[XRay][RISCV] RISCV support for XRay (#117368)

Add RISC-V support for XRay. The RV64 implementation has been tested in
both QEMU and in our hardware environment.

Currently this requires D and C extensions, but since both RV64GC and
RVA22/RVA23 are becoming mainstream, I don't think this requirement will
be a big problem.

Based on the previous work by @a-poduval :
https://reviews.llvm.org/D117929

---------

Co-authored-by: Ashwin Poduval <ashwin.poduval@gmail.com>
This commit is contained in:
Min-Yih Hsu 2024-12-10 17:57:04 -08:00 committed by GitHub
parent 7987f478be
commit ea76b2d8d8
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
15 changed files with 696 additions and 5 deletions

View File

@ -51,6 +51,8 @@ XRayArgs::XRayArgs(const ToolChain &TC, const ArgList &Args) {
case llvm::Triple::mips64:
case llvm::Triple::mips64el:
case llvm::Triple::systemz:
case llvm::Triple::riscv32:
case llvm::Triple::riscv64:
break;
default:
D.Diag(diag::err_drv_unsupported_opt_for_target)

View File

@ -102,7 +102,7 @@ if(APPLE)
set(ALL_XRAY_SUPPORTED_ARCH ${X86_64} ${ARM64})
else()
set(ALL_XRAY_SUPPORTED_ARCH ${X86_64} ${ARM32} ${ARM64} ${MIPS32} ${MIPS64}
powerpc64le ${HEXAGON} ${LOONGARCH64})
powerpc64le ${HEXAGON} ${LOONGARCH64} ${RISCV32} ${RISCV64})
endif()
set(ALL_XRAY_DSO_SUPPORTED_ARCH ${X86_64} ${ARM64})
set(ALL_SHADOWCALLSTACK_SUPPORTED_ARCH ${ARM64})

View File

@ -96,6 +96,16 @@ set(hexagon_SOURCES
xray_trampoline_hexagon.S
)
set(riscv32_SOURCES
xray_riscv.cpp
xray_trampoline_riscv32.S
)
set(riscv64_SOURCES
xray_riscv.cpp
xray_trampoline_riscv64.S
)
set(XRAY_SOURCE_ARCHS
arm
armhf
@ -156,6 +166,8 @@ set(XRAY_ALL_SOURCE_FILES
${mips64_SOURCES}
${mips64el_SOURCES}
${powerpc64le_SOURCES}
${riscv32_SOURCES}
${riscv64_SOURCES}
${XRAY_IMPL_HEADERS}
)
list(REMOVE_DUPLICATES XRAY_ALL_SOURCE_FILES)

View File

@ -57,6 +57,10 @@ static const int16_t cSledLength = 64;
static const int16_t cSledLength = 8;
#elif defined(__hexagon__)
static const int16_t cSledLength = 20;
#elif defined(__riscv) && (__riscv_xlen == 64)
static const int16_t cSledLength = 68;
#elif defined(__riscv) && (__riscv_xlen == 32)
static const int16_t cSledLength = 52;
#else
#error "Unsupported CPU Architecture"
#endif /* CPU architecture */

View File

@ -0,0 +1,266 @@
//===-- xray_riscv.cpp ----------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// Implementation of RISC-V specific routines (32- and 64-bit).
//
//===----------------------------------------------------------------------===//
#include "sanitizer_common/sanitizer_common.h"
#include "xray_defs.h"
#include "xray_interface_internal.h"
#include <atomic>
namespace __xray {
// The machine codes for some instructions used in runtime patching.
enum PatchOpcodes : uint32_t {
PO_ADDI = 0x00000013, // addi rd, rs1, imm
PO_ADD = 0x00000033, // add rd, rs1, rs2
PO_SW = 0x00002023, // sw rs2, imm(rs1)
PO_SD = 0x00003023, // sd rs2, imm(rs1)
PO_LUI = 0x00000037, // lui rd, imm
PO_OR = 0x00006033, // or rd, rs1, rs2
PO_SLLI = 0x00001013, // slli rd, rs1, shamt
PO_JALR = 0x00000067, // jalr rd, rs1
PO_LW = 0x00002003, // lw rd, imm(rs1)
PO_LD = 0x00003003, // ld rd, imm(rs1)
PO_J = 0x0000006f, // jal imm
PO_NOP = PO_ADDI, // addi x0, x0, 0
};
enum RegNum : uint32_t {
RN_X0 = 0,
RN_RA = 1,
RN_SP = 2,
RN_T1 = 6,
RN_A0 = 10,
};
static inline uint32_t encodeRTypeInstruction(uint32_t Opcode, uint32_t Rs1,
uint32_t Rs2, uint32_t Rd) {
return Rs2 << 20 | Rs1 << 15 | Rd << 7 | Opcode;
}
static inline uint32_t encodeITypeInstruction(uint32_t Opcode, uint32_t Rs1,
uint32_t Rd, uint32_t Imm) {
return Imm << 20 | Rs1 << 15 | Rd << 7 | Opcode;
}
static inline uint32_t encodeSTypeInstruction(uint32_t Opcode, uint32_t Rs1,
uint32_t Rs2, uint32_t Imm) {
uint32_t ImmMSB = (Imm & 0xfe0) << 20;
uint32_t ImmLSB = (Imm & 0x01f) << 7;
return ImmMSB | Rs2 << 20 | Rs1 << 15 | ImmLSB | Opcode;
}
static inline uint32_t encodeUTypeInstruction(uint32_t Opcode, uint32_t Rd,
uint32_t Imm) {
return Imm << 12 | Rd << 7 | Opcode;
}
static inline uint32_t encodeJTypeInstruction(uint32_t Opcode, uint32_t Rd,
uint32_t Imm) {
uint32_t ImmMSB = (Imm & 0x100000) << 11;
uint32_t ImmLSB = (Imm & 0x7fe) << 20;
uint32_t Imm11 = (Imm & 0x800) << 9;
uint32_t Imm1912 = (Imm & 0xff000);
return ImmMSB | ImmLSB | Imm11 | Imm1912 | Rd << 7 | Opcode;
}
static uint32_t hi20(uint32_t val) { return (val + 0x800) >> 12; }
static uint32_t lo12(uint32_t val) { return val & 0xfff; }
static inline bool patchSled(const bool Enable, const uint32_t FuncId,
const XRaySledEntry &Sled,
void (*TracingHook)()) XRAY_NEVER_INSTRUMENT {
// When |Enable| == true,
// We replace the following compile-time stub (sled):
//
// xray_sled_n:
// J .tmpN
// 21 or 33 C.NOPs (42 or 66 bytes)
// .tmpN
//
// With one of the following runtime patches:
//
// xray_sled_n (32-bit):
// addi sp, sp, -16 ;create stack frame
// sw ra, 12(sp) ;save return address
// sw a0, 8(sp) ;save register a0
// lui ra, %hi(__xray_FunctionEntry/Exit)
// addi ra, ra, %lo(__xray_FunctionEntry/Exit)
// lui a0, %hi(function_id)
// addi a0, a0, %lo(function_id) ;pass function id
// jalr ra ;call Tracing hook
// lw a0, 8(sp) ;restore register a0
// lw ra, 12(sp) ;restore return address
// addi sp, sp, 16 ;delete stack frame
//
// xray_sled_n (64-bit):
// addi sp, sp, -32 ;create stack frame
// sd ra, 24(sp) ;save return address
// sd a0, 16(sp) ;save register a0
// sd t1, 8(sp) ;save register t1
// lui t1, %highest(__xray_FunctionEntry/Exit)
// addi t1, t1, %higher(__xray_FunctionEntry/Exit)
// slli t1, t1, 32
// lui ra, ra, %hi(__xray_FunctionEntry/Exit)
// addi ra, ra, %lo(__xray_FunctionEntry/Exit)
// add ra, t1, ra
// lui a0, %hi(function_id)
// addi a0, a0, %lo(function_id) ;pass function id
// jalr ra ;call Tracing hook
// ld t1, 8(sp) ;restore register t1
// ld a0, 16(sp) ;restore register a0
// ld ra, 24(sp) ;restore return address
// addi sp, sp, 32 ;delete stack frame
//
// Replacement of the first 4-byte instruction should be the last and atomic
// operation, so that the user code which reaches the sled concurrently
// either jumps over the whole sled, or executes the whole sled when the
// latter is ready.
//
// When |Enable|==false, we set back the first instruction in the sled to be
// J 44 bytes (rv32)
// J 68 bytes (rv64)
uint32_t *Address = reinterpret_cast<uint32_t *>(Sled.address());
if (Enable) {
#if __riscv_xlen == 64
// If the ISA is RV64, the Tracing Hook needs to be typecast to a 64 bit
// value.
uint32_t LoTracingHookAddr = lo12(reinterpret_cast<uint64_t>(TracingHook));
uint32_t HiTracingHookAddr = hi20(reinterpret_cast<uint64_t>(TracingHook));
uint32_t HigherTracingHookAddr =
lo12((reinterpret_cast<uint64_t>(TracingHook) + 0x80000000) >> 32);
uint32_t HighestTracingHookAddr =
hi20((reinterpret_cast<uint64_t>(TracingHook) + 0x80000000) >> 32);
#elif __riscv_xlen == 32
// We typecast the Tracing Hook to a 32 bit value for RV32
uint32_t LoTracingHookAddr = lo12(reinterpret_cast<uint32_t>(TracingHook));
uint32_t HiTracingHookAddr = hi20((reinterpret_cast<uint32_t>(TracingHook));
#endif
uint32_t LoFunctionID = lo12(FuncId);
uint32_t HiFunctionID = hi20(FuncId);
// The sled that is patched in for RISCV64 defined below. We need the entire
// sleds corresponding to both ISAs to be protected by defines because the
// first few instructions are all different, because we store doubles in
// case of RV64 and store words for RV32. Subsequently, we have LUI - and in
// case of RV64, we need extra instructions from this point on, so we see
// differences in addresses to which instructions are stored.
size_t Idx = 1U;
const uint32_t XLenBytes = __riscv_xlen / 8;
#if __riscv_xlen == 64
const uint32_t LoadOp = PatchOpcodes::PO_LD;
const uint32_t StoreOp = PatchOpcodes::PO_SD;
#elif __riscv_xlen == 32
const uint32_t LoadOp = PatchOpcodes::PO_LW;
const uint32_t StoreOp = PatchOpcodes::PO_SW;
#endif
Address[Idx++] = encodeSTypeInstruction(StoreOp, RegNum::RN_SP,
RegNum::RN_RA, 3 * XLenBytes);
Address[Idx++] = encodeSTypeInstruction(StoreOp, RegNum::RN_SP,
RegNum::RN_A0, 2 * XLenBytes);
#if __riscv_xlen == 64
Address[Idx++] = encodeSTypeInstruction(StoreOp, RegNum::RN_SP,
RegNum::RN_T1, XLenBytes);
Address[Idx++] = encodeUTypeInstruction(PatchOpcodes::PO_LUI, RegNum::RN_T1,
HighestTracingHookAddr);
Address[Idx++] =
encodeITypeInstruction(PatchOpcodes::PO_ADDI, RegNum::RN_T1,
RegNum::RN_T1, HigherTracingHookAddr);
Address[Idx++] = encodeITypeInstruction(PatchOpcodes::PO_SLLI,
RegNum::RN_T1, RegNum::RN_T1, 32);
#endif
Address[Idx++] = encodeUTypeInstruction(PatchOpcodes::PO_LUI, RegNum::RN_RA,
HiTracingHookAddr);
Address[Idx++] = encodeITypeInstruction(
PatchOpcodes::PO_ADDI, RegNum::RN_RA, RegNum::RN_RA, LoTracingHookAddr);
#if __riscv_xlen == 64
Address[Idx++] = encodeRTypeInstruction(PatchOpcodes::PO_ADD, RegNum::RN_RA,
RegNum::RN_T1, RegNum::RN_RA);
#endif
Address[Idx++] = encodeUTypeInstruction(PatchOpcodes::PO_LUI, RegNum::RN_A0,
HiFunctionID);
Address[Idx++] = encodeITypeInstruction(
PatchOpcodes::PO_ADDI, RegNum::RN_A0, RegNum::RN_A0, LoFunctionID);
Address[Idx++] = encodeITypeInstruction(PatchOpcodes::PO_JALR,
RegNum::RN_RA, RegNum::RN_RA, 0);
#if __riscv_xlen == 64
Address[Idx++] =
encodeITypeInstruction(LoadOp, RegNum::RN_SP, RegNum::RN_T1, XLenBytes);
#endif
Address[Idx++] = encodeITypeInstruction(LoadOp, RegNum::RN_SP,
RegNum::RN_A0, 2 * XLenBytes);
Address[Idx++] = encodeITypeInstruction(LoadOp, RegNum::RN_SP,
RegNum::RN_RA, 3 * XLenBytes);
Address[Idx++] = encodeITypeInstruction(
PatchOpcodes::PO_ADDI, RegNum::RN_SP, RegNum::RN_SP, 4 * XLenBytes);
uint32_t CreateStackSpace = encodeITypeInstruction(
PatchOpcodes::PO_ADDI, RegNum::RN_SP, RegNum::RN_SP, -4 * XLenBytes);
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint32_t> *>(Address), CreateStackSpace,
std::memory_order_release);
} else {
uint32_t CreateBranch = encodeJTypeInstruction(
// Jump distance is different in both ISAs due to difference in size of
// sleds
#if __riscv_xlen == 64
PatchOpcodes::PO_J, RegNum::RN_X0,
68); // jump encodes an offset of 68
#elif __riscv_xlen == 32
PatchOpcodes::PO_J, RegNum::RN_X0,
44); // jump encodes an offset of 44
#endif
std::atomic_store_explicit(
reinterpret_cast<std::atomic<uint32_t> *>(Address), CreateBranch,
std::memory_order_release);
}
return true;
}
bool patchFunctionEntry(const bool Enable, const uint32_t FuncId,
const XRaySledEntry &Sled,
const XRayTrampolines &Trampolines,
bool LogArgs) XRAY_NEVER_INSTRUMENT {
// We don't support logging argument at this moment, so we always
// use EntryTrampoline.
return patchSled(Enable, FuncId, Sled, Trampolines.EntryTrampoline);
}
bool patchFunctionExit(
const bool Enable, const uint32_t FuncId, const XRaySledEntry &Sled,
const XRayTrampolines &Trampolines) XRAY_NEVER_INSTRUMENT {
return patchSled(Enable, FuncId, Sled, Trampolines.ExitTrampoline);
}
bool patchFunctionTailExit(
const bool Enable, const uint32_t FuncId, const XRaySledEntry &Sled,
const XRayTrampolines &Trampolines) XRAY_NEVER_INSTRUMENT {
return patchSled(Enable, FuncId, Sled, Trampolines.TailExitTrampoline);
}
bool patchCustomEvent(const bool Enable, const uint32_t FuncId,
const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
return false;
}
bool patchTypedEvent(const bool Enable, const uint32_t FuncId,
const XRaySledEntry &Sled) XRAY_NEVER_INSTRUMENT {
return false;
}
} // namespace __xray
extern "C" void __xray_ArgLoggerEntry() XRAY_NEVER_INSTRUMENT {}

View File

@ -0,0 +1,89 @@
//===-- xray_trampoline_riscv32.s ----------------------------------*- ASM -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// This implements the riscv32-specific assembler for the trampolines.
//
//===----------------------------------------------------------------------===//
#include "../sanitizer_common/sanitizer_asm.h"
.macro SAVE_ARG_REGISTERS
// Push argument registers to stack
addi sp, sp, -112
CFI_DEF_CFA_OFFSET(112)
sw ra, 108(sp)
sw a7, 104(sp)
sw a6, 100(sp)
sw a5, 96(sp)
sw a4, 92(sp)
sw a3, 88(sp)
sw a2, 84(sp)
sw a1, 80(sp)
sw a0, 76(sp)
fsd fa7, 64(sp)
fsd fa6, 56(sp)
fsd fa5, 48(sp)
fsd fa4, 40(sp)
fsd fa3, 32(sp)
fsd fa2, 24(sp)
fsd fa1, 16(sp)
fsd fa0, 8(sp)
.endm
.macro RESTORE_ARG_REGISTERS
// Restore argument registers
fld fa0, 8(sp)
fld fa1, 16(sp)
fld fa2, 24(sp)
fld fa3, 32(sp)
fld fa4, 40(sp)
fld fa5, 48(sp)
fld fa6, 56(sp)
fld fa7, 64(sp)
lw a0, 76(sp)
lw a1, 80(sp)
lw a2, 84(sp)
lw a3, 88(sp)
lw a4, 92(sp)
lw a5, 96(sp)
lw a6, 100(sp)
lw a7, 104(sp)
lw ra, 108(sp)
addi sp, sp, 112
CFI_DEF_CFA_OFFSET(0)
.endm
.macro SAVE_RET_REGISTERS
// Push return registers to stack
addi sp, sp, -32
CFI_DEF_CFA_OFFSET(32)
sw ra, 28(sp)
sw a1, 24(sp)
sw a0, 20(sp)
fsd fa1, 8(sp)
fsd fa0, 0(sp)
.endm
.macro RESTORE_RET_REGISTERS
// Restore return registers
fld fa0, 0(sp)
fld fa1, 8(sp)
lw a0, 20(sp)
lw a1, 24(sp)
lw ra, 28(sp)
addi sp, sp, 32
CFI_DEF_CFA_OFFSET(0)
.endm
.macro LOAD_XLEN, rd, src
lw \rd, \src
.endm
#include "xray_trampoline_riscv_common.S"

View File

@ -0,0 +1,89 @@
//===-- xray_trampoline_riscv64.s ----------------------------------*- ASM -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// This implements the riscv64-specific assembler for the trampolines.
//
//===----------------------------------------------------------------------===//
#include "../sanitizer_common/sanitizer_asm.h"
.macro SAVE_ARG_REGISTERS
// Push return registers to stack
addi sp, sp, -144
CFI_DEF_CFA_OFFSET(144)
sd ra, 136(sp)
sd a7, 128(sp)
sd a6, 120(sp)
sd a5, 112(sp)
sd a4, 104(sp)
sd a3, 96(sp)
sd a2, 88(sp)
sd a1, 80(sp)
sd a0, 72(sp)
fsd fa7, 64(sp)
fsd fa6, 56(sp)
fsd fa5, 48(sp)
fsd fa4, 40(sp)
fsd fa3, 32(sp)
fsd fa2, 24(sp)
fsd fa1, 16(sp)
fsd fa0, 8(sp)
.endm
.macro SAVE_RET_REGISTERS
// Push return registers to stack
addi sp, sp, -48
CFI_DEF_CFA_OFFSET(48)
sd ra, 40(sp)
sd a1, 32(sp)
sd a0, 24(sp)
fsd fa1, 16(sp)
fsd fa0, 8(sp)
.endm
.macro RESTORE_RET_REGISTERS
// Restore return registers
fld fa0, 8(sp)
fld fa1, 16(sp)
ld a0, 24(sp)
ld a1, 32(sp)
ld ra, 40(sp)
addi sp, sp, 48
CFI_DEF_CFA_OFFSET(0)
.endm
.macro RESTORE_ARG_REGISTERS
// Restore argument registers
fld fa0, 8(sp)
fld fa1, 16(sp)
fld fa2, 24(sp)
fld fa3, 32(sp)
fld fa4, 40(sp)
fld fa5, 48(sp)
fld fa6, 56(sp)
fld fa7, 64(sp)
ld a0, 72(sp)
ld a1, 80(sp)
ld a2, 88(sp)
ld a3, 96(sp)
ld a4, 104(sp)
ld a5, 112(sp)
ld a6, 120(sp)
ld a7, 128(sp)
ld ra, 136(sp)
addi sp, sp, 144
CFI_DEF_CFA_OFFSET(0)
.endm
.macro LOAD_XLEN, rd, src
ld \rd, \src
.endm
#include "xray_trampoline_riscv_common.S"

View File

@ -0,0 +1,96 @@
//===-- xray_trampoline_riscv_common.s --------------------------*- ASM -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file is a part of XRay, a dynamic runtime instrumentation system.
//
// This implements the trampolines code shared between riscv32 and riscv64.
//
//===----------------------------------------------------------------------===//
#include "../builtins/assembly.h"
.text
.p2align 2
.global ASM_SYMBOL(__xray_FunctionEntry)
ASM_TYPE_FUNCTION(__xray_FunctionEntry)
ASM_SYMBOL(__xray_FunctionEntry):
CFI_STARTPROC
SAVE_ARG_REGISTERS
// Load the handler function pointer into a2
la a2, ASM_SYMBOL(_ZN6__xray19XRayPatchedFunctionE)
LOAD_XLEN a2, 0(a2)
// Handler address will be null if it is not set
beq a2, x0, 1f
// If we reach here, we are tracing an event
// a0 already contains function id
// a1 = 0 means we are tracing an entry event
li a1, 0
jalr a2
1:
RESTORE_ARG_REGISTERS
jr ra
ASM_SIZE(__xray_FunctionEntry)
CFI_ENDPROC
.text
.p2align 2
.global ASM_SYMBOL(__xray_FunctionExit)
ASM_TYPE_FUNCTION(__xray_FunctionExit)
ASM_SYMBOL(__xray_FunctionExit):
CFI_STARTPROC
SAVE_RET_REGISTERS
// Load the handler function pointer into a2
la a2, ASM_SYMBOL(_ZN6__xray19XRayPatchedFunctionE)
LOAD_XLEN a2, 0(a2)
// Handler address will be null if it is not set
beq a2, x0, 1f
// If we reach here, we are tracing an event
// a0 already contains function id
// a1 = 1 means we are tracing an exit event
li a1, 1
jalr a2
1:
RESTORE_RET_REGISTERS
jr ra
ASM_SIZE(__xray_FunctionExit)
CFI_ENDPROC
.text
.p2align 2
.global ASM_SYMBOL(__xray_FunctionTailExit)
ASM_TYPE_FUNCTION(__xray_FunctionTailExit)
ASM_SYMBOL(__xray_FunctionTailExit):
CFI_STARTPROC
SAVE_ARG_REGISTERS
// Load the handler function pointer into a2
la a2, ASM_SYMBOL(_ZN6__xray19XRayPatchedFunctionE)
LOAD_XLEN a2, 0(a2)
// Handler address will be null if it is not set
beq a2, x0, 1f
// If we reach here, we are tracing an event
// a0 already contains function id
// a1 = 2 means we are tracing a tail exit event
li a1, 2
jalr a2
1:
RESTORE_ARG_REGISTERS
jr ra
ASM_SIZE(__xray_FunctionTailExit)
CFI_ENDPROC

View File

@ -43,7 +43,7 @@ inline uint64_t getTSCFrequency() XRAY_NEVER_INSTRUMENT {
#elif defined(__powerpc64__)
#include "xray_powerpc64.inc"
#elif defined(__arm__) || defined(__aarch64__) || defined(__mips__) || \
defined(__hexagon__) || defined(__loongarch_lp64)
defined(__hexagon__) || defined(__loongarch_lp64) || defined(__riscv)
// Emulated TSC.
// There is no instruction like RDTSCP in user mode on ARM. ARM's CP15 does
// not have a constant frequency like TSC on x86(_64), it may go faster

View File

@ -233,10 +233,13 @@ bool XRayInstrumentation::runOnMachineFunction(MachineFunction &MF) {
case Triple::ArchType::mips:
case Triple::ArchType::mipsel:
case Triple::ArchType::mips64:
case Triple::ArchType::mips64el: {
case Triple::ArchType::mips64el:
case Triple::ArchType::riscv32:
case Triple::ArchType::riscv64: {
// For the architectures which don't have a single return instruction
InstrumentationOptions op;
op.HandleTailcall = false;
// RISC-V supports patching tail calls.
op.HandleTailcall = MF.getTarget().getTargetTriple().isRISCV();
op.HandleAllReturns = true;
prependRetWithPatchableExit(MF, TII, op);
break;

View File

@ -113,6 +113,12 @@ private:
void emitNTLHint(const MachineInstr *MI);
// XRay Support
void LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr *MI);
void LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr *MI);
void LowerPATCHABLE_TAIL_CALL(const MachineInstr *MI);
void emitSled(const MachineInstr *MI, SledKind Kind);
bool lowerToMCInst(const MachineInstr *MI, MCInst &OutMI);
};
}
@ -316,6 +322,22 @@ void RISCVAsmPrinter::emitInstruction(const MachineInstr *MI) {
return LowerPATCHPOINT(*OutStreamer, SM, *MI);
case TargetOpcode::STATEPOINT:
return LowerSTATEPOINT(*OutStreamer, SM, *MI);
case TargetOpcode::PATCHABLE_FUNCTION_ENTER: {
// patchable-function-entry is handled in lowerToMCInst
// Therefore, we break out of the switch statement if we encounter it here.
const Function &F = MI->getParent()->getParent()->getFunction();
if (F.hasFnAttribute("patchable-function-entry"))
break;
LowerPATCHABLE_FUNCTION_ENTER(MI);
return;
}
case TargetOpcode::PATCHABLE_FUNCTION_EXIT:
LowerPATCHABLE_FUNCTION_EXIT(MI);
return;
case TargetOpcode::PATCHABLE_TAIL_CALL:
LowerPATCHABLE_TAIL_CALL(MI);
return;
}
MCInst OutInst;
@ -453,11 +475,71 @@ bool RISCVAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
SetupMachineFunction(MF);
emitFunctionBody();
// Emit the XRay table
emitXRayTable();
if (EmittedOptionArch)
RTS.emitDirectiveOptionPop();
return false;
}
void RISCVAsmPrinter::LowerPATCHABLE_FUNCTION_ENTER(const MachineInstr *MI) {
emitSled(MI, SledKind::FUNCTION_ENTER);
}
void RISCVAsmPrinter::LowerPATCHABLE_FUNCTION_EXIT(const MachineInstr *MI) {
emitSled(MI, SledKind::FUNCTION_EXIT);
}
void RISCVAsmPrinter::LowerPATCHABLE_TAIL_CALL(const MachineInstr *MI) {
emitSled(MI, SledKind::TAIL_CALL);
}
void RISCVAsmPrinter::emitSled(const MachineInstr *MI, SledKind Kind) {
// We want to emit the jump instruction and the nops constituting the sled.
// The format is as follows:
// .Lxray_sled_N
// ALIGN
// J .tmpN
// 21 or 33 C.NOP instructions
// .tmpN
// The following variable holds the count of the number of NOPs to be patched
// in for XRay instrumentation during compilation.
// Note that RV64 and RV32 each has a sled of 68 and 44 bytes, respectively.
// Assuming we're using JAL to jump to .tmpN, then we only need
// (68 - 4)/2 = 32 NOPs for RV64 and (44 - 4)/2 = 20 for RV32. However, there
// is a chance that we'll use C.JAL instead, so an additional NOP is needed.
const uint8_t NoopsInSledCount =
MI->getParent()->getParent()->getSubtarget<RISCVSubtarget>().is64Bit()
? 33
: 21;
OutStreamer->emitCodeAlignment(Align(4), &getSubtargetInfo());
auto CurSled = OutContext.createTempSymbol("xray_sled_", true);
OutStreamer->emitLabel(CurSled);
auto Target = OutContext.createTempSymbol();
const MCExpr *TargetExpr = MCSymbolRefExpr::create(
Target, MCSymbolRefExpr::VariantKind::VK_None, OutContext);
// Emit "J bytes" instruction, which jumps over the nop sled to the actual
// start of function.
EmitToStreamer(
*OutStreamer,
MCInstBuilder(RISCV::JAL).addReg(RISCV::X0).addExpr(TargetExpr));
// Emit NOP instructions
for (int8_t I = 0; I < NoopsInSledCount; ++I)
EmitToStreamer(*OutStreamer, MCInstBuilder(RISCV::ADDI)
.addReg(RISCV::X0)
.addReg(RISCV::X0)
.addImm(0));
OutStreamer->emitLabel(Target);
recordSled(CurSled, *MI, Kind, 2);
}
void RISCVAsmPrinter::emitStartOfAsmFile(Module &M) {
RISCVTargetStreamer &RTS =
static_cast<RISCVTargetStreamer &>(*OutStreamer->getTargetStreamer());

View File

@ -1576,6 +1576,26 @@ unsigned RISCVInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
// No patch bytes means at most a PseudoCall is emitted
return std::max(NumBytes, 8U);
}
case TargetOpcode::PATCHABLE_FUNCTION_ENTER:
case TargetOpcode::PATCHABLE_FUNCTION_EXIT:
case TargetOpcode::PATCHABLE_TAIL_CALL: {
const MachineFunction &MF = *MI.getParent()->getParent();
const Function &F = MF.getFunction();
if (Opcode == TargetOpcode::PATCHABLE_FUNCTION_ENTER &&
F.hasFnAttribute("patchable-function-entry")) {
unsigned Num;
if (F.getFnAttribute("patchable-function-entry")
.getValueAsString()
.getAsInteger(10, Num))
return get(Opcode).getSize();
// Number of C.NOP or NOP
return (STI.hasStdExtCOrZca() ? 2 : 4) * Num;
}
// XRay uses C.JAL + 21 or 33 C.NOP for each sled in RV32 and RV64,
// respectively.
return STI.is64Bit() ? 68 : 44;
}
default:
return get(Opcode).getSize();
}

View File

@ -236,6 +236,9 @@ public:
return UserReservedRegister[i];
}
// XRay support - require D and C extensions.
bool isXRaySupported() const override { return hasStdExtD() && hasStdExtC(); }
// Vector codegen related methods.
bool hasVInstructions() const { return HasStdExtZve32x; }
bool hasVInstructionsI64() const { return HasStdExtZve64x; }

View File

@ -63,7 +63,8 @@ loadObj(StringRef Filename, object::OwningBinary<object::ObjectFile> &ObjFile,
ObjFile.getBinary()->getArch() == Triple::loongarch64 ||
ObjFile.getBinary()->getArch() == Triple::ppc64le ||
ObjFile.getBinary()->getArch() == Triple::arm ||
ObjFile.getBinary()->getArch() == Triple::aarch64))
ObjFile.getBinary()->getArch() == Triple::aarch64 ||
ObjFile.getBinary()->getArch() == Triple::riscv64))
return make_error<StringError>(
"File format not supported (only does ELF and Mach-O little endian "
"64-bit).",

View File

@ -0,0 +1,24 @@
; RUN: llc -mtriple=riscv32-unknown-linux-gnu -mattr=+d,+c < %s | FileCheck --check-prefix=CHECK %s
; RUN: llc -mtriple=riscv64-unknown-linux-gnu -mattr=+d,+c < %s | FileCheck --check-prefix=CHECK --check-prefix=CHECK-RISCV64 %s
define i32 @foo() nounwind "function-instrument"="xray-always" {
; CHECK: .p2align 2
; CHECK-LABEL: .Lxray_sled_0:
; CHECK-NEXT: j .Ltmp0
; CHECK-COUNT-21: nop
; CHECK-RISCV64-COUNT-12: nop
; CHECK-LABEL: .Ltmp0:
ret i32 0
; CHECK: .p2align 2
; CHECK-LABEL: .Lxray_sled_1:
; CHECK-NEXT: j .Ltmp1
; CHECK-COUNT-21: nop
; CHECK-RISCV64-COUNT-12: nop
; CHECK-LABEL: .Ltmp1:
; CHECK-NEXT: ret
}
; CHECK: .section xray_instr_map,"ao",@progbits,foo
; CHECK-LABEL: .Lxray_sleds_start0:
; CHECK: .Lxray_sled_0-[[TMP:.Ltmp[0-9]+]]
; CHECK: .Lxray_sled_1-[[TMP:.Ltmp[0-9]+]]
; CHECK-LABEL: .Lxray_sleds_end0: