[ADT][mlir][NFCI] Do not use non-const lvalue-refs with enumerate

Replace references to enumerate results with either result_pairs
(reference wrapper type) or structured bindings. I did not use
structured bindings everywhere as it wasn't clear to me it would
improve readability.

This is in preparation to the switch to zip semantics which won't
support non-const lvalue reference to elements:
https://reviews.llvm.org/D144503.

I chose to use values instead of const lvalue-refs because MLIR is
biased towards avoiding `const` local variables. This won't degrade
performance because currently `result_pair` is cheap to copy (size_t
+ iterator), and in the future, the enumerator iterator dereference
will return temporaries anyway.

Reviewed By: dblaikie

Differential Revision: https://reviews.llvm.org/D146006
This commit is contained in:
Jakub Kuderski 2023-03-15 10:43:55 -04:00
parent bc47a195cc
commit 8c258fda1f
31 changed files with 92 additions and 93 deletions

View File

@ -191,13 +191,13 @@ void AbstractSparseDataFlowAnalysis::visitBlock(Block *block) {
dyn_cast<BranchOpInterface>(predecessor->getTerminator())) {
SuccessorOperands operands =
branch.getSuccessorOperands(it.getSuccessorIndex());
for (auto &it : llvm::enumerate(argLattices)) {
if (Value operand = operands[it.index()]) {
join(it.value(), *getLatticeElementFor(block, operand));
for (auto [idx, lattice] : llvm::enumerate(argLattices)) {
if (Value operand = operands[idx]) {
join(lattice, *getLatticeElementFor(block, operand));
} else {
// Conservatively consider internally produced arguments as entry
// points.
setAllToEntryStates(it.value());
setAllToEntryStates(lattice);
}
}
} else {

View File

@ -98,8 +98,8 @@ static void groupByDialectPerByte(T range) {
}
// Assign the entry numbers based on the sort order.
for (auto &entry : llvm::enumerate(range))
entry.value()->number = entry.index();
for (auto [idx, value] : llvm::enumerate(range))
value->number = idx;
}
IRNumberingState::IRNumberingState(Operation *op) {
@ -132,8 +132,8 @@ IRNumberingState::IRNumberingState(Operation *op) {
// found, given that the number of dialects on average is small enough to fit
// within a singly byte (128). If we ever have real world use cases that have
// a huge number of dialects, this could be made more intelligent.
for (auto &it : llvm::enumerate(dialects))
it.value().second->number = it.index();
for (auto [idx, dialect] : llvm::enumerate(dialects))
dialect.second->number = idx;
// Number each of the recorded components within each dialect.
@ -245,7 +245,7 @@ void IRNumberingState::number(Region &region) {
// Number the blocks within this region.
size_t blockCount = 0;
for (auto &it : llvm::enumerate(region)) {
for (auto it : llvm::enumerate(region)) {
blockIDs.try_emplace(&it.value(), it.index());
number(it.value());
++blockCount;

View File

@ -200,7 +200,7 @@ struct RawBufferOpLowering : public ConvertOpToLLVMPattern<GpuOp> {
// Indexing (voffset)
Value voffset;
for (auto &pair : llvm::enumerate(adaptor.getIndices())) {
for (auto pair : llvm::enumerate(adaptor.getIndices())) {
size_t i = pair.index();
Value index = pair.value();
Value strideOp;

View File

@ -134,7 +134,7 @@ static void wrapForExternalCallers(OpBuilder &rewriter, Location loc,
SmallVector<Value, 8> args;
size_t argOffset = resultStructType ? 1 : 0;
for (auto &[index, argType] : llvm::enumerate(type.getInputs())) {
for (auto [index, argType] : llvm::enumerate(type.getInputs())) {
Value arg = wrapperFuncOp.getArgument(index + argOffset);
if (auto memrefType = argType.dyn_cast<MemRefType>()) {
Value loaded = rewriter.create<LLVM::LoadOp>(
@ -222,11 +222,11 @@ static void wrapExternalFunction(OpBuilder &builder, Location loc,
// Iterate over the inputs of the original function and pack values into
// memref descriptors if the original type is a memref.
for (auto &en : llvm::enumerate(type.getInputs())) {
for (Type input : type.getInputs()) {
Value arg;
int numToDrop = 1;
auto memRefType = en.value().dyn_cast<MemRefType>();
auto unrankedMemRefType = en.value().dyn_cast<UnrankedMemRefType>();
auto memRefType = input.dyn_cast<MemRefType>();
auto unrankedMemRefType = input.dyn_cast<UnrankedMemRefType>();
if (memRefType || unrankedMemRefType) {
numToDrop = memRefType
? MemRefDescriptor::getNumUnpackedValues(memRefType)
@ -677,9 +677,8 @@ struct ReturnOpLowering : public ConvertOpToLLVMPattern<func::ReturnOp> {
getTypeConverter()->packFunctionResults(op.getOperandTypes());
Value packed = rewriter.create<LLVM::UndefOp>(loc, packedType);
for (auto &it : llvm::enumerate(updatedOperands)) {
packed = rewriter.create<LLVM::InsertValueOp>(loc, packed, it.value(),
it.index());
for (auto [idx, operand] : llvm::enumerate(updatedOperands)) {
packed = rewriter.create<LLVM::InsertValueOp>(loc, packed, operand, idx);
}
rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(op, TypeRange(), packed,
op->getAttrs());

View File

@ -228,12 +228,11 @@ Type LLVMTypeConverter::convertFunctionSignature(
? barePtrFuncArgTypeConverter
: structFuncArgTypeConverter;
// Convert argument types one by one and check for errors.
for (auto &en : llvm::enumerate(funcTy.getInputs())) {
Type type = en.value();
for (auto [idx, type] : llvm::enumerate(funcTy.getInputs())) {
SmallVector<Type, 8> converted;
if (failed(funcArgConverter(*this, type, converted)))
return {};
result.addInputs(en.index(), converted);
result.addInputs(idx, converted);
}
// If function does not return anything, create the void result type,

View File

@ -185,20 +185,20 @@ getTreePredicates(std::vector<PositionalPredicate> &predList, Value val,
if (types.size() == 1 && types[0].getType().isa<pdl::RangeType>()) {
getTreePredicates(predList, types.front(), builder, inputs,
builder.getType(builder.getAllResults(opPos)));
} else {
bool foundVariableLength = false;
for (auto &resultIt : llvm::enumerate(types)) {
bool isVariadic = resultIt.value().getType().isa<pdl::RangeType>();
foundVariableLength |= isVariadic;
return;
}
auto *resultPos =
foundVariableLength
? builder.getResultGroup(pos, resultIt.index(), isVariadic)
: builder.getResult(pos, resultIt.index());
predList.emplace_back(resultPos, builder.getIsNotNull());
getTreePredicates(predList, resultIt.value(), builder, inputs,
builder.getType(resultPos));
}
bool foundVariableLength = false;
for (auto [idx, typeValue] : llvm::enumerate(types)) {
bool isVariadic = typeValue.getType().isa<pdl::RangeType>();
foundVariableLength |= isVariadic;
auto *resultPos = foundVariableLength
? builder.getResultGroup(pos, idx, isVariadic)
: builder.getResult(pos, idx);
predList.emplace_back(resultPos, builder.getIsNotNull());
getTreePredicates(predList, typeValue, builder, inputs,
builder.getType(resultPos));
}
}

View File

@ -127,7 +127,7 @@ void ComputationSliceState::dump() const {
llvm::errs() << "\t\t" << iv << "\n";
llvm::errs() << "\tLBs:\n";
for (auto &en : llvm::enumerate(lbs)) {
for (auto en : llvm::enumerate(lbs)) {
llvm::errs() << "\t\t" << en.value() << "\n";
llvm::errs() << "\t\tOperands:\n";
for (Value lbOp : lbOperands[en.index()])
@ -135,7 +135,7 @@ void ComputationSliceState::dump() const {
}
llvm::errs() << "\tUBs:\n";
for (auto &en : llvm::enumerate(ubs)) {
for (auto en : llvm::enumerate(ubs)) {
llvm::errs() << "\t\t" << en.value() << "\n";
llvm::errs() << "\t\tOperands:\n";
for (Value ubOp : ubOperands[en.index()])

View File

@ -2438,7 +2438,7 @@ OpFoldResult LLVM::GEPOp::fold(FoldAdaptor adaptor) {
// Canonicalize any dynamic indices of constant value to constant indices.
bool changed = false;
SmallVector<GEPArg> gepArgs;
for (auto &iter : llvm::enumerate(indices)) {
for (auto iter : llvm::enumerate(indices)) {
auto integer = iter.value().dyn_cast_or_null<IntegerAttr>();
// Constant indices can only be int32_t, so if integer does not fit we
// are forced to keep it dynamic, despite being a constant.

View File

@ -2462,7 +2462,7 @@ transform::TileOp::apply(TransformResults &transformResults,
SmallVector<Operation *> tiled;
SmallVector<SmallVector<Operation *, 4>, 4> loops;
loops.resize(getLoops().size());
for (auto &[i, op] : llvm::enumerate(targets)) {
for (auto [i, op] : llvm::enumerate(targets)) {
auto tilingInterface = dyn_cast<TilingInterface>(op);
auto dpsInterface = dyn_cast<DestinationStyleOpInterface>(op);
if (!tilingInterface || !dpsInterface) {
@ -2865,7 +2865,7 @@ transform::TileToScfForOp::apply(TransformResults &transformResults,
SmallVector<Operation *> tiled;
SmallVector<SmallVector<Operation *, 4>, 4> loops;
loops.resize(getLoops().size());
for (auto &en : llvm::enumerate(targets)) {
for (auto en : llvm::enumerate(targets)) {
auto tilingInterfaceOp = dyn_cast<TilingInterface>(en.value());
if (!tilingInterfaceOp) {
DiagnosedSilenceableFailure diag =

View File

@ -156,10 +156,11 @@ FailureOr<SplitReductionResult> mlir::linalg::splitReduction(
newMaps.push_back(AffineMap::get(oldOutputMap.getNumDims() + 1, 0, outputExpr,
op.getContext()));
SmallVector<utils::IteratorType> newIteratorTypes;
for (auto &it : llvm::enumerate(op.getIteratorTypesArray())) {
if (insertSplitDimension == it.index())
for (auto [index, iteratorType] :
llvm::enumerate(op.getIteratorTypesArray())) {
if (insertSplitDimension == index)
newIteratorTypes.push_back(utils::IteratorType::parallel);
newIteratorTypes.push_back(it.value());
newIteratorTypes.push_back(iteratorType);
}
if (insertSplitDimension == op.getIteratorTypesArray().size()) {
newIteratorTypes.push_back(utils::IteratorType::parallel);

View File

@ -89,7 +89,7 @@ void mlir::linalg::transformIndexOps(
RewriterBase &b, LinalgOp op, SmallVectorImpl<Value> &ivs,
const LoopIndexToRangeIndexMap &loopIndexToRangeIndex) {
SmallVector<Value> allIvs(op.getNumLoops(), nullptr);
for (auto &en : enumerate(allIvs)) {
for (auto en : enumerate(allIvs)) {
auto rangeIndex = loopIndexToRangeIndex.find(en.index());
if (rangeIndex == loopIndexToRangeIndex.end())
continue;

View File

@ -314,7 +314,7 @@ struct LinalgOpPartialReductionInterface
AffineMap oldOutputMap =
linalgOp.getMatchingIndexingMap(linalgOp.getDpsInitOperand(0));
SmallVector<AffineExpr> outputExpr;
for (auto &[idx, expr] : llvm::enumerate(oldOutputMap.getResults())) {
for (auto [idx, expr] : llvm::enumerate(oldOutputMap.getResults())) {
if (static_cast<int64_t>(idx) == insertSplitDimension) {
outputExpr.push_back(b.getAffineDimExpr(reductionDims[0]));
}

View File

@ -3663,7 +3663,7 @@ LogicalResult scf::IndexSwitchOp::verify() {
if (failed(verifyRegion(getDefaultRegion(), "default region")))
return failure();
for (auto &[idx, caseRegion] : llvm::enumerate(getCaseRegions()))
for (auto [idx, caseRegion] : llvm::enumerate(getCaseRegions()))
if (failed(verifyRegion(caseRegion, "case region #" + Twine(idx))))
return failure();

View File

@ -377,9 +377,9 @@ public:
ArrayRef<int64_t> dstShape = dstTp.getShape();
genReshapeDstShape(loc, rewriter, dstSizes, srcSizes, dstShape,
op.getReassociationIndices());
for (auto &d : llvm::enumerate(dstShape)) {
if (d.value() == ShapedType::kDynamic)
dstDynSizes.push_back(dstSizes[d.index()]);
for (auto [idx, shape] : llvm::enumerate(dstShape)) {
if (shape == ShapedType::kDynamic)
dstDynSizes.push_back(dstSizes[idx]);
}
}

View File

@ -2773,7 +2773,7 @@ struct FoldOrthogonalPaddings : public OpRewritePattern<PadOp> {
// zero-offset and zero-padding tensor::ExtractSliceOp, tensor::PadOp pair
// exists.
SmallVector<OpFoldResult> newOffsets(rank, rewriter.getIndexAttr(0));
for (auto &en : enumerate(newOffsets)) {
for (auto en : enumerate(newOffsets)) {
OpFoldResult innerOffset = innerSliceOp.getMixedOffsets()[en.index()];
OpFoldResult outerOffset = outerSliceOp.getMixedOffsets()[en.index()];
if (!innerDims.test(en.index()) &&
@ -2796,7 +2796,7 @@ struct FoldOrthogonalPaddings : public OpRewritePattern<PadOp> {
// tensor::ExtractSliceOp does not match the size of the padded dimension.
// Otherwise, take the size of the inner tensor::ExtractSliceOp.
SmallVector<OpFoldResult> newSizes = innerSliceOp.getMixedSizes();
for (auto &en : enumerate(newSizes)) {
for (auto en : enumerate(newSizes)) {
if (!outerDims.test(en.index()))
continue;
OpFoldResult sliceSize = innerSliceOp.getMixedSizes()[en.index()];
@ -2813,7 +2813,7 @@ struct FoldOrthogonalPaddings : public OpRewritePattern<PadOp> {
// Combine the high paddings of the two tensor::PadOps.
SmallVector<OpFoldResult> newHighPad(rank, rewriter.getIndexAttr(0));
for (auto &en : enumerate(newHighPad)) {
for (auto en : enumerate(newHighPad)) {
if (innerDims.test(en.index()))
newHighPad[en.index()] = padOp.getMixedHighPad()[en.index()];
if (outerDims.test(en.index()))

View File

@ -969,7 +969,7 @@ void transform::detail::setApplyToOneResults(
continue;
assert(transformOp->getNumResults() == partialResults.size() &&
"expected as many partial results as op as results");
for (auto &[i, value] : llvm::enumerate(partialResults))
for (auto [i, value] : llvm::enumerate(partialResults))
transposed[i].push_back(value);
}

View File

@ -205,9 +205,10 @@ static WarpExecuteOnLane0Op moveRegionToNewWarpOpAndAppendReturns(
indices.push_back(yieldValues.size() - 1);
} else {
// If the value already exit the region don't create a new output.
for (auto &yieldOperand : llvm::enumerate(yieldValues.getArrayRef())) {
if (yieldOperand.value() == std::get<0>(newRet)) {
indices.push_back(yieldOperand.index());
for (auto [idx, yieldOperand] :
llvm::enumerate(yieldValues.getArrayRef())) {
if (yieldOperand == std::get<0>(newRet)) {
indices.push_back(idx);
break;
}
}

View File

@ -628,7 +628,7 @@ struct UnrollTransposePattern : public OpRewritePattern<vector::TransposeOp> {
SmallVector<int64_t> permutedOffsets(elementOffsets.size());
SmallVector<int64_t> permutedShape(elementOffsets.size());
// Compute the source offsets and shape.
for (auto &indices : llvm::enumerate(permutation)) {
for (auto indices : llvm::enumerate(permutation)) {
permutedOffsets[indices.value()] = elementOffsets[indices.index()];
permutedShape[indices.value()] = (*targetShape)[indices.index()];
}

View File

@ -257,9 +257,9 @@ public:
return rewriter.notifyMatchFailure(op, "Unsupported vector element type");
SmallVector<int64_t> srcGtOneDims;
for (auto &en : llvm::enumerate(srcType.getShape()))
if (en.value() > 1)
srcGtOneDims.push_back(en.index());
for (auto [index, size] : llvm::enumerate(srcType.getShape()))
if (size > 1)
srcGtOneDims.push_back(index);
if (srcGtOneDims.size() != 2)
return rewriter.notifyMatchFailure(op, "Unsupported vector type");

View File

@ -196,17 +196,17 @@ static void packFunctionArguments(Module *module) {
llvm::Value *argList = interfaceFunc->arg_begin();
SmallVector<llvm::Value *, 8> args;
args.reserve(llvm::size(func.args()));
for (auto &indexedArg : llvm::enumerate(func.args())) {
for (auto [index, arg] : llvm::enumerate(func.args())) {
llvm::Value *argIndex = llvm::Constant::getIntegerValue(
builder.getInt64Ty(), APInt(64, indexedArg.index()));
builder.getInt64Ty(), APInt(64, index));
llvm::Value *argPtrPtr =
builder.CreateGEP(builder.getInt8PtrTy(), argList, argIndex);
llvm::Value *argPtr =
builder.CreateLoad(builder.getInt8PtrTy(), argPtrPtr);
llvm::Type *argTy = indexedArg.value().getType();
llvm::Type *argTy = arg.getType();
argPtr = builder.CreateBitCast(argPtr, argTy->getPointerTo());
llvm::Value *arg = builder.CreateLoad(argTy, argPtr);
args.push_back(arg);
llvm::Value *load = builder.CreateLoad(argTy, argPtr);
args.push_back(load);
}
// Call the implementation function with the extracted arguments.

View File

@ -3274,9 +3274,9 @@ void OperationPrinter::printValueUsers(Value value) {
// One value might be used as the operand of an operation more than once.
// Only print the operations results once in that case.
SmallPtrSet<Operation *, 1> userSet;
for (auto &indexedUser : enumerate(value.getUsers())) {
if (userSet.insert(indexedUser.value()).second)
printUserIDs(indexedUser.value(), indexedUser.index());
for (auto [index, user] : enumerate(value.getUsers())) {
if (userSet.insert(user).second)
printUserIDs(user, index);
}
}

View File

@ -73,8 +73,8 @@ static void printResultsAsList(raw_ostream &os, OpPassManager &pm) {
for (Pass::Statistic *it : pass->getStatistics())
passEntry.push_back({it->getName(), it->getDesc(), it->getValue()});
} else {
for (auto &it : llvm::enumerate(pass->getStatistics()))
passEntry[it.index()].value += it.value()->getValue();
for (auto [idx, statistic] : llvm::enumerate(pass->getStatistics()))
passEntry[idx].value += statistic->getValue();
}
#endif
return;

View File

@ -408,7 +408,7 @@ void Operator::populateTypeInferenceInfo(
// For all results whose types are buildable, initialize their type inference
// nodes with an edge to themselves. Mark those nodes are fully-inferred.
for (auto &[idx, infer] : llvm::enumerate(inference)) {
for (auto [idx, infer] : llvm::enumerate(inference)) {
if (getResult(idx).constraint.getBuilderCall()) {
infer.sources.emplace_back(InferredResultType::mapResultIndex(idx),
"$_self");

View File

@ -520,9 +520,7 @@ void mlir::LLVM::detail::connectPHINodes(Region &region,
auto phis = llvmBB->phis();
auto numArguments = bb.getNumArguments();
assert(numArguments == std::distance(phis.begin(), phis.end()));
for (auto &numberedPhiNode : llvm::enumerate(phis)) {
auto &phiNode = numberedPhiNode.value();
unsigned index = numberedPhiNode.index();
for (auto [index, phiNode] : llvm::enumerate(phis)) {
for (auto *pred : bb.getPredecessors()) {
// Find the LLVM IR block that contains the converted terminator
// instruction and use it in the PHI node. Note that this block is not

View File

@ -24,7 +24,7 @@ struct TopologicalSortPass
void runOnOperation() override {
// Topologically sort the regions of the operation without SSA dominance.
getOperation()->walk([](RegionKindInterface op) {
for (auto &it : llvm::enumerate(op->getRegions())) {
for (auto it : llvm::enumerate(op->getRegions())) {
if (op.hasSSADominance(it.index()))
continue;
for (Block &block : it.value())

View File

@ -136,8 +136,8 @@ void mlir::getSinglyExecutedRegionsToSink(RegionBranchOpInterface branch,
SmallVectorImpl<Region *> &regions) {
// Collect constant operands.
SmallVector<Attribute> operands(branch->getNumOperands(), Attribute());
for (auto &it : llvm::enumerate(branch->getOperands()))
(void)matchPattern(it.value(), m_Constant(&operands[it.index()]));
for (auto [idx, operand] : llvm::enumerate(branch->getOperands()))
(void)matchPattern(operand, m_Constant(&operands[idx]));
// Get the invocation bounds.
SmallVector<InvocationBounds> bounds;

View File

@ -254,9 +254,9 @@ struct TestLastModifiedPass
const LastModification *lastMods =
solver.lookupState<LastModification>(op);
assert(lastMods && "expected a dense lattice");
for (auto &it : llvm::enumerate(op->getOperands())) {
os << " operand #" << it.index() << "\n";
Value value = getMostUnderlyingValue(it.value(), [&](Value value) {
for (auto [index, operand] : llvm::enumerate(op->getOperands())) {
os << " operand #" << index << "\n";
Value value = getMostUnderlyingValue(operand, [&](Value value) {
return solver.lookupState<UnderlyingValueLattice>(value);
});
assert(value && "expected an underlying value");

View File

@ -951,16 +951,16 @@ private:
LogicalResult DefFormatParser::verify(SMLoc loc,
ArrayRef<FormatElement *> elements) {
// Check that all parameters are referenced in the format.
for (auto &it : llvm::enumerate(def.getParameters())) {
if (it.value().isOptional())
for (auto [index, param] : llvm::enumerate(def.getParameters())) {
if (param.isOptional())
continue;
if (!seenParams.test(it.index())) {
if (isa<AttributeSelfTypeParameter>(it.value()))
if (!seenParams.test(index)) {
if (isa<AttributeSelfTypeParameter>(param))
continue;
return emitError(loc, "format is missing reference to parameter: " +
it.value().getName());
param.getName());
}
if (isa<AttributeSelfTypeParameter>(it.value())) {
if (isa<AttributeSelfTypeParameter>(param)) {
return emitError(loc,
"unexpected self type parameter in assembly format");
}

View File

@ -123,7 +123,7 @@ inline ::llvm::raw_ostream &operator<<(::llvm::raw_ostream &p, {0} value) {{
// case value to determine when to print in the string form.
if (nonKeywordCases.any()) {
os << " switch (value) {\n";
for (auto &it : llvm::enumerate(cases)) {
for (auto it : llvm::enumerate(cases)) {
if (nonKeywordCases.test(it.index()))
continue;
StringRef symbol = it.value().getSymbol();

View File

@ -934,15 +934,16 @@ void OpEmitter::genAttrNameGetters() {
// Generate the <attr>AttrName methods, that expose the attribute names to
// users.
const char *attrNameMethodBody = " return getAttributeNameForIndex({0});";
for (auto &attrIt : llvm::enumerate(llvm::make_first_range(attributes))) {
std::string name = op.getGetterName(attrIt.value());
for (auto [index, attr] :
llvm::enumerate(llvm::make_first_range(attributes))) {
std::string name = op.getGetterName(attr);
std::string methodName = name + "AttrName";
// Generate the non-static variant.
{
auto *method = opClass.addInlineMethod("::mlir::StringAttr", methodName);
ERROR_IF_PRUNED(method, methodName, op);
method->body() << llvm::formatv(attrNameMethodBody, attrIt.index());
method->body() << llvm::formatv(attrNameMethodBody, index);
}
// Generate the static variant.
@ -952,7 +953,7 @@ void OpEmitter::genAttrNameGetters() {
MethodParameter("::mlir::OperationName", "name"));
ERROR_IF_PRUNED(method, methodName, op);
method->body() << llvm::formatv(attrNameMethodBody,
"name, " + Twine(attrIt.index()));
"name, " + Twine(index));
}
}
}
@ -2801,7 +2802,7 @@ void OpEmitter::genSuccessorVerifier(MethodBody &body) {
body << " {\n unsigned index = 0; (void)index;\n";
for (auto &it : llvm::enumerate(successors)) {
for (auto it : llvm::enumerate(successors)) {
const auto &successor = it.value();
if (canSkip(successor))
continue;

View File

@ -1827,7 +1827,7 @@ static void genEnumAttrPrinter(const NamedAttribute *var, const Operator &op,
// Get a string containing all of the cases that can't be represented with a
// keyword.
BitVector nonKeywordCases(cases.size());
for (auto &it : llvm::enumerate(cases)) {
for (auto it : llvm::enumerate(cases)) {
if (!canFormatStringAsKeyword(it.value().getStr()))
nonKeywordCases.set(it.index());
}
@ -1836,7 +1836,7 @@ static void genEnumAttrPrinter(const NamedAttribute *var, const Operator &op,
// overlap with other cases. For simplicity sake, only allow cases with a
// single bit value.
if (enumAttr.isBitEnum()) {
for (auto &it : llvm::enumerate(cases)) {
for (auto it : llvm::enumerate(cases)) {
int64_t value = it.value().getValue();
if (value < 0 || !llvm::isPowerOf2_64(value))
nonKeywordCases.set(it.index());
@ -1849,7 +1849,7 @@ static void genEnumAttrPrinter(const NamedAttribute *var, const Operator &op,
body << " switch (caseValue) {\n";
StringRef cppNamespace = enumAttr.getCppNamespace();
StringRef enumName = enumAttr.getEnumClassName();
for (auto &it : llvm::enumerate(cases)) {
for (auto it : llvm::enumerate(cases)) {
if (nonKeywordCases.test(it.index()))
continue;
StringRef symbol = it.value().getSymbol();