[CodeComplete] Member completion for concept-constrained types.

Summary:
The basic idea is to walk through the concept definition, looking for
t.foo() where t has the constrained type.

In this patch:
 - nested types are recognized and offered after ::
 - variable/function members are recognized and offered after the correct
   dot/arrow/colon trigger
 - member functions are recognized (anything directly called). parameter
   types are presumed to be the argument types. parameters are unnamed.
 - result types are available when a requirement has a type constraint.
   These are printed as constraints, except same_as<T> which prints as T.

Not in this patch:
 - support for merging/overloading when two locations describe the same member.
   The last one wins, for any given name. This is probably important...
 - support for nested template members (T::x<int>)
 - support for completing members of (instantiations of) template template parameters

Reviewers: nridge, saar.raz

Subscribers: mgrang, cfe-commits

Tags: #clang

Differential Revision: https://reviews.llvm.org/D73649
This commit is contained in:
Sam McCall 2020-01-29 19:11:21 +01:00
parent 41c135d6d2
commit a76e68c970
4 changed files with 490 additions and 37 deletions

View File

@ -320,9 +320,7 @@ public:
/// isDeclScope - Return true if this is the scope that the specified decl is
/// declared in.
bool isDeclScope(Decl *D) {
return DeclsInScope.count(D) != 0;
}
bool isDeclScope(const Decl *D) const { return DeclsInScope.count(D) != 0; }
DeclContext *getEntity() const { return Entity; }
void setEntity(DeclContext *E) { Entity = E; }

View File

@ -570,29 +570,10 @@ void PrintingCodeCompleteConsumer::ProcessCodeCompleteResults(
if (const char *BriefComment = CCS->getBriefComment())
OS << " : " << BriefComment;
}
for (const FixItHint &FixIt : Results[I].FixIts) {
const SourceLocation BLoc = FixIt.RemoveRange.getBegin();
const SourceLocation ELoc = FixIt.RemoveRange.getEnd();
SourceManager &SM = SemaRef.SourceMgr;
std::pair<FileID, unsigned> BInfo = SM.getDecomposedLoc(BLoc);
std::pair<FileID, unsigned> EInfo = SM.getDecomposedLoc(ELoc);
// Adjust for token ranges.
if (FixIt.RemoveRange.isTokenRange())
EInfo.second += Lexer::MeasureTokenLength(ELoc, SM, SemaRef.LangOpts);
OS << " (requires fix-it:"
<< " {" << SM.getLineNumber(BInfo.first, BInfo.second) << ':'
<< SM.getColumnNumber(BInfo.first, BInfo.second) << '-'
<< SM.getLineNumber(EInfo.first, EInfo.second) << ':'
<< SM.getColumnNumber(EInfo.first, EInfo.second) << "}"
<< " to \"" << FixIt.CodeToInsert << "\")";
}
OS << '\n';
break;
case CodeCompletionResult::RK_Keyword:
OS << Results[I].Keyword << '\n';
OS << Results[I].Keyword;
break;
case CodeCompletionResult::RK_Macro:
@ -602,13 +583,31 @@ void PrintingCodeCompleteConsumer::ProcessCodeCompleteResults(
includeBriefComments())) {
OS << " : " << CCS->getAsString();
}
OS << '\n';
break;
case CodeCompletionResult::RK_Pattern:
OS << "Pattern : " << Results[I].Pattern->getAsString() << '\n';
OS << "Pattern : " << Results[I].Pattern->getAsString();
break;
}
for (const FixItHint &FixIt : Results[I].FixIts) {
const SourceLocation BLoc = FixIt.RemoveRange.getBegin();
const SourceLocation ELoc = FixIt.RemoveRange.getEnd();
SourceManager &SM = SemaRef.SourceMgr;
std::pair<FileID, unsigned> BInfo = SM.getDecomposedLoc(BLoc);
std::pair<FileID, unsigned> EInfo = SM.getDecomposedLoc(ELoc);
// Adjust for token ranges.
if (FixIt.RemoveRange.isTokenRange())
EInfo.second += Lexer::MeasureTokenLength(ELoc, SM, SemaRef.LangOpts);
OS << " (requires fix-it:"
<< " {" << SM.getLineNumber(BInfo.first, BInfo.second) << ':'
<< SM.getColumnNumber(BInfo.first, BInfo.second) << '-'
<< SM.getLineNumber(EInfo.first, EInfo.second) << ':'
<< SM.getColumnNumber(EInfo.first, EInfo.second) << "}"
<< " to \"" << FixIt.CodeToInsert << "\")";
}
OS << '\n';
}
}

View File

@ -9,6 +9,7 @@
// This file defines the code-completion semantic actions.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTConcept.h"
#include "clang/AST/Decl.h"
#include "clang/AST/DeclBase.h"
#include "clang/AST/DeclCXX.h"
@ -16,8 +17,11 @@
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/ExprConcepts.h"
#include "clang/AST/ExprObjC.h"
#include "clang/AST/NestedNameSpecifier.h"
#include "clang/AST/QualTypeNames.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/AST/Type.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/Specifiers.h"
@ -4746,6 +4750,369 @@ static RecordDecl *getAsRecordDecl(const QualType BaseType) {
return nullptr;
}
namespace {
// Collects completion-relevant information about a concept-constrainted type T.
// In particular, examines the constraint expressions to find members of T.
//
// The design is very simple: we walk down each constraint looking for
// expressions of the form T.foo().
// If we're extra lucky, the return type is specified.
// We don't do any clever handling of && or || in constraint expressions, we
// take members from both branches.
//
// For example, given:
// template <class T> concept X = requires (T t, string& s) { t.print(s); };
// template <X U> void foo(U u) { u.^ }
// We want to suggest the inferred member function 'print(string)'.
// We see that u has type U, so X<U> holds.
// X<U> requires t.print(s) to be valid, where t has type U (substituted for T).
// By looking at the CallExpr we find the signature of print().
//
// While we tend to know in advance which kind of members (access via . -> ::)
// we want, it's simpler just to gather them all and post-filter.
//
// FIXME: some of this machinery could be used for non-concept type-parms too,
// enabling completion for type parameters based on other uses of that param.
//
// FIXME: there are other cases where a type can be constrained by a concept,
// e.g. inside `if constexpr(ConceptSpecializationExpr) { ... }`
class ConceptInfo {
public:
// Describes a likely member of a type, inferred by concept constraints.
// Offered as a code completion for T. T-> and T:: contexts.
struct Member {
// Always non-null: we only handle members with ordinary identifier names.
const IdentifierInfo *Name = nullptr;
// Set for functions we've seen called.
// We don't have the declared parameter types, only the actual types of
// arguments we've seen. These are still valuable, as it's hard to render
// a useful function completion with neither parameter types nor names!
llvm::Optional<SmallVector<QualType, 1>> ArgTypes;
// Whether this is accessed as T.member, T->member, or T::member.
enum AccessOperator {
Colons,
Arrow,
Dot,
} Operator = Dot;
// What's known about the type of a variable or return type of a function.
const TypeConstraint *ResultType = nullptr;
// FIXME: also track:
// - kind of entity (function/variable/type), to expose structured results
// - template args kinds/types, as a proxy for template params
// For now we simply return these results as "pattern" strings.
CodeCompletionString *render(Sema &S, CodeCompletionAllocator &Alloc,
CodeCompletionTUInfo &Info) const {
CodeCompletionBuilder B(Alloc, Info);
// Result type
if (ResultType) {
std::string AsString;
{
llvm::raw_string_ostream OS(AsString);
QualType ExactType = deduceType(*ResultType);
if (!ExactType.isNull())
ExactType.print(OS, getCompletionPrintingPolicy(S));
else
ResultType->print(OS, getCompletionPrintingPolicy(S));
}
B.AddResultTypeChunk(Alloc.CopyString(AsString));
}
// Member name
B.AddTypedTextChunk(Alloc.CopyString(Name->getName()));
// Function argument list
if (ArgTypes) {
B.AddChunk(clang::CodeCompletionString::CK_LeftParen);
bool First = true;
for (QualType Arg : *ArgTypes) {
if (First)
First = false;
else {
B.AddChunk(clang::CodeCompletionString::CK_Comma);
B.AddChunk(clang::CodeCompletionString::CK_HorizontalSpace);
}
B.AddPlaceholderChunk(Alloc.CopyString(
Arg.getAsString(getCompletionPrintingPolicy(S))));
}
B.AddChunk(clang::CodeCompletionString::CK_RightParen);
}
return B.TakeString();
}
};
// BaseType is the type parameter T to infer members from.
// T must be accessible within S, as we use it to find the template entity
// that T is attached to in order to gather the relevant constraints.
ConceptInfo(const TemplateTypeParmType &BaseType, Scope *S) {
auto *TemplatedEntity = getTemplatedEntity(BaseType.getDecl(), S);
for (const Expr *E : constraintsForTemplatedEntity(TemplatedEntity))
believe(E, &BaseType);
}
std::vector<Member> members() {
std::vector<Member> Results;
for (const auto &E : this->Results)
Results.push_back(E.second);
llvm::sort(Results, [](const Member &L, const Member &R) {
return L.Name->getName() < R.Name->getName();
});
return Results;
}
private:
// Infer members of T, given that the expression E (dependent on T) is true.
void believe(const Expr *E, const TemplateTypeParmType *T) {
if (!E || !T)
return;
if (auto *CSE = dyn_cast<ConceptSpecializationExpr>(E)) {
// If the concept is
// template <class A, class B> concept CD = f<A, B>();
// And the concept specialization is
// CD<int, T>
// Then we're substituting T for B, so we want to make f<A, B>() true
// by adding members to B - i.e. believe(f<A, B>(), B);
//
// For simplicity:
// - we don't attempt to substitute int for A
// - when T is used in other ways (like CD<T*>) we ignore it
ConceptDecl *CD = CSE->getNamedConcept();
TemplateParameterList *Params = CD->getTemplateParameters();
unsigned Index = 0;
for (const auto &Arg : CSE->getTemplateArguments()) {
if (Index >= Params->size())
break; // Won't happen in valid code.
if (isApprox(Arg, T)) {
auto *TTPD = dyn_cast<TemplateTypeParmDecl>(Params->getParam(Index));
if (!TTPD)
continue;
// T was used as an argument, and bound to the parameter TT.
auto *TT = cast<TemplateTypeParmType>(TTPD->getTypeForDecl());
// So now we know the constraint as a function of TT is true.
believe(CD->getConstraintExpr(), TT);
// (concepts themselves have no associated constraints to require)
}
++Index;
}
} else if (auto *BO = dyn_cast<BinaryOperator>(E)) {
// For A && B, we can infer members from both branches.
// For A || B, the union is still more useful than the intersection.
if (BO->getOpcode() == BO_LAnd || BO->getOpcode() == BO_LOr) {
believe(BO->getLHS(), T);
believe(BO->getRHS(), T);
}
} else if (auto *RE = dyn_cast<RequiresExpr>(E)) {
// A requires(){...} lets us infer members from each requirement.
for (const concepts::Requirement *Req : RE->getRequirements()) {
if (!Req->isDependent())
continue; // Can't tell us anything about T.
// Now Req cannot a substitution-error: those aren't dependent.
if (auto *TR = dyn_cast<concepts::TypeRequirement>(Req)) {
// Do a full traversal so we get `foo` from `typename T::foo::bar`.
QualType AssertedType = TR->getType()->getType();
ValidVisitor(this, T).TraverseType(AssertedType);
} else if (auto *ER = dyn_cast<concepts::ExprRequirement>(Req)) {
ValidVisitor Visitor(this, T);
// If we have a type constraint on the value of the expression,
// AND the whole outer expression describes a member, then we'll
// be able to use the constraint to provide the return type.
if (ER->getReturnTypeRequirement().isTypeConstraint()) {
Visitor.OuterType =
ER->getReturnTypeRequirement().getTypeConstraint();
Visitor.OuterExpr = ER->getExpr();
}
Visitor.TraverseStmt(ER->getExpr());
} else if (auto *NR = dyn_cast<concepts::NestedRequirement>(Req)) {
believe(NR->getConstraintExpr(), T);
}
}
}
}
// This visitor infers members of T based on traversing expressions/types
// that involve T. It is invoked with code known to be valid for T.
class ValidVisitor : public RecursiveASTVisitor<ValidVisitor> {
ConceptInfo *Outer;
const TemplateTypeParmType *T;
CallExpr *Caller = nullptr;
Expr *Callee = nullptr;
public:
// If set, OuterExpr is constrained by OuterType.
Expr *OuterExpr = nullptr;
const TypeConstraint *OuterType = nullptr;
ValidVisitor(ConceptInfo *Outer, const TemplateTypeParmType *T)
: Outer(Outer), T(T) {
assert(T);
}
// In T.foo or T->foo, `foo` is a member function/variable.
bool VisitCXXDependentScopeMemberExpr(CXXDependentScopeMemberExpr *E) {
const Type *Base = E->getBaseType().getTypePtr();
bool IsArrow = E->isArrow();
if (Base->isPointerType() && IsArrow) {
IsArrow = false;
Base = Base->getPointeeType().getTypePtr();
}
if (isApprox(Base, T))
addValue(E, E->getMember(), IsArrow ? Member::Arrow : Member::Dot);
return true;
}
// In T::foo, `foo` is a static member function/variable.
bool VisitDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E) {
if (E->getQualifier() && isApprox(E->getQualifier()->getAsType(), T))
addValue(E, E->getDeclName(), Member::Colons);
return true;
}
// In T::typename foo, `foo` is a type.
bool VisitDependentNameType(DependentNameType *DNT) {
const auto *Q = DNT->getQualifier();
if (Q && isApprox(Q->getAsType(), T))
addType(DNT->getIdentifier());
return true;
}
// In T::foo::bar, `foo` must be a type.
// VisitNNS() doesn't exist, and TraverseNNS isn't always called :-(
bool TraverseNestedNameSpecifierLoc(NestedNameSpecifierLoc NNSL) {
if (NNSL) {
NestedNameSpecifier *NNS = NNSL.getNestedNameSpecifier();
const auto *Q = NNS->getPrefix();
if (Q && isApprox(Q->getAsType(), T))
addType(NNS->getAsIdentifier());
}
// FIXME: also handle T::foo<X>::bar
return RecursiveASTVisitor::TraverseNestedNameSpecifierLoc(NNSL);
}
// FIXME also handle T::foo<X>
// Track the innermost caller/callee relationship so we can tell if a
// nested expr is being called as a function.
bool VisitCallExpr(CallExpr *CE) {
Caller = CE;
Callee = CE->getCallee();
return true;
}
private:
void addResult(Member &&M) {
auto R = Outer->Results.try_emplace(M.Name);
Member &O = R.first->second;
// Overwrite existing if the new member has more info.
// The preference of . vs :: vs -> is fairly arbitrary.
if (/*Inserted*/ R.second ||
std::make_tuple(M.ArgTypes.hasValue(), M.ResultType != nullptr,
M.Operator) > std::make_tuple(O.ArgTypes.hasValue(),
O.ResultType != nullptr,
O.Operator))
O = std::move(M);
}
void addType(const IdentifierInfo *Name) {
if (!Name)
return;
Member M;
M.Name = Name;
M.Operator = Member::Colons;
addResult(std::move(M));
}
void addValue(Expr *E, DeclarationName Name,
Member::AccessOperator Operator) {
if (!Name.isIdentifier())
return;
Member Result;
Result.Name = Name.getAsIdentifierInfo();
Result.Operator = Operator;
// If this is the callee of an immediately-enclosing CallExpr, then
// treat it as a method, otherwise it's a variable.
if (Caller != nullptr && Callee == E) {
Result.ArgTypes.emplace();
for (const auto *Arg : Caller->arguments())
Result.ArgTypes->push_back(Arg->getType());
if (Caller == OuterExpr) {
Result.ResultType = OuterType;
}
} else {
if (E == OuterExpr)
Result.ResultType = OuterType;
}
addResult(std::move(Result));
}
};
static bool isApprox(const TemplateArgument &Arg, const Type *T) {
return Arg.getKind() == TemplateArgument::Type &&
isApprox(Arg.getAsType().getTypePtr(), T);
}
static bool isApprox(const Type *T1, const Type *T2) {
return T1 && T2 &&
T1->getCanonicalTypeUnqualified() ==
T2->getCanonicalTypeUnqualified();
}
// Returns the DeclContext immediately enclosed by the template parameter
// scope. For primary templates, this is the templated (e.g.) CXXRecordDecl.
// For specializations, this is e.g. ClassTemplatePartialSpecializationDecl.
static DeclContext *getTemplatedEntity(const TemplateTypeParmDecl *D,
Scope *S) {
if (D == nullptr)
return nullptr;
Scope *Inner = nullptr;
while (S) {
if (S->isTemplateParamScope() && S->isDeclScope(D))
return Inner ? Inner->getEntity() : nullptr;
Inner = S;
S = S->getParent();
}
return nullptr;
}
// Gets all the type constraint expressions that might apply to the type
// variables associated with DC (as returned by getTemplatedEntity()).
static SmallVector<const Expr *, 1>
constraintsForTemplatedEntity(DeclContext *DC) {
SmallVector<const Expr *, 1> Result;
if (DC == nullptr)
return Result;
// Primary templates can have constraints.
if (const auto *TD = cast<Decl>(DC)->getDescribedTemplate())
TD->getAssociatedConstraints(Result);
// Partial specializations may have constraints.
if (const auto *CTPSD =
dyn_cast<ClassTemplatePartialSpecializationDecl>(DC))
CTPSD->getAssociatedConstraints(Result);
if (const auto *VTPSD = dyn_cast<VarTemplatePartialSpecializationDecl>(DC))
VTPSD->getAssociatedConstraints(Result);
return Result;
}
// Attempt to find the unique type satisfying a constraint.
// This lets us show e.g. `int` instead of `std::same_as<int>`.
static QualType deduceType(const TypeConstraint &T) {
// Assume a same_as<T> return type constraint is std::same_as or equivalent.
// In this case the return type is T.
DeclarationName DN = T.getNamedConcept()->getDeclName();
if (DN.isIdentifier() && DN.getAsIdentifierInfo()->isStr("same_as"))
if (const auto *Args = T.getTemplateArgsAsWritten())
if (Args->getNumTemplateArgs() == 1) {
const auto &Arg = Args->arguments().front().getArgument();
if (Arg.getKind() == TemplateArgument::Type)
return Arg.getAsType();
}
return {};
}
llvm::DenseMap<const IdentifierInfo *, Member> Results;
};
} // namespace
void Sema::CodeCompleteMemberReferenceExpr(Scope *S, Expr *Base,
Expr *OtherOpBase,
SourceLocation OpLoc, bool IsArrow,
@ -4802,15 +5169,31 @@ void Sema::CodeCompleteMemberReferenceExpr(Scope *S, Expr *Base,
if (const PointerType *Ptr = BaseType->getAs<PointerType>()) {
BaseType = Ptr->getPointeeType();
BaseKind = VK_LValue;
} else if (BaseType->isObjCObjectPointerType())
/*Do nothing*/;
else
} else if (BaseType->isObjCObjectPointerType() ||
BaseType->isTemplateTypeParmType()) {
// Both cases (dot/arrow) handled below.
} else {
return false;
}
}
if (RecordDecl *RD = getAsRecordDecl(BaseType)) {
AddRecordMembersCompletionResults(*this, Results, S, BaseType, BaseKind,
RD, std::move(AccessOpFixIt));
} else if (const auto *TTPT =
dyn_cast<TemplateTypeParmType>(BaseType.getTypePtr())) {
auto Operator =
IsArrow ? ConceptInfo::Member::Arrow : ConceptInfo::Member::Dot;
for (const auto &R : ConceptInfo(*TTPT, S).members()) {
if (R.Operator != Operator)
continue;
CodeCompletionResult Result(
R.render(*this, CodeCompleter->getAllocator(),
CodeCompleter->getCodeCompletionTUInfo()));
if (AccessOpFixIt)
Result.FixIts.push_back(*AccessOpFixIt);
Results.AddResult(std::move(Result));
}
} else if (!IsArrow && BaseType->isObjCObjectPointerType()) {
// Objective-C property reference.
AddedPropertiesSet AddedProperties;
@ -5446,13 +5829,14 @@ void Sema::CodeCompleteQualifiedId(Scope *S, CXXScopeSpec &SS,
// Always pretend to enter a context to ensure that a dependent type
// resolves to a dependent record.
DeclContext *Ctx = computeDeclContext(SS, /*EnteringContext=*/true);
if (!Ctx)
return;
// Try to instantiate any non-dependent declaration contexts before
// we look in them.
if (!isDependentScopeSpecifier(SS) && RequireCompleteDeclContext(SS, Ctx))
return;
// we look in them. Bail out if we fail.
NestedNameSpecifier *NNS = SS.getScopeRep();
if (NNS != nullptr && SS.isValid() && !NNS->isDependent()) {
if (Ctx == nullptr || RequireCompleteDeclContext(SS, Ctx))
return;
}
ResultBuilder Results(*this, CodeCompleter->getAllocator(),
CodeCompleter->getCodeCompletionTUInfo(), CC);
@ -5462,21 +5846,34 @@ void Sema::CodeCompleteQualifiedId(Scope *S, CXXScopeSpec &SS,
// The "template" keyword can follow "::" in the grammar, but only
// put it into the grammar if the nested-name-specifier is dependent.
NestedNameSpecifier *NNS = SS.getScopeRep();
// FIXME: results is always empty, this appears to be dead.
if (!Results.empty() && NNS->isDependent())
Results.AddResult("template");
// If the scope is a concept-constrained type parameter, infer nested
// members based on the constraints.
if (const auto *TTPT =
dyn_cast_or_null<TemplateTypeParmType>(NNS->getAsType())) {
for (const auto &R : ConceptInfo(*TTPT, S).members()) {
if (R.Operator != ConceptInfo::Member::Colons)
continue;
Results.AddResult(CodeCompletionResult(
R.render(*this, CodeCompleter->getAllocator(),
CodeCompleter->getCodeCompletionTUInfo())));
}
}
// Add calls to overridden virtual functions, if there are any.
//
// FIXME: This isn't wonderful, because we don't know whether we're actually
// in a context that permits expressions. This is a general issue with
// qualified-id completions.
if (!EnteringContext)
if (Ctx && !EnteringContext)
MaybeAddOverrideCalls(*this, Ctx, Results);
Results.ExitScope();
if (CodeCompleter->includeNamespaceLevelDecls() ||
(!Ctx->isNamespace() && !Ctx->isTranslationUnit())) {
if (Ctx &&
(CodeCompleter->includeNamespaceLevelDecls() || !Ctx->isFileContext())) {
CodeCompletionDeclConsumer Consumer(Results, Ctx, BaseType);
LookupVisibleDecls(Ctx, LookupOrdinaryName, Consumer,
/*IncludeGlobalScope=*/true,

View File

@ -0,0 +1,59 @@
template <typename T, typename U> concept convertible_to = true;
template <typename T, typename U> concept same_as = true;
template <typename T> concept integral = true;
template <typename A, typename B>
concept W = requires(A a, B b) {
{ b.www } noexcept -> integral;
};
template <typename T> concept X = requires(T t) {
t.xxx(42);
typename T::xxx_t;
T::xyz::member;
};
template <typename T, typename U>
concept Y = requires(T t, U u) { t.yyy(u); };
template <typename T>
concept Z = requires(T t) {
{ t.zzz() } -> same_as<int>;
requires W<int, T>;
};
// Concept constraints in all three slots require X, Y, Z, and ad-hoc stuff.
template <X T>
requires Y<T, int> && requires(T *t) { { t->aaa() } -> convertible_to<double>; }
void foo(T t) requires Z<T> || requires(T &t) { t.bbb(); t->bb(); } {
t.x;
t->x;
T::x;
// RUN: %clang_cc1 -std=c++2a -code-completion-with-fixits -code-completion-at=%s:29:5 %s \
// RUN: | FileCheck %s -check-prefix=DOT -implicit-check-not=xxx_t
// DOT: Pattern : [#convertible_to<double>#]aaa()
// DOT: Pattern : bb() (requires fix-it: {{.*}} to "->")
// DOT: Pattern : bbb()
// DOT: Pattern : [#integral#]www
// DOT: Pattern : xxx(<#int#>)
// FIXME: it would be nice to have int instead of U here.
// DOT: Pattern : yyy(<#U#>)
// DOT: Pattern : [#int#]zzz()
// RUN: %clang_cc1 -std=c++2a -code-completion-with-fixits -code-completion-at=%s:30:6 %s \
// RUN: | FileCheck %s -check-prefix=ARROW -implicit-check-not=xxx_t
// ARROW: Pattern : [#convertible_to<double>#]aaa() (requires fix-it: {{.*}} to ".")
// ARROW: Pattern : bb()
// ARROW: Pattern : bbb() (requires fix-it
// ARROW: Pattern : [#integral#]www (requires fix-it
// ARROW: Pattern : xxx(<#int#>) (requires fix-it
// ARROW: Pattern : yyy(<#U#>) (requires fix-it
// ARROW: Pattern : [#int#]zzz() (requires fix-it
// RUN: %clang_cc1 -std=c++2a -code-completion-with-fixits -code-completion-at=%s:31:6 %s \
// RUN: | FileCheck %s -check-prefix=COLONS -implicit-check-not=yyy
// COLONS: Pattern : xxx_t
// COLONS: Pattern : xyz
}