mirror of
https://github.com/llvm/llvm-project.git
synced 2025-04-26 17:16:07 +00:00
[mlir][TOSA] Fix linalg lowering of depthwise conv2d (#130293)
Current lowering for tosa.depthwise_conv2d assumes if both zero points are zero then it's a floating-point operation by hardcoding the use of a arith.addf in the lowered code. Fix code to check for the element type to decide what add operation to use.
This commit is contained in:
parent
8885b5c062
commit
967ab7e08e
@ -477,13 +477,13 @@ public:
|
||||
return rewriter.notifyMatchFailure(
|
||||
op, "weight zero point must be zero for non-int8 integer types");
|
||||
|
||||
bool hasZp = (inputZpVal != 0) || (weightZpVal != 0);
|
||||
bool hasNullZps = (inputZpVal == 0) && (weightZpVal == 0);
|
||||
auto weightShape = weightTy.getShape();
|
||||
auto resultShape = resultTy.getShape();
|
||||
|
||||
// Apply padding as necessary.
|
||||
TypedAttr zeroAttr = rewriter.getZeroAttr(inputETy);
|
||||
if (hasZp) {
|
||||
if (!hasNullZps) {
|
||||
int64_t intMin =
|
||||
APInt::getSignedMinValue(inputETy.getIntOrFloatBitWidth())
|
||||
.getSExtValue();
|
||||
@ -536,7 +536,7 @@ public:
|
||||
indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultRank));
|
||||
indexingMaps.push_back(rewriter.getMultiDimIdentityMap(resultRank));
|
||||
|
||||
if (!hasZp) {
|
||||
if (hasNullZps) {
|
||||
Value conv = rewriter
|
||||
.create<linalg::DepthwiseConv2DNhwcHwcmOp>(
|
||||
loc, linalgConvTy, ValueRange{input, weight},
|
||||
@ -556,8 +556,13 @@ public:
|
||||
getNParallelLoopsAttrs(resultRank),
|
||||
[&](OpBuilder &nestedBuilder, Location nestedLoc,
|
||||
ValueRange args) {
|
||||
Value added = nestedBuilder.create<arith::AddFOp>(
|
||||
loc, args[0], args[1]);
|
||||
Value added;
|
||||
if (llvm::isa<FloatType>(inputETy))
|
||||
added = nestedBuilder.create<arith::AddFOp>(loc, args[0],
|
||||
args[1]);
|
||||
else
|
||||
added = nestedBuilder.create<arith::AddIOp>(loc, args[0],
|
||||
args[1]);
|
||||
nestedBuilder.create<linalg::YieldOp>(nestedLoc, added);
|
||||
})
|
||||
.getResult(0);
|
||||
|
@ -824,6 +824,30 @@ func.func @depthwise_conv2d_dyn_w_h(%arg0: tensor<2x?x?x3xf32>, %arg1: tensor<3x
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK: #[[$MAP0:.*]] = affine_map<(d0, d1, d2, d3) -> (d3)>
|
||||
// CHECK: #[[$MAP1:.*]] = affine_map<(d0, d1, d2, d3) -> (d0, d1, d2, d3)>
|
||||
|
||||
// CHECK-LABEL: @depthwise_int_conv_zero_zp
|
||||
func.func @depthwise_int_conv_zero_zp(%arg0 : tensor<1x7x5x3xi8>, %arg1 : tensor<3x1x3x11xi8>, %arg2 : tensor<33xi32>) -> () {
|
||||
// CHECK: [[INIT:%.+]] = tensor.empty()
|
||||
// CHECK: [[CST0:%.+]] = arith.constant 0
|
||||
// CHECK: [[FILL:%.+]] = linalg.fill ins([[CST0]]{{.*}}outs([[INIT]]
|
||||
// CHECK: [[OUT:%.+]] = tensor.empty()
|
||||
// CHECK: [[DEPTH:%.+]] = linalg.depthwise_conv_2d_nhwc_hwcm {dilations = dense<1> : tensor<2xi64>, strides = dense<1> : tensor<2xi64>} ins(%arg0, %arg1 : tensor<1x7x5x3xi8>, tensor<3x1x3x11xi8>) outs([[FILL]] : tensor<1x5x5x3x11xi32>)
|
||||
// CHECK: [[COLLAPSED:%.+]] = tensor.collapse_shape [[DEPTH]] {{\[}}[0], [1], [2], [3, 4]]
|
||||
// CHECK: [[BIAS:%.+]] = linalg.generic {indexing_maps = [#[[$MAP0]], #[[$MAP1]], #[[$MAP1]]], iterator_types = ["parallel", "parallel", "parallel", "parallel"]} ins(%arg2, [[COLLAPSED]] : tensor<33xi32>, tensor<1x5x5x33xi32>) outs([[OUT]] : tensor<1x5x5x33xi32>) {
|
||||
// CHECK: ^bb0(%[[ARG3:[0-9a-zA-Z_]+]]: i32, %[[ARG4:[0-9a-zA-Z_]+]]: i32, %[[ARG5:[0-9a-zA-Z_]+]]: i32):
|
||||
// CHECK: [[ADD:%.+]] = arith.addi %[[ARG3]], %[[ARG4]] : i32
|
||||
// CHECK: linalg.yield [[ADD]] : i32
|
||||
// CHECK: } -> tensor<1x5x5x33xi32>
|
||||
%input_zp = "tosa.const"() <{values = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
|
||||
%weight_zp = "tosa.const"() <{values = dense<0> : tensor<1xi8>}> : () -> tensor<1xi8>
|
||||
%2 = tosa.depthwise_conv2d %arg0, %arg1, %arg2, %input_zp, %weight_zp {acc_type = i32, pad = array<i64: 0, 0, 0, 0>, stride = array<i64: 1, 1>, dilation = array<i64: 1, 1> } : (tensor<1x7x5x3xi8>, tensor<3x1x3x11xi8>, tensor<33xi32>, tensor<1xi8>, tensor<1xi8>) -> tensor<1x5x5x33xi32>
|
||||
return
|
||||
}
|
||||
|
||||
// -----
|
||||
|
||||
// CHECK: #[[$MAP1:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d4)>
|
||||
// CHECK: #[[$MAP2:.+]] = affine_map<(d0, d1, d2, d3, d4) -> (d0, d1, d2, d3, d4)>
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user