llvm.loop [[LOOP4:![0-9]+]]
; CHECK: for.exit:
; CHECK-NEXT: ret void
;
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%gep.indices = getelementptr inbounds i32, ptr %indices, i64 %iv
%l.idx = load i32, ptr %gep.indices, align 4
%idxprom1 = zext i32 %l.idx to i64
%gep.bucket = getelementptr inbounds i32, ptr %buckets, i64 %idxprom1
%l.bucket = load i32, ptr %gep.bucket, align 4
%inc = add nsw i32 %l.bucket, 1
store i32 %inc, ptr %gep.bucket, align 4
%iv.next = add nuw nsw i64 %iv, 1
%exitcond = icmp eq i64 %iv.next, %N
br i1 %exitcond, label %for.exit, label %for.body
for.exit:
ret void
}

View File

@ -0,0 +1,48 @@
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --version 3
; RUN: opt < %s -mattr=+sve2 -passes=loop-vectorize,instcombine -enable-histogram-loop-vectorization -sve-gather-overhead=2 -sve-scatter-overhead=2 -force-vector-interleave=2 -force-vector-width=1 -debug-only=loop-vectorize -S 2>&1 | FileCheck %s
; REQUIRES: asserts
;; Make sure we don't interleave a histogram when vectorization is disabled.
; CHECK-LABEL: LV: Checking a loop in 'simple_histogram_forced_scalar_interleave'
; CHECK: LV: Not interleaving without vectorization due to histogram operations.
define void @simple_histogram_forced_scalar_interleave(ptr noalias %buckets, ptr readonly %indices, i64 %N) {
; CHECK-LABEL: define void @simple_histogram_forced_scalar_interleave(
; CHECK-SAME: ptr noalias [[BUCKETS:%.*]], ptr readonly [[INDICES:%.*]], i64 [[N:%.*]]) {
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[IV:%.*]] = phi i64 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[IV]]
; CHECK-NEXT: [[TMP0:%.*]] = load i32, ptr [[ARRAYIDX]], align 4
; CHECK-NEXT: [[IDXPROM1:%.*]] = zext i32 [[TMP0]] to i64
; CHECK-NEXT: [[ARRAYIDX2:%.*]] = getelementptr inbounds i32, ptr [[BUCKETS]], i64 [[IDXPROM1]]
; CHECK-NEXT: [[TMP1:%.*]] = load i32, ptr [[ARRAYIDX2]], align 4
; CHECK-NEXT: [[INC:%.*]] = add nsw i32 [[TMP1]], 1
; CHECK-NEXT: store i32 [[INC]], ptr [[ARRAYIDX2]], align 4
; CHECK-NEXT: [[IV_NEXT]] = add nuw nsw i64 [[IV]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[IV_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_EXIT:%.*]], label [[FOR_BODY]]
; CHECK: for.exit:
; CHECK-NEXT: ret void
;
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%gep.indices = getelementptr inbounds i32, ptr %indices, i64 %iv
%l.idx = load i32, ptr %gep.indices, align 4
%idxprom1 = zext i32 %l.idx to i64
%gep.bucket = getelementptr inbounds i32, ptr %buckets, i64 %idxprom1
%l.bucket = load i32, ptr %gep.bucket, align 4
%inc = add nsw i32 %l.bucket, 1
store i32 %inc, ptr %gep.bucket, align 4
%iv.next = add nuw nsw i64 %iv, 1
%exitcond = icmp eq i64 %iv.next, %N
br i1 %exitcond, label %for.exit, label %for.body
for.exit:
ret void
}

View File

@ -0,0 +1,40 @@
; RUN: opt < %s -mattr=+sve2 -passes=loop-vectorize,instcombine -enable-histogram-loop-vectorization -sve-gather-overhead=2 -sve-scatter-overhead=2 -debug-only=loop-vectorize -S 2>&1 | FileCheck %s
; REQUIRES: asserts
target triple = "aarch64-unknown-linux-gnu"
;; Make sure we don't detect a histogram operation if the index address is
;; loop invariant.
; CHECK: LV: Checking for a histogram on: store i32 %inc, ptr %gep.bucket, align 4
; CHECK-NEXT: LV: Can't vectorize due to memory conflicts
; CHECK-NEXT: LV: Not vectorizing: Cannot prove legality.
define void @outer_loop_scevaddrec(ptr noalias %buckets, ptr readonly %indices, i64 %N, i64 %M) {
entry:
br label %outer.header
outer.header:
%outer.iv = phi i64 [ 0, %entry ], [ %outer.iv.next, %outer.latch ]
%gep.indices = getelementptr inbounds i32, ptr %indices, i64 %outer.iv
br label %inner.body
inner.body:
%iv = phi i64 [ 0, %outer.header ], [ %iv.next, %inner.body ]
%l.idx = load i32, ptr %gep.indices, align 4
%idxprom1 = zext i32 %l.idx to i64
%gep.bucket = getelementptr inbounds i32, ptr %buckets, i64 %idxprom1
%l.bucket = load i32, ptr %gep.bucket, align 4
%inc = add nsw i32 %l.bucket, 1
store i32 %inc, ptr %gep.bucket, align 4
%iv.next = add nuw nsw i64 %iv, 1
%exitcond = icmp eq i64 %iv.next, %N
br i1 %exitcond, label %outer.latch, label %inner.body
outer.latch:
%outer.iv.next = add nuw nsw i64 %outer.iv, 1
%outer.exitcond = icmp eq i64 %outer.iv.next, %M
br i1 %outer.exitcond, label %outer.exit, label %outer.header
outer.exit:
ret void
}

View File

@ -0,0 +1,151 @@
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --version 3
; RUN: opt < %s -mattr=+sve2 -passes=loop-vectorize,instcombine -enable-histogram-loop-vectorization -sve-gather-overhead=2 -sve-scatter-overhead=2 -force-vector-interleave=1 -max-dependences=2 -debug-only=loop-vectorize,loop-accesses -S 2>&1 | FileCheck %s
; RUN: opt < %s -mattr=+sve2 -passes=loop-vectorize,instcombine -enable-histogram-loop-vectorization -sve-gather-overhead=2 -sve-scatter-overhead=2 -force-vector-interleave=1 -debug-only=loop-vectorize,loop-accesses -S 2>&1 | FileCheck %s --check-prefix=NORMAL_DEP_LIMIT
; REQUIRES: asserts
target triple = "aarch64-unknown-linux-gnu"
;; Check that we don't crash if LAA gives up on recording dependences and
;; returns a null pointer.
; CHECK-LABEL: LAA: Checking a loop in 'many_deps'
; CHECK: Too many dependences, stopped recording
; CHECK: LV: Can't vectorize due to memory conflicts
; CHECK: LV: Not vectorizing: Cannot prove legality.
define void @many_deps(ptr noalias %buckets, ptr %array, ptr %indices, ptr %other, i64 %N) {
; CHECK-LABEL: define void @many_deps(
; CHECK-SAME: ptr noalias [[BUCKETS:%.*]], ptr [[ARRAY:%.*]], ptr [[INDICES:%.*]], ptr [[OTHER:%.*]], i64 [[N:%.*]]) #[[ATTR0:[0-9]+]] {
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[IV:%.*]] = phi i64 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[GEP_INDICES:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[IV]]
; CHECK-NEXT: [[L_IDX:%.*]] = load i32, ptr [[GEP_INDICES]], align 4
; CHECK-NEXT: [[IDXPROM1:%.*]] = zext i32 [[L_IDX]] to i64
; CHECK-NEXT: [[GEP_BUCKET:%.*]] = getelementptr inbounds i32, ptr [[BUCKETS]], i64 [[IDXPROM1]]
; CHECK-NEXT: [[L_BUCKET:%.*]] = load i32, ptr [[GEP_BUCKET]], align 4
; CHECK-NEXT: [[INC:%.*]] = add nsw i32 [[L_BUCKET]], 1
; CHECK-NEXT: store i32 [[INC]], ptr [[GEP_BUCKET]], align 4
; CHECK-NEXT: [[IDX_ADDR:%.*]] = getelementptr inbounds i32, ptr [[ARRAY]], i64 [[IV]]
; CHECK-NEXT: [[IV_TRUNC:%.*]] = trunc i64 [[IV]] to i32
; CHECK-NEXT: store i32 [[IV_TRUNC]], ptr [[IDX_ADDR]], align 4
; CHECK-NEXT: [[GEP_OTHER:%.*]] = getelementptr inbounds i32, ptr [[OTHER]], i64 [[IV]]
; CHECK-NEXT: [[L_OTHER:%.*]] = load i32, ptr [[GEP_OTHER]], align 4
; CHECK-NEXT: [[ADD_OTHER:%.*]] = add i32 [[L_OTHER]], [[IV_TRUNC]]
; CHECK-NEXT: store i32 [[ADD_OTHER]], ptr [[GEP_OTHER]], align 4
; CHECK-NEXT: [[IV_NEXT]] = add nuw nsw i64 [[IV]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[IV_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_EXIT:%.*]], label [[FOR_BODY]]
; CHECK: for.exit:
; CHECK-NEXT: ret void
;
; NORMAL_DEP_LIMIT-LABEL: define void @many_deps(
; NORMAL_DEP_LIMIT-SAME: ptr noalias [[BUCKETS:%.*]], ptr [[ARRAY:%.*]], ptr [[INDICES:%.*]], ptr [[OTHER:%.*]], i64 [[N:%.*]]) #[[ATTR0:[0-9]+]] {
; NORMAL_DEP_LIMIT-NEXT: entry:
; NORMAL_DEP_LIMIT-NEXT: [[TMP0:%.*]] = call i64 @llvm.vscale.i64()
; NORMAL_DEP_LIMIT-NEXT: [[TMP1:%.*]] = shl i64 [[TMP0]], 2
; NORMAL_DEP_LIMIT-NEXT: [[TMP2:%.*]] = call i64 @llvm.umax.i64(i64 [[TMP1]], i64 8)
; NORMAL_DEP_LIMIT-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[N]], [[TMP2]]
; NORMAL_DEP_LIMIT-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_MEMCHECK:%.*]]
; NORMAL_DEP_LIMIT: vector.memcheck:
; NORMAL_DEP_LIMIT-NEXT: [[TMP3:%.*]] = shl i64 [[N]], 2
; NORMAL_DEP_LIMIT-NEXT: [[SCEVGEP:%.*]] = getelementptr i8, ptr [[ARRAY]], i64 [[TMP3]]
; NORMAL_DEP_LIMIT-NEXT: [[SCEVGEP1:%.*]] = getelementptr i8, ptr [[OTHER]], i64 [[TMP3]]
; NORMAL_DEP_LIMIT-NEXT: [[SCEVGEP2:%.*]] = getelementptr i8, ptr [[INDICES]], i64 [[TMP3]]
; NORMAL_DEP_LIMIT-NEXT: [[BOUND0:%.*]] = icmp ult ptr [[ARRAY]], [[SCEVGEP1]]
; NORMAL_DEP_LIMIT-NEXT: [[BOUND1:%.*]] = icmp ult ptr [[OTHER]], [[SCEVGEP]]
; NORMAL_DEP_LIMIT-NEXT: [[FOUND_CONFLICT:%.*]] = and i1 [[BOUND0]], [[BOUND1]]
; NORMAL_DEP_LIMIT-NEXT: [[BOUND03:%.*]] = icmp ult ptr [[ARRAY]], [[SCEVGEP2]]
; NORMAL_DEP_LIMIT-NEXT: [[BOUND14:%.*]] = icmp ult ptr [[INDICES]], [[SCEVGEP]]
; NORMAL_DEP_LIMIT-NEXT: [[FOUND_CONFLICT5:%.*]] = and i1 [[BOUND03]], [[BOUND14]]
; NORMAL_DEP_LIMIT-NEXT: [[CONFLICT_RDX:%.*]] = or i1 [[FOUND_CONFLICT]], [[FOUND_CONFLICT5]]
; NORMAL_DEP_LIMIT-NEXT: [[BOUND06:%.*]] = icmp ult ptr [[OTHER]], [[SCEVGEP2]]
; NORMAL_DEP_LIMIT-NEXT: [[BOUND17:%.*]] = icmp ult ptr [[INDICES]], [[SCEVGEP1]]
; NORMAL_DEP_LIMIT-NEXT: [[FOUND_CONFLICT8:%.*]] = and i1 [[BOUND06]], [[BOUND17]]
; NORMAL_DEP_LIMIT-NEXT: [[CONFLICT_RDX9:%.*]] = or i1 [[CONFLICT_RDX]], [[FOUND_CONFLICT8]]
; NORMAL_DEP_LIMIT-NEXT: br i1 [[CONFLICT_RDX9]], label [[SCALAR_PH]], label [[ENTRY:%.*]]
; NORMAL_DEP_LIMIT: vector.ph:
; NORMAL_DEP_LIMIT-NEXT: [[TMP4:%.*]] = call i64 @llvm.vscale.i64()
; NORMAL_DEP_LIMIT-NEXT: [[TMP8:%.*]] = shl i64 [[TMP4]], 2
; NORMAL_DEP_LIMIT-NEXT: [[N_MOD_VF:%.*]] = urem i64 [[N]], [[TMP8]]
; NORMAL_DEP_LIMIT-NEXT: [[N_VEC:%.*]] = sub i64 [[N]], [[N_MOD_VF]]
; NORMAL_DEP_LIMIT-NEXT: [[TMP5:%.*]] = call i64 @llvm.vscale.i64()
; NORMAL_DEP_LIMIT-NEXT: [[TMP6:%.*]] = shl i64 [[TMP5]], 2
; NORMAL_DEP_LIMIT-NEXT: [[TMP7:%.*]] = call <vscale x 4 x i32> @llvm.stepvector.nxv4i32()
; NORMAL_DEP_LIMIT-NEXT: [[TMP9:%.*]] = trunc i64 [[TMP6]] to i32
; NORMAL_DEP_LIMIT-NEXT: [[DOTSPLATINSERT:%.*]] = insertelement <vscale x 4 x i32> poison, i32 [[TMP9]], i64 0
; NORMAL_DEP_LIMIT-NEXT: [[DOTSPLAT:%.*]] = shufflevector <vscale x 4 x i32> [[DOTSPLATINSERT]], <vscale x 4 x i32> poison, <vscale x 4 x i32> zeroinitializer
; NORMAL_DEP_LIMIT-NEXT: br label [[FOR_BODY:%.*]]
; NORMAL_DEP_LIMIT: vector.body:
; NORMAL_DEP_LIMIT-NEXT: [[IV:%.*]] = phi i64 [ 0, [[ENTRY]] ], [ [[IV_NEXT:%.*]], [[FOR_BODY]] ]
; NORMAL_DEP_LIMIT-NEXT: [[VEC_IND:%.*]] = phi <vscale x 4 x i32> [ [[TMP7]], [[ENTRY]] ], [ [[VEC_IND_NEXT:%.*]], [[FOR_BODY]] ]
; NORMAL_DEP_LIMIT-NEXT: [[GEP_INDICES:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[IV]]
; NORMAL_DEP_LIMIT-NEXT: [[WIDE_LOAD:%.*]] = load <vscale x 4 x i32>, ptr [[GEP_INDICES]], align 4, !alias.scope [[META0:![0-9]+]]
; NORMAL_DEP_LIMIT-NEXT: [[TMP11:%.*]] = zext <vscale x 4 x i32> [[WIDE_LOAD]] to <vscale x 4 x i64>
; NORMAL_DEP_LIMIT-NEXT: [[TMP12:%.*]] = getelementptr inbounds i32, ptr [[BUCKETS]], <vscale x 4 x i64> [[TMP11]]
; NORMAL_DEP_LIMIT-NEXT: call void @llvm.experimental.vector.histogram.add.nxv4p0.i32(<vscale x 4 x ptr> [[TMP12]], i32 1, <vscale x 4 x i1> shufflevector (<vscale x 4 x i1> insertelement (<vscale x 4 x i1> poison, i1 true, i64 0), <vscale x 4 x i1> poison, <vscale x 4 x i32> zeroinitializer))
; NORMAL_DEP_LIMIT-NEXT: [[TMP13:%.*]] = getelementptr inbounds i32, ptr [[ARRAY]], i64 [[IV]]
; NORMAL_DEP_LIMIT-NEXT: store <vscale x 4 x i32> [[VEC_IND]], ptr [[TMP13]], align 4, !alias.scope [[META3:![0-9]+]], !noalias [[META5:![0-9]+]]
; NORMAL_DEP_LIMIT-NEXT: [[TMP14:%.*]] = getelementptr inbounds i32, ptr [[OTHER]], i64 [[IV]]
; NORMAL_DEP_LIMIT-NEXT: [[WIDE_LOAD10:%.*]] = load <vscale x 4 x i32>, ptr [[TMP14]], align 4, !alias.scope [[META7:![0-9]+]], !noalias [[META0]]
; NORMAL_DEP_LIMIT-NEXT: [[TMP15:%.*]] = add <vscale x 4 x i32> [[WIDE_LOAD10]], [[VEC_IND]]
; NORMAL_DEP_LIMIT-NEXT: store <vscale x 4 x i32> [[TMP15]], ptr [[TMP14]], align 4, !alias.scope [[META7]], !noalias [[META0]]
; NORMAL_DEP_LIMIT-NEXT: [[IV_NEXT]] = add nuw i64 [[IV]], [[TMP6]]
; NORMAL_DEP_LIMIT-NEXT: [[VEC_IND_NEXT]] = add <vscale x 4 x i32> [[VEC_IND]], [[DOTSPLAT]]
; NORMAL_DEP_LIMIT-NEXT: [[TMP16:%.*]] = icmp eq i64 [[IV_NEXT]], [[N_VEC]]
; NORMAL_DEP_LIMIT-NEXT: br i1 [[TMP16]], label [[MIDDLE_BLOCK:%.*]], label [[FOR_BODY]], !llvm.loop [[LOOP8:![0-9]+]]
; NORMAL_DEP_LIMIT: middle.block:
; NORMAL_DEP_LIMIT-NEXT: [[CMP_N:%.*]] = icmp eq i64 [[N_MOD_VF]], 0
; NORMAL_DEP_LIMIT-NEXT: br i1 [[CMP_N]], label [[FOR_EXIT:%.*]], label [[SCALAR_PH]]
; NORMAL_DEP_LIMIT: scalar.ph:
; NORMAL_DEP_LIMIT-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY1:%.*]] ], [ 0, [[VECTOR_MEMCHECK]] ]
; NORMAL_DEP_LIMIT-NEXT: br label [[FOR_BODY1:%.*]]
; NORMAL_DEP_LIMIT: for.body:
; NORMAL_DEP_LIMIT-NEXT: [[IV1:%.*]] = phi i64 [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ], [ [[IV_NEXT1:%.*]], [[FOR_BODY1]] ]
; NORMAL_DEP_LIMIT-NEXT: [[GEP_INDICES1:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[IV1]]
; NORMAL_DEP_LIMIT-NEXT: [[L_IDX:%.*]] = load i32, ptr [[GEP_INDICES1]], align 4
; NORMAL_DEP_LIMIT-NEXT: [[IDXPROM1:%.*]] = zext i32 [[L_IDX]] to i64
; NORMAL_DEP_LIMIT-NEXT: [[GEP_BUCKET:%.*]] = getelementptr inbounds i32, ptr [[BUCKETS]], i64 [[IDXPROM1]]
; NORMAL_DEP_LIMIT-NEXT: [[L_BUCKET:%.*]] = load i32, ptr [[GEP_BUCKET]], align 4
; NORMAL_DEP_LIMIT-NEXT: [[INC:%.*]] = add nsw i32 [[L_BUCKET]], 1
; NORMAL_DEP_LIMIT-NEXT: store i32 [[INC]], ptr [[GEP_BUCKET]], align 4
; NORMAL_DEP_LIMIT-NEXT: [[IDX_ADDR:%.*]] = getelementptr inbounds i32, ptr [[ARRAY]], i64 [[IV1]]
; NORMAL_DEP_LIMIT-NEXT: [[IV_TRUNC:%.*]] = trunc i64 [[IV1]] to i32
; NORMAL_DEP_LIMIT-NEXT: store i32 [[IV_TRUNC]], ptr [[IDX_ADDR]], align 4
; NORMAL_DEP_LIMIT-NEXT: [[GEP_OTHER:%.*]] = getelementptr inbounds i32, ptr [[OTHER]], i64 [[IV1]]
; NORMAL_DEP_LIMIT-NEXT: [[L_OTHER:%.*]] = load i32, ptr [[GEP_OTHER]], align 4
; NORMAL_DEP_LIMIT-NEXT: [[ADD_OTHER:%.*]] = add i32 [[L_OTHER]], [[IV_TRUNC]]
; NORMAL_DEP_LIMIT-NEXT: store i32 [[ADD_OTHER]], ptr [[GEP_OTHER]], align 4
; NORMAL_DEP_LIMIT-NEXT: [[IV_NEXT1]] = add nuw nsw i64 [[IV1]], 1
; NORMAL_DEP_LIMIT-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[IV_NEXT1]], [[N]]
; NORMAL_DEP_LIMIT-NEXT: br i1 [[EXITCOND]], label [[FOR_EXIT]], label [[FOR_BODY1]], !llvm.loop [[LOOP11:![0-9]+]]
; NORMAL_DEP_LIMIT: for.exit:
; NORMAL_DEP_LIMIT-NEXT: ret void
;
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%gep.indices = getelementptr inbounds i32, ptr %indices, i64 %iv
%l.idx = load i32, ptr %gep.indices, align 4
%idxprom1 = zext i32 %l.idx to i64
%gep.bucket = getelementptr inbounds i32, ptr %buckets, i64 %idxprom1
%l.bucket = load i32, ptr %gep.bucket, align 4
%inc = add nsw i32 %l.bucket, 1
store i32 %inc, ptr %gep.bucket, align 4
%idx.addr = getelementptr inbounds i32, ptr %array, i64 %iv
%iv.trunc = trunc i64 %iv to i32
store i32 %iv.trunc, ptr %idx.addr, align 4
%gep.other = getelementptr inbounds i32, ptr %other, i64 %iv
%l.other = load i32, ptr %gep.other, align 4
%add.other = add i32 %l.other, %iv.trunc
store i32 %add.other, ptr %gep.other, align 4
%iv.next = add nuw nsw i64 %iv, 1
%exitcond = icmp eq i64 %iv.next, %N
br i1 %exitcond, label %for.exit, label %for.body
for.exit:
ret void
}

View File

@ -0,0 +1,107 @@
; RUN: opt < %s -mattr=+sve2 -passes=loop-vectorize,instcombine -enable-histogram-loop-vectorization -sve-gather-overhead=2 -sve-scatter-overhead=2 -force-vector-interleave=1 -debug-only=loop-vectorize -S 2>&1 | FileCheck %s
; REQUIRES: asserts
target triple = "aarch64-unknown-linux-gnu"
;; Based on the following C code:
;;
;; void simple_histogram(int *buckets, unsigned *indices, int N) {
;; for (int i = 0; i < N; ++i)
;; buckets[indices[i]]++;
;; }
;; Check that the scalar plan contains the original instructions.
; CHECK: VPlan 'Initial VPlan for VF={1},UF>=1' {
; CHECK-NEXT: Live-in [[VFxUF:.*]] = VF * UF
; CHECK-NEXT: Live-in [[VTC:.*]] = vector-trip-count
; CHECK-NEXT: Live-in [[OTC:.*]] = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT [[IV:.*]] = CANONICAL-INDUCTION ir<0>, [[IV_NEXT:.*]]
; CHECK-NEXT: [[STEPS:vp.*]] = SCALAR-STEPS [[IV]], ir<1>
; CHECK-NEXT: CLONE [[GEP_IDX:.*]] = getelementptr inbounds ir<%indices>, [[STEPS]]
; CHECK-NEXT: CLONE [[IDX:.*]] = load [[GEP_IDX]]
; CHECK-NEXT: CLONE [[EXT_IDX:.*]] = zext [[IDX]]
; CHECK-NEXT: CLONE [[GEP_BUCKET:.*]] = getelementptr inbounds ir<%buckets>, [[EXT_IDX]]
; CHECK-NEXT: CLONE [[HISTVAL:.*]] = load [[GEP_BUCKET]]
; CHECK-NEXT: CLONE [[UPDATE:.*]] = add nsw [[HISTVAL]], ir<1>
; CHECK-NEXT: CLONE store [[UPDATE]], [[GEP_BUCKET]]
; CHECK-NEXT: EMIT [[IV_NEXT]] = add nuw [[IV]], [[VFxUF]]
; CHECK-NEXT: EMIT branch-on-count [[IV_NEXT]], [[VTC]]
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT [[TC_CHECK:.*]] = icmp eq [[OTC:.*]], [[VTC]]
; CHECK-NEXT: EMIT branch-on-cond [[TC_CHECK]]
; CHECK-NEXT: Successor(s): ir-bb<for.exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<for.exit>:
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph:
; CHECK-NEXT: No successors
; CHECK-NEXT: }
;; Check that the vectorized plan contains a histogram recipe instead.
; CHECK: VPlan 'Initial VPlan for VF={vscale x 2,vscale x 4},UF>=1' {
; CHECK-NEXT: Live-in [[VFxUF:.*]] = VF * UF
; CHECK-NEXT: Live-in [[VTC:.*]] = vector-trip-count
; CHECK-NEXT: Live-in [[OTC:.*]] = original trip-count
; CHECK-EMPTY:
; CHECK-NEXT: vector.ph:
; CHECK-NEXT: Successor(s): vector loop
; CHECK-EMPTY:
; CHECK-NEXT: <x1> vector loop: {
; CHECK-NEXT: vector.body:
; CHECK-NEXT: EMIT [[IV:.*]] = CANONICAL-INDUCTION ir<0>, [[IV_NEXT:.*]]
; CHECK-NEXT: [[STEPS:vp.*]] = SCALAR-STEPS [[IV]], ir<1>
; CHECK-NEXT: CLONE [[GEP_IDX:.*]] = getelementptr inbounds ir<%indices>, [[STEPS]]
; CHECK-NEXT: [[VECP_IDX:vp.*]] = vector-pointer [[GEP_IDX]]
; CHECK-NEXT: WIDEN [[IDX:.*]] = load [[VECP_IDX]]
; CHECK-NEXT: WIDEN-CAST [[EXT_IDX:.*]] = zext [[IDX]] to i64
; CHECK-NEXT: WIDEN-GEP Inv[Var] [[GEP_BUCKET:.*]] = getelementptr inbounds ir<%buckets>, [[EXT_IDX]]
; CHECK-NEXT: WIDEN-HISTOGRAM buckets: [[GEP_BUCKET]], inc: ir<1>
; CHECK-NEXT: EMIT [[IV_NEXT]] = add nuw [[IV]], [[VFxUF]]
; CHECK-NEXT: EMIT branch-on-count [[IV_NEXT]], [[VTC]]
; CHECK-NEXT: No successors
; CHECK-NEXT: }
; CHECK-NEXT: Successor(s): middle.block
; CHECK-EMPTY:
; CHECK-NEXT: middle.block:
; CHECK-NEXT: EMIT [[TC_CHECK:.*]] = icmp eq [[OTC]], [[VTC]]
; CHECK-NEXT: EMIT branch-on-cond [[TC_CHECK]]
; CHECK-NEXT: Successor(s): ir-bb<for.exit>, scalar.ph
; CHECK-EMPTY:
; CHECK-NEXT: ir-bb<for.exit>:
; CHECK-NEXT: No successors
; CHECK-EMPTY:
; CHECK-NEXT: scalar.ph:
; CHECK-NEXT: No successors
; CHECK-NEXT: }
define void @simple_histogram(ptr noalias %buckets, ptr readonly %indices, i64 %N) {
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%gep.indices = getelementptr inbounds i32, ptr %indices, i64 %iv
%l.idx = load i32, ptr %gep.indices, align 4
%idxprom1 = zext i32 %l.idx to i64
%gep.bucket = getelementptr inbounds i32, ptr %buckets, i64 %idxprom1
%l.bucket = load i32, ptr %gep.bucket, align 4
%inc = add nsw i32 %l.bucket, 1
store i32 %inc, ptr %gep.bucket, align 4
%iv.next = add nuw nsw i64 %iv, 1
%exitcond = icmp eq i64 %iv.next, %N
br i1 %exitcond, label %for.exit, label %for.body
for.exit:
ret void
}

View File

@ -0,0 +1,937 @@
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --version 3
; RUN: opt < %s -passes=loop-vectorize,instcombine -enable-histogram-loop-vectorization -sve-gather-overhead=2 -sve-scatter-overhead=2 -debug-only=loop-vectorize -S 2>&1 | FileCheck %s
; REQUIRES: asserts
target triple = "aarch64-unknown-linux-gnu"
;; Based on the following C code:
;;
;; void simple_histogram(int *buckets, unsigned *indices, int N) {
;; for (int i = 0; i < N; ++i)
;; buckets[indices[i]]++;
;; }
;; Confirm finding a histogram operation
; CHECK-LABEL: Checking a loop in 'simple_histogram'
; CHECK: LV: Checking for a histogram on: store i32 %inc, ptr %gep.bucket, align 4
; CHECK: LV: Found histogram for: store i32 %inc, ptr %gep.bucket, align 4
;; Confirm cost calculation for runtime checks
; CHECK-LABEL: LV: Checking a loop in 'simple_histogram_rtdepcheck'
; CHECK: Calculating cost of runtime checks:
; CHECK: Total cost of runtime checks:
; CHECK: LV: Minimum required TC for runtime checks to be profitable:
;; Confirm inability to vectorize with potential alias to buckets
; CHECK-LABEL: LV: Checking a loop in 'simple_histogram_unsafe_alias'
; CHECK: LV: Can't vectorize due to memory conflicts
; CHECK-NEXT: LV: Not vectorizing: Cannot prove legality.
define void @simple_histogram(ptr noalias %buckets, ptr readonly %indices, i64 %N) #0 {
; CHECK-LABEL: define void @simple_histogram(
; CHECK-SAME: ptr noalias [[BUCKETS:%.*]], ptr readonly [[INDICES:%.*]], i64 [[N:%.*]]) #[[ATTR0:[0-9]+]] {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TMP0:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP1:%.*]] = shl nuw nsw i64 [[TMP0]], 2
; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[N]], [[TMP1]]
; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_PH:%.*]]
; CHECK: vector.ph:
; CHECK-NEXT: [[TMP2:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[DOTNEG:%.*]] = mul nsw i64 [[TMP2]], -4
; CHECK-NEXT: [[N_VEC:%.*]] = and i64 [[N]], [[DOTNEG]]
; CHECK-NEXT: [[TMP4:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP5:%.*]] = shl nuw nsw i64 [[TMP4]], 2
; CHECK-NEXT: br label [[VECTOR_BODY:%.*]]
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[TMP8:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[INDEX]]
; CHECK-NEXT: [[WIDE_LOAD:%.*]] = load <vscale x 4 x i32>, ptr [[TMP8]], align 4
; CHECK-NEXT: [[TMP9:%.*]] = zext <vscale x 4 x i32> [[WIDE_LOAD]] to <vscale x 4 x i64>
; CHECK-NEXT: [[TMP10:%.*]] = getelementptr inbounds i32, ptr [[BUCKETS]], <vscale x 4 x i64> [[TMP9]]
; CHECK-NEXT: call void @llvm.experimental.vector.histogram.add.nxv4p0.i32(<vscale x 4 x ptr> [[TMP10]], i32 1, <vscale x 4 x i1> shufflevector (<vscale x 4 x i1> insertelement (<vscale x 4 x i1> poison, i1 true, i64 0), <vscale x 4 x i1> poison, <vscale x 4 x i32> zeroinitializer))
; CHECK-NEXT: [[INDEX_NEXT]] = add nuw i64 [[INDEX]], [[TMP5]]
; CHECK-NEXT: [[TMP11:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]]
; CHECK-NEXT: br i1 [[TMP11]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]], !llvm.loop [[LOOP0:![0-9]+]]
; CHECK: middle.block:
; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 [[N]], [[N_VEC]]
; CHECK-NEXT: br i1 [[CMP_N]], label [[FOR_EXIT:%.*]], label [[SCALAR_PH]]
; CHECK: scalar.ph:
; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[IV:%.*]] = phi i64 [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ], [ [[IV_NEXT:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[IV]]
; CHECK-NEXT: [[TMP12:%.*]] = load i32, ptr [[ARRAYIDX]], align 4
; CHECK-NEXT: [[IDXPROM1:%.*]] = zext i32 [[TMP12]] to i64
; CHECK-NEXT: [[ARRAYIDX2:%.*]] = getelementptr inbounds i32, ptr [[BUCKETS]], i64 [[IDXPROM1]]
; CHECK-NEXT: [[TMP13:%.*]] = load i32, ptr [[ARRAYIDX2]], align 4
; CHECK-NEXT: [[INC:%.*]] = add nsw i32 [[TMP13]], 1
; CHECK-NEXT: store i32 [[INC]], ptr [[ARRAYIDX2]], align 4
; CHECK-NEXT: [[IV_NEXT]] = add nuw nsw i64 [[IV]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[IV_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_EXIT]], label [[FOR_BODY]], !llvm.loop [[LOOP3:![0-9]+]]
; CHECK: for.exit:
; CHECK-NEXT: ret void
;
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%gep.indices = getelementptr inbounds i32, ptr %indices, i64 %iv
%l.idx = load i32, ptr %gep.indices, align 4
%idxprom1 = zext i32 %l.idx to i64
%gep.bucket = getelementptr inbounds i32, ptr %buckets, i64 %idxprom1
%l.bucket = load i32, ptr %gep.bucket, align 4
%inc = add nsw i32 %l.bucket, 1
store i32 %inc, ptr %gep.bucket, align 4
%iv.next = add nuw nsw i64 %iv, 1
%exitcond = icmp eq i64 %iv.next, %N
br i1 %exitcond, label %for.exit, label %for.body, !llvm.loop !4
for.exit:
ret void
}
define void @simple_histogram_inc_param(ptr noalias %buckets, ptr readonly %indices, i64 %N, i32 %incval) #0 {
; CHECK-LABEL: define void @simple_histogram_inc_param(
; CHECK-SAME: ptr noalias [[BUCKETS:%.*]], ptr readonly [[INDICES:%.*]], i64 [[N:%.*]], i32 [[INCVAL:%.*]]) #[[ATTR0]] {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TMP0:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP1:%.*]] = shl nuw nsw i64 [[TMP0]], 2
; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[N]], [[TMP1]]
; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_PH:%.*]]
; CHECK: vector.ph:
; CHECK-NEXT: [[TMP2:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[DOTNEG:%.*]] = mul nsw i64 [[TMP2]], -4
; CHECK-NEXT: [[N_VEC:%.*]] = and i64 [[N]], [[DOTNEG]]
; CHECK-NEXT: [[TMP4:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP5:%.*]] = shl nuw nsw i64 [[TMP4]], 2
; CHECK-NEXT: br label [[VECTOR_BODY:%.*]]
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[TMP8:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[INDEX]]
; CHECK-NEXT: [[WIDE_LOAD:%.*]] = load <vscale x 4 x i32>, ptr [[TMP8]], align 4
; CHECK-NEXT: [[TMP9:%.*]] = zext <vscale x 4 x i32> [[WIDE_LOAD]] to <vscale x 4 x i64>
; CHECK-NEXT: [[TMP10:%.*]] = getelementptr inbounds i32, ptr [[BUCKETS]], <vscale x 4 x i64> [[TMP9]]
; CHECK-NEXT: call void @llvm.experimental.vector.histogram.add.nxv4p0.i32(<vscale x 4 x ptr> [[TMP10]], i32 [[INCVAL]], <vscale x 4 x i1> shufflevector (<vscale x 4 x i1> insertelement (<vscale x 4 x i1> poison, i1 true, i64 0), <vscale x 4 x i1> poison, <vscale x 4 x i32> zeroinitializer))
; CHECK-NEXT: [[INDEX_NEXT]] = add nuw i64 [[INDEX]], [[TMP5]]
; CHECK-NEXT: [[TMP11:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]]
; CHECK-NEXT: br i1 [[TMP11]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]], !llvm.loop [[LOOP4:![0-9]+]]
; CHECK: middle.block:
; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 [[N]], [[N_VEC]]
; CHECK-NEXT: br i1 [[CMP_N]], label [[FOR_EXIT:%.*]], label [[SCALAR_PH]]
; CHECK: scalar.ph:
; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[IV:%.*]] = phi i64 [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ], [ [[IV_NEXT:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[IV]]
; CHECK-NEXT: [[TMP12:%.*]] = load i32, ptr [[ARRAYIDX]], align 4
; CHECK-NEXT: [[IDXPROM1:%.*]] = zext i32 [[TMP12]] to i64
; CHECK-NEXT: [[ARRAYIDX2:%.*]] = getelementptr inbounds i32, ptr [[BUCKETS]], i64 [[IDXPROM1]]
; CHECK-NEXT: [[TMP13:%.*]] = load i32, ptr [[ARRAYIDX2]], align 4
; CHECK-NEXT: [[INC:%.*]] = add nsw i32 [[TMP13]], [[INCVAL]]
; CHECK-NEXT: store i32 [[INC]], ptr [[ARRAYIDX2]], align 4
; CHECK-NEXT: [[IV_NEXT]] = add nuw nsw i64 [[IV]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[IV_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_EXIT]], label [[FOR_BODY]], !llvm.loop [[LOOP5:![0-9]+]]
; CHECK: for.exit:
; CHECK-NEXT: ret void
;
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%gep.indices = getelementptr inbounds i32, ptr %indices, i64 %iv
%l.idx = load i32, ptr %gep.indices, align 4
%idxprom1 = zext i32 %l.idx to i64
%gep.bucket = getelementptr inbounds i32, ptr %buckets, i64 %idxprom1
%l.bucket = load i32, ptr %gep.bucket, align 4
%inc = add nsw i32 %l.bucket, %incval
store i32 %inc, ptr %gep.bucket, align 4
%iv.next = add nuw nsw i64 %iv, 1
%exitcond = icmp eq i64 %iv.next, %N
br i1 %exitcond, label %for.exit, label %for.body, !llvm.loop !4
for.exit:
ret void
}
define void @simple_histogram_sub(ptr noalias %buckets, ptr readonly %indices, i64 %N) #0 {
; CHECK-LABEL: define void @simple_histogram_sub(
; CHECK-SAME: ptr noalias [[BUCKETS:%.*]], ptr readonly [[INDICES:%.*]], i64 [[N:%.*]]) #[[ATTR0]] {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TMP0:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP1:%.*]] = shl nuw nsw i64 [[TMP0]], 2
; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[N]], [[TMP1]]
; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_PH:%.*]]
; CHECK: vector.ph:
; CHECK-NEXT: [[TMP2:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[DOTNEG:%.*]] = mul nsw i64 [[TMP2]], -4
; CHECK-NEXT: [[N_VEC:%.*]] = and i64 [[N]], [[DOTNEG]]
; CHECK-NEXT: [[TMP4:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP5:%.*]] = shl nuw nsw i64 [[TMP4]], 2
; CHECK-NEXT: br label [[VECTOR_BODY:%.*]]
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[TMP8:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[INDEX]]
; CHECK-NEXT: [[WIDE_LOAD:%.*]] = load <vscale x 4 x i32>, ptr [[TMP8]], align 4
; CHECK-NEXT: [[TMP9:%.*]] = sext <vscale x 4 x i32> [[WIDE_LOAD]] to <vscale x 4 x i64>
; CHECK-NEXT: [[TMP10:%.*]] = getelementptr inbounds i32, ptr [[BUCKETS]], <vscale x 4 x i64> [[TMP9]]
; CHECK-NEXT: call void @llvm.experimental.vector.histogram.add.nxv4p0.i32(<vscale x 4 x ptr> [[TMP10]], i32 -1, <vscale x 4 x i1> shufflevector (<vscale x 4 x i1> insertelement (<vscale x 4 x i1> poison, i1 true, i64 0), <vscale x 4 x i1> poison, <vscale x 4 x i32> zeroinitializer))
; CHECK-NEXT: [[INDEX_NEXT]] = add nuw i64 [[INDEX]], [[TMP5]]
; CHECK-NEXT: [[TMP11:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]]
; CHECK-NEXT: br i1 [[TMP11]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]], !llvm.loop [[LOOP6:![0-9]+]]
; CHECK: middle.block:
; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 [[N]], [[N_VEC]]
; CHECK-NEXT: br i1 [[CMP_N]], label [[FOR_EXIT:%.*]], label [[SCALAR_PH]]
; CHECK: scalar.ph:
; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[IV:%.*]] = phi i64 [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ], [ [[IV_NEXT:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[IV]]
; CHECK-NEXT: [[TMP12:%.*]] = load i32, ptr [[ARRAYIDX]], align 4
; CHECK-NEXT: [[IDXPROM1:%.*]] = sext i32 [[TMP12]] to i64
; CHECK-NEXT: [[ARRAYIDX2:%.*]] = getelementptr inbounds i32, ptr [[BUCKETS]], i64 [[IDXPROM1]]
; CHECK-NEXT: [[TMP13:%.*]] = load i32, ptr [[ARRAYIDX2]], align 4
; CHECK-NEXT: [[INC:%.*]] = add nsw i32 [[TMP13]], -1
; CHECK-NEXT: store i32 [[INC]], ptr [[ARRAYIDX2]], align 4
; CHECK-NEXT: [[IV_NEXT]] = add nuw nsw i64 [[IV]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[IV_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_EXIT]], label [[FOR_BODY]], !llvm.loop [[LOOP7:![0-9]+]]
; CHECK: for.exit:
; CHECK-NEXT: ret void
;
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%gep.indices = getelementptr inbounds i32, ptr %indices, i64 %iv
%l.idx = load i32, ptr %gep.indices, align 4
%idxprom1 = sext i32 %l.idx to i64
%gep.bucket = getelementptr inbounds i32, ptr %buckets, i64 %idxprom1
%l.bucket = load i32, ptr %gep.bucket, align 4
%inc = sub nsw i32 %l.bucket, 1
store i32 %inc, ptr %gep.bucket, align 4
%iv.next = add nuw nsw i64 %iv, 1
%exitcond = icmp eq i64 %iv.next, %N
br i1 %exitcond, label %for.exit, label %for.body, !llvm.loop !4
for.exit:
ret void
}
define void @conditional_histogram(ptr noalias %buckets, ptr readonly %indices, ptr readonly %conds, i64 %N) #0 {
; CHECK-LABEL: define void @conditional_histogram(
; CHECK-SAME: ptr noalias [[BUCKETS:%.*]], ptr readonly [[INDICES:%.*]], ptr readonly [[CONDS:%.*]], i64 [[N:%.*]]) #[[ATTR0]] {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TMP6:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP3:%.*]] = shl nuw nsw i64 [[TMP6]], 2
; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[N]], [[TMP3]]
; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_PH:%.*]]
; CHECK: vector.ph:
; CHECK-NEXT: [[TMP2:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[DOTNEG:%.*]] = mul nsw i64 [[TMP2]], -4
; CHECK-NEXT: [[N_VEC:%.*]] = and i64 [[N]], [[DOTNEG]]
; CHECK-NEXT: [[TMP4:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP5:%.*]] = shl nuw nsw i64 [[TMP4]], 2
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[TMP8:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[INDEX]]
; CHECK-NEXT: [[WIDE_LOAD:%.*]] = load <vscale x 4 x i32>, ptr [[TMP8]], align 4
; CHECK-NEXT: [[TMP9:%.*]] = zext <vscale x 4 x i32> [[WIDE_LOAD]] to <vscale x 4 x i64>
; CHECK-NEXT: [[TMP10:%.*]] = getelementptr inbounds i32, ptr [[BUCKETS]], <vscale x 4 x i64> [[TMP9]]
; CHECK-NEXT: [[TMP12:%.*]] = getelementptr inbounds i32, ptr [[CONDS]], i64 [[INDEX]]
; CHECK-NEXT: [[WIDE_LOAD1:%.*]] = load <vscale x 4 x i32>, ptr [[TMP12]], align 4
; CHECK-NEXT: [[TMP13:%.*]] = icmp sgt <vscale x 4 x i32> [[WIDE_LOAD1]], shufflevector (<vscale x 4 x i32> insertelement (<vscale x 4 x i32> poison, i32 5100, i64 0), <vscale x 4 x i32> poison, <vscale x 4 x i32> zeroinitializer)
; CHECK-NEXT: call void @llvm.experimental.vector.histogram.add.nxv4p0.i32(<vscale x 4 x ptr> [[TMP10]], i32 1, <vscale x 4 x i1> [[TMP13]])
; CHECK-NEXT: [[INDEX_NEXT]] = add nuw i64 [[INDEX]], [[TMP5]]
; CHECK-NEXT: [[TMP14:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]]
; CHECK-NEXT: br i1 [[TMP14]], label [[MIDDLE_BLOCK:%.*]], label [[FOR_BODY]], !llvm.loop [[LOOP8:![0-9]+]]
; CHECK: middle.block:
; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 [[N]], [[N_VEC]]
; CHECK-NEXT: br i1 [[CMP_N]], label [[FOR_EXIT:%.*]], label [[SCALAR_PH]]
; CHECK: scalar.ph:
; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: br label [[FOR_BODY1:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[IV1:%.*]] = phi i64 [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ], [ [[IV_NEXT:%.*]], [[NEXT:%.*]] ]
; CHECK-NEXT: [[CONDIDX:%.*]] = getelementptr inbounds i32, ptr [[CONDS]], i64 [[IV1]]
; CHECK-NEXT: [[CONDDATA:%.*]] = load i32, ptr [[CONDIDX]], align 4
; CHECK-NEXT: [[IFCOND:%.*]] = icmp sgt i32 [[CONDDATA]], 5100
; CHECK-NEXT: br i1 [[IFCOND]], label [[IFTRUE:%.*]], label [[NEXT]]
; CHECK: iftrue:
; CHECK-NEXT: [[ARRAYIDX2:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[IV1]]
; CHECK-NEXT: [[TMP1:%.*]] = load i32, ptr [[ARRAYIDX2]], align 4
; CHECK-NEXT: [[IDXPROM1:%.*]] = zext i32 [[TMP1]] to i64
; CHECK-NEXT: [[ARRAYIDX3:%.*]] = getelementptr inbounds i32, ptr [[BUCKETS]], i64 [[IDXPROM1]]
; CHECK-NEXT: [[TMP15:%.*]] = load i32, ptr [[ARRAYIDX3]], align 4
; CHECK-NEXT: [[INC:%.*]] = add nsw i32 [[TMP15]], 1
; CHECK-NEXT: store i32 [[INC]], ptr [[ARRAYIDX3]], align 4
; CHECK-NEXT: br label [[NEXT]]
; CHECK: next:
; CHECK-NEXT: [[IV_NEXT]] = add nuw nsw i64 [[IV1]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[IV_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_EXIT]], label [[FOR_BODY1]], !llvm.loop [[LOOP9:![0-9]+]]
; CHECK: for.exit:
; CHECK-NEXT: ret void
;
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %next ]
%gep.indices = getelementptr inbounds i32, ptr %indices, i64 %iv
%l.idx = load i32, ptr %gep.indices, align 4
%idxprom1 = zext i32 %l.idx to i64
%gep.bucket = getelementptr inbounds i32, ptr %buckets, i64 %idxprom1
%condidx = getelementptr inbounds i32, ptr %conds, i64 %iv
%conddata = load i32, ptr %condidx, align 4
%ifcond = icmp sgt i32 %conddata, 5100
br i1 %ifcond, label %iftrue, label %next
iftrue:
%l.bucket = load i32, ptr %gep.bucket, align 4
%inc = add nsw i32 %l.bucket, 1
store i32 %inc, ptr %gep.bucket, align 4
br label %next
next:
%iv.next = add nuw nsw i64 %iv, 1
%exitcond = icmp eq i64 %iv.next, %N
br i1 %exitcond, label %for.exit, label %for.body, !llvm.loop !4
for.exit:
ret void
}
define void @histogram_8bit(ptr noalias %buckets, ptr readonly %indices, i64 %N) #0 {
; CHECK-LABEL: define void @histogram_8bit(
; CHECK-SAME: ptr noalias [[BUCKETS:%.*]], ptr readonly [[INDICES:%.*]], i64 [[N:%.*]]) #[[ATTR0]] {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TMP5:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP9:%.*]] = shl nuw nsw i64 [[TMP5]], 2
; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[N]], [[TMP9]]
; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[ENTRY:%.*]]
; CHECK: vector.ph:
; CHECK-NEXT: [[TMP2:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[DOTNEG:%.*]] = mul nsw i64 [[TMP2]], -4
; CHECK-NEXT: [[N_VEC:%.*]] = and i64 [[N]], [[DOTNEG]]
; CHECK-NEXT: [[TMP3:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP4:%.*]] = shl nuw nsw i64 [[TMP3]], 2
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: vector.body:
; CHECK-NEXT: [[IV:%.*]] = phi i64 [ 0, [[ENTRY]] ], [ [[IV_NEXT:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[IV]]
; CHECK-NEXT: [[WIDE_LOAD:%.*]] = load <vscale x 4 x i32>, ptr [[ARRAYIDX]], align 4
; CHECK-NEXT: [[TMP6:%.*]] = zext <vscale x 4 x i32> [[WIDE_LOAD]] to <vscale x 4 x i64>
; CHECK-NEXT: [[TMP7:%.*]] = getelementptr inbounds i8, ptr [[BUCKETS]], <vscale x 4 x i64> [[TMP6]]
; CHECK-NEXT: call void @llvm.experimental.vector.histogram.add.nxv4p0.i8(<vscale x 4 x ptr> [[TMP7]], i8 1, <vscale x 4 x i1> shufflevector (<vscale x 4 x i1> insertelement (<vscale x 4 x i1> poison, i1 true, i64 0), <vscale x 4 x i1> poison, <vscale x 4 x i32> zeroinitializer))
; CHECK-NEXT: [[IV_NEXT]] = add nuw i64 [[IV]], [[TMP4]]
; CHECK-NEXT: [[TMP8:%.*]] = icmp eq i64 [[IV_NEXT]], [[N_VEC]]
; CHECK-NEXT: br i1 [[TMP8]], label [[MIDDLE_BLOCK:%.*]], label [[FOR_BODY]], !llvm.loop [[LOOP10:![0-9]+]]
; CHECK: middle.block:
; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 [[N]], [[N_VEC]]
; CHECK-NEXT: br i1 [[CMP_N]], label [[FOR_EXIT:%.*]], label [[SCALAR_PH]]
; CHECK: scalar.ph:
; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY1:%.*]] ]
; CHECK-NEXT: br label [[FOR_BODY1:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[IV1:%.*]] = phi i64 [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ], [ [[IV_NEXT1:%.*]], [[FOR_BODY1]] ]
; CHECK-NEXT: [[GEP_INDICES:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[IV1]]
; CHECK-NEXT: [[TMP0:%.*]] = load i32, ptr [[GEP_INDICES]], align 4
; CHECK-NEXT: [[IDXPROM1:%.*]] = zext i32 [[TMP0]] to i64
; CHECK-NEXT: [[ARRAYIDX2:%.*]] = getelementptr inbounds i8, ptr [[BUCKETS]], i64 [[IDXPROM1]]
; CHECK-NEXT: [[TMP1:%.*]] = load i8, ptr [[ARRAYIDX2]], align 4
; CHECK-NEXT: [[INC:%.*]] = add nsw i8 [[TMP1]], 1
; CHECK-NEXT: store i8 [[INC]], ptr [[ARRAYIDX2]], align 4
; CHECK-NEXT: [[IV_NEXT1]] = add nuw nsw i64 [[IV1]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[IV_NEXT1]], [[N]]
; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_EXIT]], label [[FOR_BODY1]], !llvm.loop [[LOOP11:![0-9]+]]
; CHECK: for.exit:
; CHECK-NEXT: ret void
;
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%gep.indices = getelementptr inbounds i32, ptr %indices, i64 %iv
%l.idx = load i32, ptr %gep.indices, align 4
%idxprom1 = zext i32 %l.idx to i64
%gep.bucket = getelementptr inbounds i8, ptr %buckets, i64 %idxprom1
%l.bucket = load i8, ptr %gep.bucket, align 4
%inc = add nsw i8 %l.bucket, 1
store i8 %inc, ptr %gep.bucket, align 4
%iv.next = add nuw nsw i64 %iv, 1
%exitcond = icmp eq i64 %iv.next, %N
br i1 %exitcond, label %for.exit, label %for.body, !llvm.loop !4
for.exit:
ret void
}
;; We don't currently support floating point histograms.
define void @histogram_float(ptr noalias %buckets, ptr readonly %indices, i64 %N) #0 {
; CHECK-LABEL: define void @histogram_float(
; CHECK-SAME: ptr noalias [[BUCKETS:%.*]], ptr readonly [[INDICES:%.*]], i64 [[N:%.*]]) #[[ATTR0]] {
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[IV:%.*]] = phi i64 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[IV]]
; CHECK-NEXT: [[TMP0:%.*]] = load i32, ptr [[ARRAYIDX]], align 4
; CHECK-NEXT: [[IDXPROM1:%.*]] = zext i32 [[TMP0]] to i64
; CHECK-NEXT: [[ARRAYIDX2:%.*]] = getelementptr inbounds float, ptr [[BUCKETS]], i64 [[IDXPROM1]]
; CHECK-NEXT: [[TMP1:%.*]] = load float, ptr [[ARRAYIDX2]], align 4
; CHECK-NEXT: [[INC:%.*]] = fadd fast float [[TMP1]], 1.000000e+00
; CHECK-NEXT: store float [[INC]], ptr [[ARRAYIDX2]], align 4
; CHECK-NEXT: [[IV_NEXT]] = add nuw nsw i64 [[IV]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[IV_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_EXIT:%.*]], label [[FOR_BODY]], !llvm.loop [[LOOP12:![0-9]+]]
; CHECK: for.exit:
; CHECK-NEXT: ret void
;
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%gep.indices = getelementptr inbounds i32, ptr %indices, i64 %iv
%l.idx = load i32, ptr %gep.indices, align 4
%idxprom1 = zext i32 %l.idx to i64
%gep.bucket = getelementptr inbounds float, ptr %buckets, i64 %idxprom1
%l.bucket = load float, ptr %gep.bucket, align 4
%inc = fadd fast float %l.bucket, 1.0
store float %inc, ptr %gep.bucket, align 4
%iv.next = add nuw nsw i64 %iv, 1
%exitcond = icmp eq i64 %iv.next, %N
br i1 %exitcond, label %for.exit, label %for.body, !llvm.loop !4
for.exit:
ret void
}
;; We don't support histograms with a update value that's not loop-invariant.
define void @histogram_varying_increment(ptr noalias %buckets, ptr readonly %indices, ptr readonly %incvals, i64 %N) #0 {
; CHECK-LABEL: define void @histogram_varying_increment(
; CHECK-SAME: ptr noalias [[BUCKETS:%.*]], ptr readonly [[INDICES:%.*]], ptr readonly [[INCVALS:%.*]], i64 [[N:%.*]]) #[[ATTR0]] {
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[IV:%.*]] = phi i64 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[IV]]
; CHECK-NEXT: [[TMP0:%.*]] = load i32, ptr [[ARRAYIDX]], align 4
; CHECK-NEXT: [[IDXPROM1:%.*]] = zext i32 [[TMP0]] to i64
; CHECK-NEXT: [[ARRAYIDX2:%.*]] = getelementptr inbounds i32, ptr [[BUCKETS]], i64 [[IDXPROM1]]
; CHECK-NEXT: [[TMP1:%.*]] = load i32, ptr [[ARRAYIDX2]], align 4
; CHECK-NEXT: [[INCIDX:%.*]] = getelementptr inbounds i32, ptr [[INCVALS]], i64 [[IV]]
; CHECK-NEXT: [[INCVAL:%.*]] = load i32, ptr [[INCIDX]], align 4
; CHECK-NEXT: [[INC:%.*]] = add nsw i32 [[TMP1]], [[INCVAL]]
; CHECK-NEXT: store i32 [[INC]], ptr [[ARRAYIDX2]], align 4
; CHECK-NEXT: [[IV_NEXT]] = add nuw nsw i64 [[IV]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[IV_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_EXIT:%.*]], label [[FOR_BODY]], !llvm.loop [[LOOP12]]
; CHECK: for.exit:
; CHECK-NEXT: ret void
;
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%gep.indices = getelementptr inbounds i32, ptr %indices, i64 %iv
%l.idx = load i32, ptr %gep.indices, align 4
%idxprom1 = zext i32 %l.idx to i64
%gep.bucket = getelementptr inbounds i32, ptr %buckets, i64 %idxprom1
%l.bucket = load i32, ptr %gep.bucket, align 4
%gep.incvals = getelementptr inbounds i32, ptr %incvals, i64 %iv
%l.incval = load i32, ptr %gep.incvals, align 4
%inc = add nsw i32 %l.bucket, %l.incval
store i32 %inc, ptr %gep.bucket, align 4
%iv.next = add nuw nsw i64 %iv, 1
%exitcond = icmp eq i64 %iv.next, %N
br i1 %exitcond, label %for.exit, label %for.body, !llvm.loop !4
for.exit:
ret void
}
;; Test that interleaving works when vectorizing.
define void @simple_histogram_user_interleave(ptr noalias %buckets, ptr readonly %indices, i64 %N) #0 {
; CHECK-LABEL: define void @simple_histogram_user_interleave(
; CHECK-SAME: ptr noalias [[BUCKETS:%.*]], ptr readonly [[INDICES:%.*]], i64 [[N:%.*]]) #[[ATTR0]] {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TMP0:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP1:%.*]] = shl nuw nsw i64 [[TMP0]], 3
; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[N]], [[TMP1]]
; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_PH:%.*]]
; CHECK: vector.ph:
; CHECK-NEXT: [[TMP2:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[DOTNEG:%.*]] = mul nsw i64 [[TMP2]], -8
; CHECK-NEXT: [[N_VEC:%.*]] = and i64 [[N]], [[DOTNEG]]
; CHECK-NEXT: [[TMP4:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP5:%.*]] = shl nuw nsw i64 [[TMP4]], 3
; CHECK-NEXT: br label [[VECTOR_BODY:%.*]]
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[TMP8:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[INDEX]]
; CHECK-NEXT: [[TMP15:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[DOTIDX:%.*]] = shl nuw nsw i64 [[TMP15]], 4
; CHECK-NEXT: [[TMP17:%.*]] = getelementptr inbounds i8, ptr [[TMP8]], i64 [[DOTIDX]]
; CHECK-NEXT: [[WIDE_LOAD:%.*]] = load <vscale x 4 x i32>, ptr [[TMP8]], align 4
; CHECK-NEXT: [[WIDE_LOAD1:%.*]] = load <vscale x 4 x i32>, ptr [[TMP17]], align 4
; CHECK-NEXT: [[TMP9:%.*]] = zext <vscale x 4 x i32> [[WIDE_LOAD]] to <vscale x 4 x i64>
; CHECK-NEXT: [[TMP19:%.*]] = zext <vscale x 4 x i32> [[WIDE_LOAD1]] to <vscale x 4 x i64>
; CHECK-NEXT: [[TMP10:%.*]] = getelementptr inbounds i32, ptr [[BUCKETS]], <vscale x 4 x i64> [[TMP9]]
; CHECK-NEXT: [[TMP21:%.*]] = getelementptr inbounds i32, ptr [[BUCKETS]], <vscale x 4 x i64> [[TMP19]]
; CHECK-NEXT: call void @llvm.experimental.vector.histogram.add.nxv4p0.i32(<vscale x 4 x ptr> [[TMP10]], i32 1, <vscale x 4 x i1> shufflevector (<vscale x 4 x i1> insertelement (<vscale x 4 x i1> poison, i1 true, i64 0), <vscale x 4 x i1> poison, <vscale x 4 x i32> zeroinitializer))
; CHECK-NEXT: call void @llvm.experimental.vector.histogram.add.nxv4p0.i32(<vscale x 4 x ptr> [[TMP21]], i32 1, <vscale x 4 x i1> shufflevector (<vscale x 4 x i1> insertelement (<vscale x 4 x i1> poison, i1 true, i64 0), <vscale x 4 x i1> poison, <vscale x 4 x i32> zeroinitializer))
; CHECK-NEXT: [[INDEX_NEXT]] = add nuw i64 [[INDEX]], [[TMP5]]
; CHECK-NEXT: [[TMP11:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]]
; CHECK-NEXT: br i1 [[TMP11]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]], !llvm.loop [[LOOP14:![0-9]+]]
; CHECK: middle.block:
; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 [[N]], [[N_VEC]]
; CHECK-NEXT: br i1 [[CMP_N]], label [[FOR_EXIT:%.*]], label [[SCALAR_PH]]
; CHECK: scalar.ph:
; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[IV:%.*]] = phi i64 [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ], [ [[IV_NEXT:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[IV]]
; CHECK-NEXT: [[TMP12:%.*]] = load i32, ptr [[ARRAYIDX]], align 4
; CHECK-NEXT: [[IDXPROM1:%.*]] = zext i32 [[TMP12]] to i64
; CHECK-NEXT: [[ARRAYIDX2:%.*]] = getelementptr inbounds i32, ptr [[BUCKETS]], i64 [[IDXPROM1]]
; CHECK-NEXT: [[TMP13:%.*]] = load i32, ptr [[ARRAYIDX2]], align 4
; CHECK-NEXT: [[INC:%.*]] = add nsw i32 [[TMP13]], 1
; CHECK-NEXT: store i32 [[INC]], ptr [[ARRAYIDX2]], align 4
; CHECK-NEXT: [[IV_NEXT]] = add nuw nsw i64 [[IV]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[IV_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_EXIT]], label [[FOR_BODY]], !llvm.loop [[LOOP15:![0-9]+]]
; CHECK: for.exit:
; CHECK-NEXT: ret void
;
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%gep.indices = getelementptr inbounds i32, ptr %indices, i64 %iv
%l.idx = load i32, ptr %gep.indices, align 4
%idxprom1 = zext i32 %l.idx to i64
%gep.bucket = getelementptr inbounds i32, ptr %buckets, i64 %idxprom1
%l.bucket = load i32, ptr %gep.bucket, align 4
%inc = add nsw i32 %l.bucket, 1
store i32 %inc, ptr %gep.bucket, align 4
%iv.next = add nuw nsw i64 %iv, 1
%exitcond = icmp eq i64 %iv.next, %N
br i1 %exitcond, label %for.exit, label %for.body, !llvm.loop !0
for.exit:
ret void
}
;; Test that we can handle more than one GEP index.
@idx_array = dso_local local_unnamed_addr global [1048576 x i32] zeroinitializer, align 4
@data_array = dso_local local_unnamed_addr global [1048576 x i32] zeroinitializer, align 4
define void @histogram_array_3op_gep(i64 noundef %N) #0 {
; CHECK-LABEL: define void @histogram_array_3op_gep(
; CHECK-SAME: i64 noundef [[N:%.*]]) #[[ATTR0]] {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TMP0:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP1:%.*]] = shl nuw nsw i64 [[TMP0]], 2
; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[N]], [[TMP1]]
; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_PH:%.*]]
; CHECK: vector.ph:
; CHECK-NEXT: [[TMP2:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[DOTNEG:%.*]] = mul nsw i64 [[TMP2]], -4
; CHECK-NEXT: [[N_VEC:%.*]] = and i64 [[N]], [[DOTNEG]]
; CHECK-NEXT: [[TMP3:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP4:%.*]] = shl nuw nsw i64 [[TMP3]], 2
; CHECK-NEXT: br label [[VECTOR_BODY:%.*]]
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[TMP5:%.*]] = getelementptr inbounds [1048576 x i32], ptr @idx_array, i64 0, i64 [[INDEX]]
; CHECK-NEXT: [[WIDE_LOAD1:%.*]] = load <vscale x 4 x i32>, ptr [[TMP5]], align 4
; CHECK-NEXT: [[TMP14:%.*]] = sext <vscale x 4 x i32> [[WIDE_LOAD1]] to <vscale x 4 x i64>
; CHECK-NEXT: [[TMP11:%.*]] = getelementptr inbounds [1048576 x i32], ptr @data_array, i64 0, <vscale x 4 x i64> [[TMP14]]
; CHECK-NEXT: call void @llvm.experimental.vector.histogram.add.nxv4p0.i32(<vscale x 4 x ptr> [[TMP11]], i32 1, <vscale x 4 x i1> shufflevector (<vscale x 4 x i1> insertelement (<vscale x 4 x i1> poison, i1 true, i64 0), <vscale x 4 x i1> poison, <vscale x 4 x i32> zeroinitializer))
; CHECK-NEXT: [[INDEX_NEXT]] = add nuw i64 [[INDEX]], [[TMP4]]
; CHECK-NEXT: [[TMP8:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]]
; CHECK-NEXT: br i1 [[TMP8]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]], !llvm.loop [[LOOP16:![0-9]+]]
; CHECK: middle.block:
; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 [[N]], [[N_VEC]]
; CHECK-NEXT: br i1 [[CMP_N]], label [[FOR_EXIT:%.*]], label [[SCALAR_PH]]
; CHECK: scalar.ph:
; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[IV:%.*]] = phi i64 [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ], [ [[IV_NEXT:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds [1048576 x i32], ptr @idx_array, i64 0, i64 [[IV]]
; CHECK-NEXT: [[TMP9:%.*]] = load i32, ptr [[ARRAYIDX]], align 4
; CHECK-NEXT: [[IDXPROM5:%.*]] = sext i32 [[TMP9]] to i64
; CHECK-NEXT: [[ARRAYIDX6:%.*]] = getelementptr inbounds [1048576 x i32], ptr @data_array, i64 0, i64 [[IDXPROM5]]
; CHECK-NEXT: [[TMP10:%.*]] = load i32, ptr [[ARRAYIDX6]], align 4
; CHECK-NEXT: [[INC:%.*]] = add nsw i32 [[TMP10]], 1
; CHECK-NEXT: store i32 [[INC]], ptr [[ARRAYIDX6]], align 4
; CHECK-NEXT: [[IV_NEXT]] = add nuw nsw i64 [[IV]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[IV_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_EXIT]], label [[FOR_BODY]], !llvm.loop [[LOOP17:![0-9]+]]
; CHECK: for.exit:
; CHECK-NEXT: ret void
;
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%gep.indices = getelementptr inbounds [1048576 x i32], ptr @idx_array, i64 0, i64 %iv
%l.idx = load i32, ptr %gep.indices, align 4
%idxprom5 = sext i32 %l.idx to i64
%gep.bucket = getelementptr inbounds [1048576 x i32], ptr @data_array, i64 0, i64 %idxprom5
%l.bucket = load i32, ptr %gep.bucket, align 4
%inc = add nsw i32 %l.bucket, 1
store i32 %inc, ptr %gep.bucket, align 4
%iv.next = add nuw nsw i64 %iv, 1
%exitcond = icmp eq i64 %iv.next, %N
br i1 %exitcond, label %for.exit, label %for.body, !llvm.loop !4
for.exit:
ret void
}
;; Add a struct into the mix, use a different constant index.
;; { unused, buckets }
%somestruct = type { [1048576 x i32], [1048576 x i32] }
define void @histogram_array_4op_gep_nonzero_const_idx(i64 noundef %N, ptr readonly %indices, ptr noalias %data.struct) #0 {
; CHECK-LABEL: define void @histogram_array_4op_gep_nonzero_const_idx(
; CHECK-SAME: i64 noundef [[N:%.*]], ptr readonly [[INDICES:%.*]], ptr noalias [[DATA_STRUCT:%.*]]) #[[ATTR0]] {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TMP0:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP1:%.*]] = shl nuw nsw i64 [[TMP0]], 2
; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[N]], [[TMP1]]
; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[ENTRY:%.*]]
; CHECK: vector.ph:
; CHECK-NEXT: [[TMP2:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[DOTNEG:%.*]] = mul nsw i64 [[TMP2]], -4
; CHECK-NEXT: [[N_VEC:%.*]] = and i64 [[N]], [[DOTNEG]]
; CHECK-NEXT: [[TMP3:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP4:%.*]] = shl nuw nsw i64 [[TMP3]], 2
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: vector.body:
; CHECK-NEXT: [[IV:%.*]] = phi i64 [ 0, [[ENTRY]] ], [ [[IV_NEXT:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[TMP5:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[IV]]
; CHECK-NEXT: [[WIDE_LOAD:%.*]] = load <vscale x 4 x i32>, ptr [[TMP5]], align 4
; CHECK-NEXT: [[TMP6:%.*]] = sext <vscale x 4 x i32> [[WIDE_LOAD]] to <vscale x 4 x i64>
; CHECK-NEXT: [[TMP7:%.*]] = getelementptr inbounds [[SOMESTRUCT:%.*]], ptr [[DATA_STRUCT]], i64 1, i32 0, <vscale x 4 x i64> [[TMP6]]
; CHECK-NEXT: call void @llvm.experimental.vector.histogram.add.nxv4p0.i32(<vscale x 4 x ptr> [[TMP7]], i32 1, <vscale x 4 x i1> shufflevector (<vscale x 4 x i1> insertelement (<vscale x 4 x i1> poison, i1 true, i64 0), <vscale x 4 x i1> poison, <vscale x 4 x i32> zeroinitializer))
; CHECK-NEXT: [[IV_NEXT]] = add nuw i64 [[IV]], [[TMP4]]
; CHECK-NEXT: [[TMP8:%.*]] = icmp eq i64 [[IV_NEXT]], [[N_VEC]]
; CHECK-NEXT: br i1 [[TMP8]], label [[MIDDLE_BLOCK:%.*]], label [[FOR_BODY]], !llvm.loop [[LOOP18:![0-9]+]]
; CHECK: middle.block:
; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 [[N]], [[N_VEC]]
; CHECK-NEXT: br i1 [[CMP_N]], label [[FOR_EXIT:%.*]], label [[SCALAR_PH]]
; CHECK: scalar.ph:
; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY1:%.*]] ]
; CHECK-NEXT: br label [[FOR_BODY1:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[IV1:%.*]] = phi i64 [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ], [ [[IV_NEXT1:%.*]], [[FOR_BODY1]] ]
; CHECK-NEXT: [[GEP_INDICES:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[IV1]]
; CHECK-NEXT: [[L_IDX:%.*]] = load i32, ptr [[GEP_INDICES]], align 4
; CHECK-NEXT: [[IDXPROM5:%.*]] = sext i32 [[L_IDX]] to i64
; CHECK-NEXT: [[GEP_BUCKET:%.*]] = getelementptr inbounds [[SOMESTRUCT]], ptr [[DATA_STRUCT]], i64 1, i32 0, i64 [[IDXPROM5]]
; CHECK-NEXT: [[L_BUCKET:%.*]] = load i32, ptr [[GEP_BUCKET]], align 4
; CHECK-NEXT: [[INC:%.*]] = add nsw i32 [[L_BUCKET]], 1
; CHECK-NEXT: store i32 [[INC]], ptr [[GEP_BUCKET]], align 4
; CHECK-NEXT: [[IV_NEXT1]] = add nuw nsw i64 [[IV1]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[IV_NEXT1]], [[N]]
; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_EXIT]], label [[FOR_BODY1]], !llvm.loop [[LOOP19:![0-9]+]]
; CHECK: for.exit:
; CHECK-NEXT: ret void
;
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%gep.indices = getelementptr inbounds i32, ptr %indices, i64 %iv
%l.idx = load i32, ptr %gep.indices, align 4
%idxprom5 = sext i32 %l.idx to i64
%gep.bucket = getelementptr inbounds %somestruct, ptr %data.struct, i32 1, i32 0, i64 %idxprom5
%l.bucket = load i32, ptr %gep.bucket, align 4
%inc = add nsw i32 %l.bucket, 1
store i32 %inc, ptr %gep.bucket, align 4
%iv.next = add nuw nsw i64 %iv, 1
%exitcond = icmp eq i64 %iv.next, %N
br i1 %exitcond, label %for.exit, label %for.body, !llvm.loop !4
for.exit:
ret void
}
;; Make sure the histogram intrinsic uses the active lane mask when tail folding.
define void @simple_histogram_tailfold(ptr noalias %buckets, ptr readonly %indices, i64 %N) #0 {
; CHECK-LABEL: define void @simple_histogram_tailfold(
; CHECK-SAME: ptr noalias [[BUCKETS:%.*]], ptr readonly [[INDICES:%.*]], i64 [[N:%.*]]) #[[ATTR0]] {
; CHECK-NEXT: entry:
; CHECK-NEXT: br i1 false, label [[SCALAR_PH:%.*]], label [[VECTOR_PH:%.*]]
; CHECK: vector.ph:
; CHECK-NEXT: [[TMP2:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP1:%.*]] = shl nuw nsw i64 [[TMP2]], 2
; CHECK-NEXT: [[TMP4:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP5:%.*]] = shl nuw nsw i64 [[TMP4]], 2
; CHECK-NEXT: [[TMP6:%.*]] = call i64 @llvm.usub.sat.i64(i64 [[N]], i64 [[TMP5]])
; CHECK-NEXT: [[ACTIVE_LANE_MASK_ENTRY:%.*]] = call <vscale x 4 x i1> @llvm.get.active.lane.mask.nxv4i1.i64(i64 0, i64 [[N]])
; CHECK-NEXT: br label [[VECTOR_BODY:%.*]]
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[ACTIVE_LANE_MASK:%.*]] = phi <vscale x 4 x i1> [ [[ACTIVE_LANE_MASK_ENTRY]], [[VECTOR_PH]] ], [ [[ACTIVE_LANE_MASK_NEXT:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[TMP8:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[INDEX]]
; CHECK-NEXT: [[WIDE_LOAD:%.*]] = call <vscale x 4 x i32> @llvm.masked.load.nxv4i32.p0(ptr [[TMP8]], i32 4, <vscale x 4 x i1> [[ACTIVE_LANE_MASK]], <vscale x 4 x i32> poison)
; CHECK-NEXT: [[TMP9:%.*]] = zext <vscale x 4 x i32> [[WIDE_LOAD]] to <vscale x 4 x i64>
; CHECK-NEXT: [[TMP10:%.*]] = getelementptr inbounds i32, ptr [[BUCKETS]], <vscale x 4 x i64> [[TMP9]]
; CHECK-NEXT: call void @llvm.experimental.vector.histogram.add.nxv4p0.i32(<vscale x 4 x ptr> [[TMP10]], i32 1, <vscale x 4 x i1> [[ACTIVE_LANE_MASK]])
; CHECK-NEXT: [[INDEX_NEXT]] = add i64 [[INDEX]], [[TMP1]]
; CHECK-NEXT: [[ACTIVE_LANE_MASK_NEXT]] = call <vscale x 4 x i1> @llvm.get.active.lane.mask.nxv4i1.i64(i64 [[INDEX]], i64 [[TMP6]])
; CHECK-NEXT: [[TMP11:%.*]] = extractelement <vscale x 4 x i1> [[ACTIVE_LANE_MASK_NEXT]], i64 0
; CHECK-NEXT: br i1 [[TMP11]], label [[VECTOR_BODY]], label [[MIDDLE_BLOCK:%.*]], !llvm.loop [[LOOP20:![0-9]+]]
; CHECK: middle.block:
; CHECK-NEXT: br i1 true, label [[FOR_EXIT:%.*]], label [[SCALAR_PH]]
; CHECK: scalar.ph:
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: br i1 poison, label [[FOR_EXIT]], label [[FOR_BODY]], !llvm.loop [[LOOP21:![0-9]+]]
; CHECK: for.exit:
; CHECK-NEXT: ret void
;
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%gep.indices = getelementptr inbounds i32, ptr %indices, i64 %iv
%l.idx = load i32, ptr %gep.indices, align 4
%idxprom1 = zext i32 %l.idx to i64
%gep.bucket = getelementptr inbounds i32, ptr %buckets, i64 %idxprom1
%l.bucket = load i32, ptr %gep.bucket, align 4
%inc = add nsw i32 %l.bucket, 1
store i32 %inc, ptr %gep.bucket, align 4
%iv.next = add nuw nsw i64 %iv, 1
%exitcond = icmp eq i64 %iv.next, %N
br i1 %exitcond, label %for.exit, label %for.body, !llvm.loop !2
for.exit:
ret void
}
;; Check that we can still vectorize a histogram when LAA found another dependency
;; that doesn't conflict with the buckets.
define void @simple_histogram_rtdepcheck(ptr noalias %buckets, ptr %array, ptr %indices, i64 %N) #0 {
; CHECK-LABEL: define void @simple_histogram_rtdepcheck(
; CHECK-SAME: ptr noalias [[BUCKETS:%.*]], ptr [[ARRAY:%.*]], ptr [[INDICES:%.*]], i64 [[N:%.*]]) #[[ATTR0]] {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TMP0:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP1:%.*]] = shl nuw nsw i64 [[TMP0]], 2
; CHECK-NEXT: [[TMP2:%.*]] = call i64 @llvm.umax.i64(i64 [[TMP1]], i64 8)
; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[N]], [[TMP2]]
; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_MEMCHECK:%.*]]
; CHECK: vector.memcheck:
; CHECK-NEXT: [[ARRAY1:%.*]] = ptrtoint ptr [[ARRAY]] to i64
; CHECK-NEXT: [[INDICES2:%.*]] = ptrtoint ptr [[INDICES]] to i64
; CHECK-NEXT: [[TMP3:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP4:%.*]] = shl nuw nsw i64 [[TMP3]], 4
; CHECK-NEXT: [[TMP5:%.*]] = sub i64 [[ARRAY1]], [[INDICES2]]
; CHECK-NEXT: [[DIFF_CHECK:%.*]] = icmp ult i64 [[TMP5]], [[TMP4]]
; CHECK-NEXT: br i1 [[DIFF_CHECK]], label [[SCALAR_PH]], label [[VECTOR_PH:%.*]]
; CHECK: vector.ph:
; CHECK-NEXT: [[TMP6:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[DOTNEG:%.*]] = mul nsw i64 [[TMP6]], -4
; CHECK-NEXT: [[N_VEC:%.*]] = and i64 [[N]], [[DOTNEG]]
; CHECK-NEXT: [[TMP7:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP8:%.*]] = shl nuw nsw i64 [[TMP7]], 2
; CHECK-NEXT: [[TMP9:%.*]] = call <vscale x 4 x i32> @llvm.stepvector.nxv4i32()
; CHECK-NEXT: [[TMP11:%.*]] = trunc nuw nsw i64 [[TMP8]] to i32
; CHECK-NEXT: [[DOTSPLATINSERT:%.*]] = insertelement <vscale x 4 x i32> poison, i32 [[TMP11]], i64 0
; CHECK-NEXT: [[DOTSPLAT:%.*]] = shufflevector <vscale x 4 x i32> [[DOTSPLATINSERT]], <vscale x 4 x i32> poison, <vscale x 4 x i32> zeroinitializer
; CHECK-NEXT: br label [[VECTOR_BODY:%.*]]
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[VEC_IND:%.*]] = phi <vscale x 4 x i32> [ [[TMP9]], [[VECTOR_PH]] ], [ [[VEC_IND_NEXT:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[TMP12:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[INDEX]]
; CHECK-NEXT: [[WIDE_LOAD:%.*]] = load <vscale x 4 x i32>, ptr [[TMP12]], align 4
; CHECK-NEXT: [[TMP13:%.*]] = zext <vscale x 4 x i32> [[WIDE_LOAD]] to <vscale x 4 x i64>
; CHECK-NEXT: [[TMP14:%.*]] = getelementptr inbounds i32, ptr [[BUCKETS]], <vscale x 4 x i64> [[TMP13]]
; CHECK-NEXT: call void @llvm.experimental.vector.histogram.add.nxv4p0.i32(<vscale x 4 x ptr> [[TMP14]], i32 1, <vscale x 4 x i1> shufflevector (<vscale x 4 x i1> insertelement (<vscale x 4 x i1> poison, i1 true, i64 0), <vscale x 4 x i1> poison, <vscale x 4 x i32> zeroinitializer))
; CHECK-NEXT: [[TMP15:%.*]] = getelementptr inbounds i32, ptr [[ARRAY]], i64 [[INDEX]]
; CHECK-NEXT: store <vscale x 4 x i32> [[VEC_IND]], ptr [[TMP15]], align 4
; CHECK-NEXT: [[INDEX_NEXT]] = add nuw i64 [[INDEX]], [[TMP8]]
; CHECK-NEXT: [[VEC_IND_NEXT]] = add <vscale x 4 x i32> [[VEC_IND]], [[DOTSPLAT]]
; CHECK-NEXT: [[TMP16:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]]
; CHECK-NEXT: br i1 [[TMP16]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]], !llvm.loop [[LOOP22:![0-9]+]]
; CHECK: middle.block:
; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 [[N]], [[N_VEC]]
; CHECK-NEXT: br i1 [[CMP_N]], label [[FOR_EXIT:%.*]], label [[SCALAR_PH]]
; CHECK: scalar.ph:
; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ], [ 0, [[VECTOR_MEMCHECK]] ]
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[IV:%.*]] = phi i64 [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ], [ [[IV_NEXT:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[IV]]
; CHECK-NEXT: [[TMP17:%.*]] = load i32, ptr [[ARRAYIDX]], align 4
; CHECK-NEXT: [[IDXPROM1:%.*]] = zext i32 [[TMP17]] to i64
; CHECK-NEXT: [[ARRAYIDX2:%.*]] = getelementptr inbounds i32, ptr [[BUCKETS]], i64 [[IDXPROM1]]
; CHECK-NEXT: [[TMP18:%.*]] = load i32, ptr [[ARRAYIDX2]], align 4
; CHECK-NEXT: [[INC:%.*]] = add nsw i32 [[TMP18]], 1
; CHECK-NEXT: store i32 [[INC]], ptr [[ARRAYIDX2]], align 4
; CHECK-NEXT: [[IDX_ADDR:%.*]] = getelementptr inbounds i32, ptr [[ARRAY]], i64 [[IV]]
; CHECK-NEXT: [[IV_TRUNC:%.*]] = trunc i64 [[IV]] to i32
; CHECK-NEXT: store i32 [[IV_TRUNC]], ptr [[IDX_ADDR]], align 4
; CHECK-NEXT: [[IV_NEXT]] = add nuw nsw i64 [[IV]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[IV_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_EXIT]], label [[FOR_BODY]], !llvm.loop [[LOOP23:![0-9]+]]
; CHECK: for.exit:
; CHECK-NEXT: ret void
;
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%gep.indices = getelementptr inbounds i32, ptr %indices, i64 %iv
%l.idx = load i32, ptr %gep.indices, align 4
%idxprom1 = zext i32 %l.idx to i64
%gep.bucket = getelementptr inbounds i32, ptr %buckets, i64 %idxprom1
%l.bucket = load i32, ptr %gep.bucket, align 4
%inc = add nsw i32 %l.bucket, 1
store i32 %inc, ptr %gep.bucket, align 4
%idx.addr = getelementptr inbounds i32, ptr %array, i64 %iv
%iv.trunc = trunc i64 %iv to i32
store i32 %iv.trunc, ptr %idx.addr, align 4
%iv.next = add nuw nsw i64 %iv, 1
%exitcond = icmp eq i64 %iv.next, %N
br i1 %exitcond, label %for.exit, label %for.body
for.exit:
ret void
}
;; Make sure we don't vectorize if there's a potential alias between buckets
;; and indices.
define void @simple_histogram_unsafe_alias(ptr %buckets, ptr %indices, i64 %N) #0 {
; CHECK-LABEL: define void @simple_histogram_unsafe_alias(
; CHECK-SAME: ptr [[BUCKETS:%.*]], ptr [[INDICES:%.*]], i64 [[N:%.*]]) #[[ATTR0]] {
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[IV:%.*]] = phi i64 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[IV]]
; CHECK-NEXT: [[TMP12:%.*]] = load i32, ptr [[ARRAYIDX]], align 4
; CHECK-NEXT: [[IDXPROM1:%.*]] = zext i32 [[TMP12]] to i64
; CHECK-NEXT: [[ARRAYIDX2:%.*]] = getelementptr inbounds i32, ptr [[BUCKETS]], i64 [[IDXPROM1]]
; CHECK-NEXT: [[TMP13:%.*]] = load i32, ptr [[ARRAYIDX2]], align 4
; CHECK-NEXT: [[INC:%.*]] = add nsw i32 [[TMP13]], 1
; CHECK-NEXT: store i32 [[INC]], ptr [[ARRAYIDX2]], align 4
; CHECK-NEXT: [[IV_NEXT]] = add nuw nsw i64 [[IV]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[IV_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_EXIT:%.*]], label [[FOR_BODY]]
; CHECK: for.exit:
; CHECK-NEXT: ret void
;
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%gep.indices = getelementptr inbounds i32, ptr %indices, i64 %iv
%l.idx = load i32, ptr %gep.indices, align 4
%idxprom1 = zext i32 %l.idx to i64
%gep.bucket = getelementptr inbounds i32, ptr %buckets, i64 %idxprom1
%l.bucket = load i32, ptr %gep.bucket, align 4
%inc = add nsw i32 %l.bucket, 1
store i32 %inc, ptr %gep.bucket, align 4
%iv.next = add nuw nsw i64 %iv, 1
%exitcond = icmp eq i64 %iv.next, %N
br i1 %exitcond, label %for.exit, label %for.body
for.exit:
ret void
}
define void @simple_histogram_64b(ptr noalias %buckets, ptr readonly %indices, i64 %N) #0 {
; CHECK-LABEL: define void @simple_histogram_64b(
; CHECK-SAME: ptr noalias [[BUCKETS:%.*]], ptr readonly [[INDICES:%.*]], i64 [[N:%.*]]) #[[ATTR0]] {
; CHECK-NEXT: entry:
; CHECK-NEXT: [[TMP0:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP1:%.*]] = shl nuw nsw i64 [[TMP0]], 1
; CHECK-NEXT: [[MIN_ITERS_CHECK:%.*]] = icmp ult i64 [[N]], [[TMP1]]
; CHECK-NEXT: br i1 [[MIN_ITERS_CHECK]], label [[SCALAR_PH:%.*]], label [[VECTOR_PH:%.*]]
; CHECK: vector.ph:
; CHECK-NEXT: [[TMP2:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[DOTNEG:%.*]] = mul nsw i64 [[TMP2]], -2
; CHECK-NEXT: [[N_VEC:%.*]] = and i64 [[N]], [[DOTNEG]]
; CHECK-NEXT: [[TMP3:%.*]] = call i64 @llvm.vscale.i64()
; CHECK-NEXT: [[TMP4:%.*]] = shl nuw nsw i64 [[TMP3]], 1
; CHECK-NEXT: br label [[VECTOR_BODY:%.*]]
; CHECK: vector.body:
; CHECK-NEXT: [[INDEX:%.*]] = phi i64 [ 0, [[VECTOR_PH]] ], [ [[INDEX_NEXT:%.*]], [[VECTOR_BODY]] ]
; CHECK-NEXT: [[TMP5:%.*]] = getelementptr inbounds i64, ptr [[INDICES]], i64 [[INDEX]]
; CHECK-NEXT: [[WIDE_LOAD:%.*]] = load <vscale x 2 x i64>, ptr [[TMP5]], align 4
; CHECK-NEXT: [[TMP6:%.*]] = getelementptr inbounds i64, ptr [[BUCKETS]], <vscale x 2 x i64> [[WIDE_LOAD]]
; CHECK-NEXT: call void @llvm.experimental.vector.histogram.add.nxv2p0.i64(<vscale x 2 x ptr> [[TMP6]], i64 1, <vscale x 2 x i1> shufflevector (<vscale x 2 x i1> insertelement (<vscale x 2 x i1> poison, i1 true, i64 0), <vscale x 2 x i1> poison, <vscale x 2 x i32> zeroinitializer))
; CHECK-NEXT: [[INDEX_NEXT]] = add nuw i64 [[INDEX]], [[TMP4]]
; CHECK-NEXT: [[TMP7:%.*]] = icmp eq i64 [[INDEX_NEXT]], [[N_VEC]]
; CHECK-NEXT: br i1 [[TMP7]], label [[MIDDLE_BLOCK:%.*]], label [[VECTOR_BODY]], !llvm.loop [[LOOP24:![0-9]+]]
; CHECK: middle.block:
; CHECK-NEXT: [[CMP_N:%.*]] = icmp eq i64 [[N]], [[N_VEC]]
; CHECK-NEXT: br i1 [[CMP_N]], label [[FOR_EXIT:%.*]], label [[SCALAR_PH]]
; CHECK: scalar.ph:
; CHECK-NEXT: [[BC_RESUME_VAL:%.*]] = phi i64 [ [[N_VEC]], [[MIDDLE_BLOCK]] ], [ 0, [[ENTRY:%.*]] ]
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[IV:%.*]] = phi i64 [ [[BC_RESUME_VAL]], [[SCALAR_PH]] ], [ [[IV_NEXT:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[GEP_INDICES:%.*]] = getelementptr inbounds i64, ptr [[INDICES]], i64 [[IV]]
; CHECK-NEXT: [[L_IDX:%.*]] = load i64, ptr [[GEP_INDICES]], align 4
; CHECK-NEXT: [[GEP_BUCKET:%.*]] = getelementptr inbounds i64, ptr [[BUCKETS]], i64 [[L_IDX]]
; CHECK-NEXT: [[L_BUCKET:%.*]] = load i64, ptr [[GEP_BUCKET]], align 4
; CHECK-NEXT: [[INC:%.*]] = add nsw i64 [[L_BUCKET]], 1
; CHECK-NEXT: store i64 [[INC]], ptr [[GEP_BUCKET]], align 4
; CHECK-NEXT: [[IV_NEXT]] = add nuw nsw i64 [[IV]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[IV_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_EXIT]], label [[FOR_BODY]], !llvm.loop [[LOOP25:![0-9]+]]
; CHECK: for.exit:
; CHECK-NEXT: ret void
;
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%gep.indices = getelementptr inbounds i64, ptr %indices, i64 %iv
%l.idx = load i64, ptr %gep.indices, align 4
%gep.bucket = getelementptr inbounds i64, ptr %buckets, i64 %l.idx
%l.bucket = load i64, ptr %gep.bucket, align 4
%inc = add nsw i64 %l.bucket, 1
store i64 %inc, ptr %gep.bucket, align 4
%iv.next = add nuw nsw i64 %iv, 1
%exitcond = icmp eq i64 %iv.next, %N
br i1 %exitcond, label %for.exit, label %for.body, !llvm.loop !4
for.exit:
ret void
}
attributes #0 = { "target-features"="+sve2" vscale_range(1,16) }
!0 = distinct !{!0, !1}
!1 = !{!"llvm.loop.interleave.count", i32 2}
!2 = distinct !{!2, !3}
!3 = !{!"llvm.loop.vectorize.predicate.enable", i1 true}
!4 = distinct !{!4, !5}
!5 = !{!"llvm.loop.interleave.count", i32 1}

View File

@ -0,0 +1,44 @@
; NOTE: Assertions have been autogenerated by utils/update_test_checks.py UTC_ARGS: --version 3
; RUN: opt < %s -passes=loop-vectorize,instcombine -enable-histogram-loop-vectorization -force-vector-width=2 -S | FileCheck %s
;; Currently we don't expect this to vectorize, since the generic cost model returns
;; invalid for the histogram intrinsic.
define void @simple_histogram(ptr noalias %buckets, ptr readonly %indices, i64 %N) {
; CHECK-LABEL: define void @simple_histogram(
; CHECK-SAME: ptr noalias [[BUCKETS:%.*]], ptr readonly [[INDICES:%.*]], i64 [[N:%.*]]) {
; CHECK-NEXT: entry:
; CHECK-NEXT: br label [[FOR_BODY:%.*]]
; CHECK: for.body:
; CHECK-NEXT: [[IV:%.*]] = phi i64 [ 0, [[ENTRY:%.*]] ], [ [[IV_NEXT:%.*]], [[FOR_BODY]] ]
; CHECK-NEXT: [[ARRAYIDX:%.*]] = getelementptr inbounds i32, ptr [[INDICES]], i64 [[IV]]
; CHECK-NEXT: [[TMP12:%.*]] = load i32, ptr [[ARRAYIDX]], align 4
; CHECK-NEXT: [[IDXPROM1:%.*]] = zext i32 [[TMP12]] to i64
; CHECK-NEXT: [[ARRAYIDX2:%.*]] = getelementptr inbounds i32, ptr [[BUCKETS]], i64 [[IDXPROM1]]
; CHECK-NEXT: [[TMP13:%.*]] = load i32, ptr [[ARRAYIDX2]], align 4
; CHECK-NEXT: [[INC:%.*]] = add nsw i32 [[TMP13]], 1
; CHECK-NEXT: store i32 [[INC]], ptr [[ARRAYIDX2]], align 4
; CHECK-NEXT: [[IV_NEXT]] = add nuw nsw i64 [[IV]], 1
; CHECK-NEXT: [[EXITCOND:%.*]] = icmp eq i64 [[IV_NEXT]], [[N]]
; CHECK-NEXT: br i1 [[EXITCOND]], label [[FOR_EXIT:%.*]], label [[FOR_BODY]]
; CHECK: for.exit:
; CHECK-NEXT: ret void
;
entry:
br label %for.body
for.body:
%iv = phi i64 [ 0, %entry ], [ %iv.next, %for.body ]
%gep.indices = getelementptr inbounds i32, ptr %indices, i64 %iv
%l.idx = load i32, ptr %gep.indices, align 4
%idxprom1 = zext i32 %l.idx to i64
%gep.bucket = getelementptr inbounds i32, ptr %buckets, i64 %idxprom1
%l.bucket = load i32, ptr %gep.bucket, align 4
%inc = add nsw i32 %l.bucket, 1
store i32 %inc, ptr %gep.bucket, align 4
%iv.next = add nuw nsw i64 %iv, 1
%exitcond = icmp eq i64 %iv.next, %N
br i1 %exitcond, label %for.exit, label %for.body
for.exit:
ret void
}