Memory manangement routines for exception objects

llvm-svn: 135587
This commit is contained in:
Marshall Clow 2011-07-20 15:04:39 +00:00
parent 1df50ca6a2
commit e2dcb75b2e
3 changed files with 448 additions and 0 deletions

View File

@ -0,0 +1,107 @@
//===------------------------- cxa_exception.cpp --------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//
// This file implements the "Exception Handling APIs"
// http://www.codesourcery.com/public/cxx-abi/abi-eh.html
//
//===----------------------------------------------------------------------===//
#include "cxxabi.h"
#include <exception> // for std::terminate
#include <cstdlib> // for malloc, free
#include <string> // for memset
#include <pthread.h>
#include "cxa_exception.hpp"
#include "cxa_exception_storage.hpp"
namespace __cxxabiv1 {
// Utility routines
static __cxa_exception *exception_from_object ( void *p ) {
return ((__cxa_exception *) p ) - 1;
}
void * object_from_exception ( void *p ) {
return (void *) (((__cxa_exception *) p ) + 1 );
}
static size_t object_size_from_exception_size ( size_t size ) {
return size + sizeof (__cxa_exception);
}
#include "fallback_malloc.cpp"
// Allocate some memory from _somewhere_
static void *do_malloc ( size_t size ) throw () {
void *ptr = std::malloc ( size );
if ( NULL == ptr ) // if malloc fails, fall back to emergency stash
ptr = fallback_malloc ( size );
return ptr;
}
// Didn't know you could "return <expression>" from a void function, did you?
// Well, you can, if the type of the expression is "void" also.
static void do_free ( void *ptr ) throw () {
return is_fallback_ptr ( ptr ) ? fallback_free ( ptr ) : std::free ( ptr );
}
static thread_local_storage<__cxa_eh_globals> __globals;
// pthread_once_t __globals::flag_ = PTHREAD_ONCE_INIT;
extern "C" {
// Allocate a __cxa_exception object, and zero-fill it.
// Reserve "thrown_size" bytes on the end for the user's exception
// object. Zero-fill the object. If memory can't be allocated, call
// std::terminate. Return a pointer to the memory to be used for the
// user's exception object.
void * __cxa_allocate_exception (size_t thrown_size) throw() {
size_t actual_size = object_size_from_exception_size ( thrown_size );
void *ptr = do_malloc ( actual_size );
if ( NULL == ptr )
std::terminate ();
std::memset ( ptr, 0, actual_size );
return object_from_exception ( ptr );
}
// Free a __cxa_exception object allocated with __cxa_allocate_exception.
void __cxa_free_exception (void * thrown_exception) throw() {
do_free ( exception_from_object ( thrown_exception ));
}
// This function shall allocate a __cxa_dependent_exception and
// return a pointer to it. (Really to the object, not past its' end).
// Otherwise, it will work like __cxa_allocate_exception.
void * __cxa_allocate_dependent_exception () throw() {
size_t actual_size = sizeof ( __cxa_dependent_exception );
void *ptr = do_malloc ( actual_size );
if ( NULL == ptr )
std::terminate ();
std::memset ( ptr, 0, actual_size );
// bookkeeping here ?
return ptr;
}
// This function shall free a dependent_exception.
// It does not affect the reference count of the primary exception.
void __cxa_free_dependent_exception (void * dependent_exception) throw() {
// I'm pretty sure there's no bookkeeping here
do_free ( dependent_exception );
}
__cxa_eh_globals * __cxa_get_globals () throw() { return __globals.get_tls (); }
__cxa_eh_globals * __cxa_get_globals_fast () throw() { return __globals.get_tls_fast (); }
} // extern "C"
} // abi

View File

@ -0,0 +1,161 @@
// A small, simple heap manager based (loosely) on the startup heap
// based on the startup heap manager from FreeBSD.
//
// Manages a fixed-size memory pool, supports malloc and free only.
// No support for realloc.
//
// Allocates chunks in multiples of four bytes, with a four byte header
// for each chunk. The overhead of each chunk is kept low by keeping pointers
// as two byte offsets within the heap, rather than (4 or 8 byte) pointers.
namespace {
static pthread_mutex_t heap_mutex = PTHREAD_MUTEX_INITIALIZER;
class mutexor {
public:
mutexor ( pthread_mutex_t *m ) : mtx_(m) { pthread_mutex_lock ( mtx_ ); }
~mutexor () { pthread_mutex_unlock ( mtx_ ); }
private:
mutexor ( const mutexor &rhs );
mutexor & operator = ( const mutexor &rhs );
pthread_mutex_t *mtx_;
};
#define HEAP_SIZE 512
char heap [ HEAP_SIZE ];
typedef unsigned short heap_offset;
typedef unsigned short heap_size;
struct heap_node {
heap_offset next_node; // offset into heap
heap_size len; // size in units of "sizeof(heap_node)"
};
static const heap_node *list_end = (heap_node *) ( &heap [ HEAP_SIZE ] ); // one past the end of the heap
static heap_node *freelist = NULL;
heap_node *node_from_offset ( const heap_offset offset ) throw()
{ return (heap_node *) ( heap + ( offset * sizeof (heap_node))); }
heap_offset offset_from_node ( const heap_node *ptr ) throw()
{ return (((char *) ptr ) - heap) / sizeof (heap_node); }
void init_heap () throw() {
freelist = (heap_node *) heap;
freelist->next_node = offset_from_node ( list_end );
freelist->len = HEAP_SIZE / sizeof (heap_node);
}
// How big a chunk we allocate
size_t alloc_size (size_t len) throw()
{ return (len + sizeof(heap_node) - 1) / sizeof(heap_node) + 1; }
bool is_fallback_ptr ( void *ptr ) throw()
{ return ptr >= heap && ptr < ( heap + HEAP_SIZE ); }
void *fallback_malloc(size_t len) throw() {
heap_node *p, *prev;
const size_t nelems = alloc_size ( len );
mutexor mtx ( &heap_mutex );
if ( NULL == freelist )
init_heap ();
// Walk the free list, looking for a "big enough" chunk
for (p = freelist, prev = 0;
p && p != list_end; prev = p, p = node_from_offset ( p->next_node)) {
if (p->len > nelems) { // chunk is larger, shorten, and return the tail
heap_node *q;
p->len -= nelems;
q = p + p->len;
q->next_node = 0;
q->len = nelems;
return (void *) (q + 1);
}
if (p->len == nelems) { // exact size match
if (prev == 0)
freelist = node_from_offset(p->next_node);
else
prev->next_node = p->next_node;
p->next_node = 0;
return (void *) (p + 1);
}
}
return NULL; // couldn't find a spot big enough
}
// Return the start of the next block
heap_node *after ( struct heap_node *p ) throw() { return p + p->len; }
void fallback_free (void *ptr) throw() {
struct heap_node *cp = ((struct heap_node *) ptr) - 1; // retrieve the chunk
struct heap_node *p, *prev;
mutexor mtx ( &heap_mutex );
#ifdef DEBUG_FALLBACK_MALLOC
std::cout << "Freeing item at " << offset_from_node ( cp ) << " of size " << cp->len << std::endl;
#endif
for (p = freelist, prev = 0;
p && p != list_end; prev = p, p = node_from_offset (p->next_node)) {
#ifdef DEBUG_FALLBACK_MALLOC
std::cout << " p, cp, after (p), after(cp) "
<< offset_from_node ( p ) << ' '
<< offset_from_node ( cp ) << ' '
<< offset_from_node ( after ( p )) << ' '
<< offset_from_node ( after ( cp )) << std::endl;
#endif
if ( after ( p ) == cp ) {
#ifdef DEBUG_FALLBACK_MALLOC
std::cout << " Appending onto chunk at " << offset_from_node ( p ) << std::endl;
#endif
p->len += cp->len; // make the free heap_node larger
return;
}
else if ( after ( cp ) == p ) { // there's a free heap_node right after
#ifdef DEBUG_FALLBACK_MALLOC
std::cout << " Appending free chunk at " << offset_from_node ( p ) << std::endl;
#endif
cp->len += p->len;
if ( prev == 0 ) {
freelist = cp;
cp->next_node = p->next_node;
}
else
prev->next_node = offset_from_node(cp);
return;
}
}
// Nothing to merge with, add it to the start of the free list
#ifdef DEBUG_FALLBACK_MALLOC
std::cout << " Making new free list entry " << offset_from_node ( cp ) << std::endl;
#endif
cp->next_node = offset_from_node ( freelist );
freelist = cp;
}
#ifdef INSTRUMENT_FALLBACK_MALLOC
size_t print_free_list () {
struct heap_node *p, *prev;
heap_size total_free = 0;
if ( NULL == freelist )
init_heap ();
for (p = freelist, prev = 0;
p && p != list_end; prev = p, p = node_from_offset (p->next_node)) {
std::cout << ( prev == 0 ? "" : " ") << "Offset: " << offset_from_node ( p )
<< "\tsize: " << p->len << " Next: " << p->next_node << std::endl;
total_free += p->len;
}
std::cout << "Total Free space: " << total_free << std::endl;
return total_free;
}
#endif
}

View File

@ -0,0 +1,180 @@
#include <iostream>
#include <deque>
#include <pthread.h>
typedef std::deque<void *> container;
// #define DEBUG_FALLBACK_MALLOC
#define INSTRUMENT_FALLBACK_MALLOC
#include "../src/fallback_malloc.cpp"
container alloc_series ( size_t sz ) {
container ptrs;
void *p;
while ( NULL != ( p = fallback_malloc ( sz )))
ptrs.push_back ( p );
return ptrs;
}
container alloc_series ( size_t sz, float growth ) {
container ptrs;
void *p;
while ( NULL != ( p = fallback_malloc ( sz ))) {
ptrs.push_back ( p );
sz *= growth;
}
return ptrs;
}
container alloc_series ( const size_t *first, size_t len ) {
container ptrs;
const size_t *last = first + len;
void * p;
for ( const size_t *iter = first; iter != last; ++iter ) {
if ( NULL == (p = fallback_malloc ( *iter )))
break;
ptrs.push_back ( p );
}
return ptrs;
}
void *pop ( container &c, bool from_end ) {
void *ptr;
if ( from_end ) {
ptr = c.back ();
c.pop_back ();
}
else {
ptr = c.front ();
c.pop_front ();
}
return ptr;
}
void exhaustion_test1 () {
container ptrs;
init_heap ();
std::cout << "Constant exhaustion tests" << std::endl;
// Delete in allocation order
ptrs = alloc_series ( 32 );
std::cout << "Allocated " << ptrs.size () << " 32 byte chunks" << std::endl;
print_free_list ();
for ( container::iterator iter = ptrs.begin (); iter != ptrs.end (); ++iter )
fallback_free ( *iter );
print_free_list ();
std::cout << "----" << std::endl;
// Delete in reverse order
ptrs = alloc_series ( 32 );
std::cout << "Allocated " << ptrs.size () << " 32 byte chunks" << std::endl;
for ( container::reverse_iterator iter = ptrs.rbegin (); iter != ptrs.rend (); ++iter )
fallback_free ( *iter );
print_free_list ();
std::cout << "----" << std::endl;
// Alternate deletions
ptrs = alloc_series ( 32 );
std::cout << "Allocated " << ptrs.size () << " 32 byte chunks" << std::endl;
while ( ptrs.size () > 0 )
fallback_free ( pop ( ptrs, ptrs.size () % 1 == 1 ));
print_free_list ();
}
void exhaustion_test2 () {
container ptrs;
init_heap ();
std::cout << "Growing exhaustion tests" << std::endl;
// Delete in allocation order
ptrs = alloc_series ( 32, 1.5 );
std::cout << "Allocated " << ptrs.size () << " { 32, 48, 72, 108, 162 ... } byte chunks" << std::endl;
print_free_list ();
for ( container::iterator iter = ptrs.begin (); iter != ptrs.end (); ++iter )
fallback_free ( *iter );
print_free_list ();
std::cout << "----" << std::endl;
// Delete in reverse order
print_free_list ();
ptrs = alloc_series ( 32, 1.5 );
std::cout << "Allocated " << ptrs.size () << " { 32, 48, 72, 108, 162 ... } byte chunks" << std::endl;
for ( container::reverse_iterator iter = ptrs.rbegin (); iter != ptrs.rend (); ++iter )
fallback_free ( *iter );
print_free_list ();
std::cout << "----" << std::endl;
// Alternate deletions
ptrs = alloc_series ( 32, 1.5 );
std::cout << "Allocated " << ptrs.size () << " { 32, 48, 72, 108, 162 ... } byte chunks" << std::endl;
while ( ptrs.size () > 0 )
fallback_free ( pop ( ptrs, ptrs.size () % 1 == 1 ));
print_free_list ();
}
void exhaustion_test3 () {
const size_t allocs [] = { 124, 60, 252, 60, 4 };
container ptrs;
init_heap ();
std::cout << "Complete exhaustion tests" << std::endl;
// Delete in allocation order
ptrs = alloc_series ( allocs, sizeof ( allocs ) / sizeof ( allocs[0] ));
std::cout << "Allocated " << ptrs.size () << " chunks" << std::endl;
print_free_list ();
for ( container::iterator iter = ptrs.begin (); iter != ptrs.end (); ++iter )
fallback_free ( *iter );
print_free_list ();
std::cout << "----" << std::endl;
// Delete in reverse order
print_free_list ();
ptrs = alloc_series ( allocs, sizeof ( allocs ) / sizeof ( allocs[0] ));
std::cout << "Allocated " << ptrs.size () << " chunks" << std::endl;
for ( container::reverse_iterator iter = ptrs.rbegin (); iter != ptrs.rend (); ++iter )
fallback_free ( *iter );
print_free_list ();
std::cout << "----" << std::endl;
// Alternate deletions
ptrs = alloc_series ( allocs, sizeof ( allocs ) / sizeof ( allocs[0] ));
std::cout << "Allocated " << ptrs.size () << " chunks" << std::endl;
while ( ptrs.size () > 0 )
fallback_free ( pop ( ptrs, ptrs.size () % 1 == 1 ));
print_free_list ();
}
int main ( int argc, char *argv [] ) {
print_free_list ();
char *p = (char *) fallback_malloc ( 1024 ); // too big!
std::cout << "fallback_malloc ( 1024 ) --> " << (unsigned long ) p << std::endl;
print_free_list ();
p = (char *) fallback_malloc ( 32 );
std::cout << "fallback_malloc ( 32 ) --> " << (unsigned long) (p - heap) << std::endl;
if ( !is_fallback_ptr ( p ))
std::cout << "### p is not a fallback pointer!!" << std::endl;
print_free_list ();
fallback_free ( p );
print_free_list ();
std::cout << std::endl;
exhaustion_test1 (); std::cout << std::endl;
exhaustion_test2 (); std::cout << std::endl;
exhaustion_test3 (); std::cout << std::endl;
return 0;
}