[OPENMP 4.0] Support for 'linear' clause in 'declare simd' directive.

The linear clause declares one or more list items to be private to a SIMD lane and to have a linear relationship with respect to the iteration space of a loop.
'linear' '(' <linear-list> [ ':' <linear-step> ] ')'
When a linear-step expression is specified in a linear clause it must be
either a constant integer expression or an integer-typed parameter that is specified in a uniform clause on the directive.
The special this pointer can be used as if was one of the arguments to the function in any of the linear, aligned, or uniform clauses.

llvm-svn: 266056
This commit is contained in:
Alexey Bataev 2016-04-12 11:02:11 +00:00
parent 703c864fe3
commit ecba70f194
10 changed files with 358 additions and 95 deletions

View File

@ -20,6 +20,7 @@
#include "clang/AST/Type.h"
#include "clang/Basic/AttrKinds.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/OpenMPKinds.h"
#include "clang/Basic/Sanitizers.h"
#include "clang/Basic/SourceLocation.h"
#include "clang/Basic/VersionTuple.h"

View File

@ -2277,7 +2277,9 @@ def OMPDeclareSimdDecl : Attr {
[ "", "inbranch", "notinbranch" ],
[ "BS_Undefined", "BS_Inbranch", "BS_Notinbranch" ]>,
ExprArgument<"Simdlen">, VariadicExprArgument<"Uniforms">,
VariadicExprArgument<"Aligneds">, VariadicExprArgument<"Alignments">
VariadicExprArgument<"Aligneds">, VariadicExprArgument<"Alignments">,
VariadicExprArgument<"Linears">, VariadicUnsignedArgument<"Modifiers">,
VariadicExprArgument<"Steps">
];
let AdditionalMembers = [{
void printPrettyPragma(raw_ostream & OS, const PrintingPolicy &Policy)
@ -2300,7 +2302,7 @@ def OMPDeclareSimdDecl : Attr {
OS << ") ";
}
alignments_iterator NI = alignments_begin();
for (auto E : aligneds()) {
for (auto *E : aligneds()) {
OS << "aligned(";
E->printPretty(OS, nullptr, Policy);
if (*NI) {
@ -2310,6 +2312,23 @@ def OMPDeclareSimdDecl : Attr {
OS << ") ";
++NI;
}
steps_iterator I = steps_begin();
modifiers_iterator MI = modifiers_begin();
for (auto *E : linears()) {
OS << "linear(";
if (*MI != OMPC_LINEAR_unknown)
OS << getOpenMPSimpleClauseTypeName(OMPC_linear, *MI) << "(";
E->printPretty(OS, nullptr, Policy);
if (*MI != OMPC_LINEAR_unknown)
OS << ")";
if (*I) {
OS << ": ";
(*I)->printPretty(OS, nullptr, Policy);
}
OS << ") ";
++I;
++MI;
}
}
}];
}

View File

@ -8182,6 +8182,10 @@ def err_omp_variable_in_map_and_dsa : Error<
"%0 variable cannot be in a map clause in '#pragma omp %1' directive">;
def err_omp_param_or_this_in_clause : Error<
"expected reference to one of the parameters of function %0%select{| or 'this'}1">;
def err_omp_expected_uniform_param : Error<
"expected a reference to a parameter specified in a 'uniform' clause">;
def err_omp_expected_int_param : Error<
"expected a reference to an integer-typed parameter">;
} // end of OpenMP category
let CategoryName = "Related Result Type Issue" in {

View File

@ -8108,12 +8108,21 @@ public:
SourceLocation EndLoc,
llvm::DenseMap<ValueDecl *, Expr *> &VarsWithImplicitDSA);
/// Checks correctness of linear modifiers.
bool CheckOpenMPLinearModifier(OpenMPLinearClauseKind LinKind,
SourceLocation LinLoc);
/// Checks that the specified declaration matches requirements for the linear
/// decls.
bool CheckOpenMPLinearDecl(ValueDecl *D, SourceLocation ELoc,
OpenMPLinearClauseKind LinKind, QualType Type);
/// \brief Called on well-formed '\#pragma omp declare simd' after parsing of
/// the associated method/function.
DeclGroupPtrTy ActOnOpenMPDeclareSimdDirective(
DeclGroupPtrTy DG, OMPDeclareSimdDeclAttr::BranchStateTy BS,
Expr *Simdlen, ArrayRef<Expr *> Uniforms, ArrayRef<Expr *> Aligneds,
ArrayRef<Expr *> Alignments, SourceRange SR);
ArrayRef<Expr *> Alignments, ArrayRef<Expr *> Linears,
ArrayRef<unsigned> LinModifiers, ArrayRef<Expr *> Steps, SourceRange SR);
OMPClause *ActOnOpenMPSingleExprClause(OpenMPClauseKind Kind,
Expr *Expr,

View File

@ -391,12 +391,12 @@ public:
/// 'simdlen' '(' <expr> ')'
/// { 'uniform' '(' <argument_list> ')' }
/// { 'aligned '(' <argument_list> [ ':' <alignment> ] ')' }
static bool parseDeclareSimdClauses(Parser &P,
OMPDeclareSimdDeclAttr::BranchStateTy &BS,
ExprResult &SimdLen,
SmallVectorImpl<Expr *> &Uniforms,
SmallVectorImpl<Expr *> &Aligneds,
SmallVectorImpl<Expr *> &Alignments) {
/// { 'linear '(' <argument_list> [ ':' <step> ] ')' }
static bool parseDeclareSimdClauses(
Parser &P, OMPDeclareSimdDeclAttr::BranchStateTy &BS, ExprResult &SimdLen,
SmallVectorImpl<Expr *> &Uniforms, SmallVectorImpl<Expr *> &Aligneds,
SmallVectorImpl<Expr *> &Alignments, SmallVectorImpl<Expr *> &Linears,
SmallVectorImpl<unsigned> &LinModifiers, SmallVectorImpl<Expr *> &Steps) {
SourceRange BSRange;
const Token &Tok = P.getCurToken();
bool IsError = false;
@ -430,12 +430,14 @@ static bool parseDeclareSimdClauses(Parser &P,
IsError = true;
} else {
OpenMPClauseKind CKind = getOpenMPClauseKind(ClauseName);
if (CKind == OMPC_uniform || CKind == OMPC_aligned) {
if (CKind == OMPC_uniform || CKind == OMPC_aligned ||
CKind == OMPC_linear) {
Parser::OpenMPVarListDataTy Data;
auto *Vars = &Uniforms;
if (CKind == OMPC_aligned) {
if (CKind == OMPC_aligned)
Vars = &Aligneds;
}
else if (CKind == OMPC_linear)
Vars = &Linears;
P.ConsumeToken();
if (P.ParseOpenMPVarList(OMPD_declare_simd,
@ -443,6 +445,14 @@ static bool parseDeclareSimdClauses(Parser &P,
IsError = true;
if (CKind == OMPC_aligned)
Alignments.append(Aligneds.size() - Alignments.size(), Data.TailExpr);
else if (CKind == OMPC_linear) {
if (P.getActions().CheckOpenMPLinearModifier(Data.LinKind,
Data.DepLinMapLoc))
Data.LinKind = OMPC_LINEAR_val;
LinModifiers.append(Linears.size() - LinModifiers.size(),
Data.LinKind);
Steps.append(Linears.size() - Steps.size(), Data.TailExpr);
}
} else
// TODO: add parsing of other clauses.
break;
@ -470,8 +480,12 @@ Parser::ParseOMPDeclareSimdClauses(Parser::DeclGroupPtrTy Ptr,
SmallVector<Expr *, 4> Uniforms;
SmallVector<Expr *, 4> Aligneds;
SmallVector<Expr *, 4> Alignments;
bool IsError = parseDeclareSimdClauses(*this, BS, Simdlen, Uniforms, Aligneds,
Alignments);
SmallVector<Expr *, 4> Linears;
SmallVector<unsigned, 4> LinModifiers;
SmallVector<Expr *, 4> Steps;
bool IsError =
parseDeclareSimdClauses(*this, BS, Simdlen, Uniforms, Aligneds,
Alignments, Linears, LinModifiers, Steps);
// Need to check for extra tokens.
if (Tok.isNot(tok::annot_pragma_openmp_end)) {
Diag(Tok, diag::warn_omp_extra_tokens_at_eol)
@ -483,8 +497,8 @@ Parser::ParseOMPDeclareSimdClauses(Parser::DeclGroupPtrTy Ptr,
SourceLocation EndLoc = ConsumeToken();
if (!IsError) {
return Actions.ActOnOpenMPDeclareSimdDirective(
Ptr, BS, Simdlen.get(), Uniforms, Aligneds, Alignments,
SourceRange(Loc, EndLoc));
Ptr, BS, Simdlen.get(), Uniforms, Aligneds, Alignments, Linears,
LinModifiers, Steps, SourceRange(Loc, EndLoc));
}
return Ptr;
}

View File

@ -3193,8 +3193,11 @@ StmtResult Sema::ActOnOpenMPExecutableDirective(
Sema::DeclGroupPtrTy Sema::ActOnOpenMPDeclareSimdDirective(
DeclGroupPtrTy DG, OMPDeclareSimdDeclAttr::BranchStateTy BS, Expr *Simdlen,
ArrayRef<Expr *> Uniforms, ArrayRef<Expr *> Aligneds,
ArrayRef<Expr *> Alignments, SourceRange SR) {
ArrayRef<Expr *> Alignments, ArrayRef<Expr *> Linears,
ArrayRef<unsigned> LinModifiers, ArrayRef<Expr *> Steps, SourceRange SR) {
assert(Aligneds.size() == Alignments.size());
assert(Linears.size() == LinModifiers.size());
assert(Linears.size() == Steps.size());
if (!DG || DG.get().isNull())
return DeclGroupPtrTy();
@ -3224,16 +3227,22 @@ Sema::DeclGroupPtrTy Sema::ActOnOpenMPDeclareSimdDirective(
// The uniform clause declares one or more arguments to have an invariant
// value for all concurrent invocations of the function in the execution of a
// single SIMD loop.
llvm::DenseMap<Decl *, Expr *> UniformedArgs;
Expr *UniformedLinearThis = nullptr;
for (auto *E : Uniforms) {
E = E->IgnoreParenImpCasts();
if (auto *DRE = dyn_cast<DeclRefExpr>(E))
if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl()))
if (FD->getNumParams() > PVD->getFunctionScopeIndex() &&
FD->getParamDecl(PVD->getFunctionScopeIndex())
->getCanonicalDecl() == PVD->getCanonicalDecl())
->getCanonicalDecl() == PVD->getCanonicalDecl()) {
UniformedArgs.insert(std::make_pair(PVD->getCanonicalDecl(), E));
continue;
if (isa<CXXThisExpr>(E))
}
if (isa<CXXThisExpr>(E)) {
UniformedLinearThis = E;
continue;
}
Diag(E->getExprLoc(), diag::err_omp_param_or_this_in_clause)
<< FD->getDeclName() << (isa<CXXMethodDecl>(ADecl) ? 1 : 0);
}
@ -3303,10 +3312,126 @@ Sema::DeclGroupPtrTy Sema::ActOnOpenMPDeclareSimdDirective(
Align = VerifyPositiveIntegerConstantInClause(E, OMPC_aligned);
NewAligns.push_back(Align.get());
}
// OpenMP [2.8.2, declare simd construct, Description]
// The linear clause declares one or more list items to be private to a SIMD
// lane and to have a linear relationship with respect to the iteration space
// of a loop.
// The special this pointer can be used as if was one of the arguments to the
// function in any of the linear, aligned, or uniform clauses.
// When a linear-step expression is specified in a linear clause it must be
// either a constant integer expression or an integer-typed parameter that is
// specified in a uniform clause on the directive.
llvm::DenseMap<Decl *, Expr *> LinearArgs;
const bool IsUniformedThis = UniformedLinearThis != nullptr;
auto MI = LinModifiers.begin();
for (auto *E : Linears) {
auto LinKind = static_cast<OpenMPLinearClauseKind>(*MI);
++MI;
E = E->IgnoreParenImpCasts();
if (auto *DRE = dyn_cast<DeclRefExpr>(E))
if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
auto *CanonPVD = PVD->getCanonicalDecl();
if (FD->getNumParams() > PVD->getFunctionScopeIndex() &&
FD->getParamDecl(PVD->getFunctionScopeIndex())
->getCanonicalDecl() == CanonPVD) {
// OpenMP [2.15.3.7, linear Clause, Restrictions]
// A list-item cannot appear in more than one linear clause.
if (LinearArgs.count(CanonPVD) > 0) {
Diag(E->getExprLoc(), diag::err_omp_wrong_dsa)
<< getOpenMPClauseName(OMPC_linear)
<< getOpenMPClauseName(OMPC_linear) << E->getSourceRange();
Diag(LinearArgs[CanonPVD]->getExprLoc(),
diag::note_omp_explicit_dsa)
<< getOpenMPClauseName(OMPC_linear);
continue;
}
// Each argument can appear in at most one uniform or linear clause.
if (UniformedArgs.count(CanonPVD) > 0) {
Diag(E->getExprLoc(), diag::err_omp_wrong_dsa)
<< getOpenMPClauseName(OMPC_linear)
<< getOpenMPClauseName(OMPC_uniform) << E->getSourceRange();
Diag(UniformedArgs[CanonPVD]->getExprLoc(),
diag::note_omp_explicit_dsa)
<< getOpenMPClauseName(OMPC_uniform);
continue;
}
LinearArgs[CanonPVD] = E;
if (E->isValueDependent() || E->isTypeDependent() ||
E->isInstantiationDependent() ||
E->containsUnexpandedParameterPack())
continue;
(void)CheckOpenMPLinearDecl(CanonPVD, E->getExprLoc(), LinKind,
PVD->getOriginalType());
continue;
}
}
if (isa<CXXThisExpr>(E)) {
if (UniformedLinearThis) {
Diag(E->getExprLoc(), diag::err_omp_wrong_dsa)
<< getOpenMPClauseName(OMPC_linear)
<< getOpenMPClauseName(IsUniformedThis ? OMPC_uniform : OMPC_linear)
<< E->getSourceRange();
Diag(UniformedLinearThis->getExprLoc(), diag::note_omp_explicit_dsa)
<< getOpenMPClauseName(IsUniformedThis ? OMPC_uniform
: OMPC_linear);
continue;
}
UniformedLinearThis = E;
if (E->isValueDependent() || E->isTypeDependent() ||
E->isInstantiationDependent() || E->containsUnexpandedParameterPack())
continue;
(void)CheckOpenMPLinearDecl(/*D=*/nullptr, E->getExprLoc(), LinKind,
E->getType());
continue;
}
Diag(E->getExprLoc(), diag::err_omp_param_or_this_in_clause)
<< FD->getDeclName() << (isa<CXXMethodDecl>(ADecl) ? 1 : 0);
}
Expr *Step = nullptr;
Expr *NewStep = nullptr;
SmallVector<Expr *, 4> NewSteps;
for (auto *E : Steps) {
// Skip the same step expression, it was checked already.
if (Step == E || !E) {
NewSteps.push_back(E ? NewStep : nullptr);
continue;
}
Step = E;
if (auto *DRE = dyn_cast<DeclRefExpr>(Step))
if (auto *PVD = dyn_cast<ParmVarDecl>(DRE->getDecl())) {
auto *CanonPVD = PVD->getCanonicalDecl();
if (UniformedArgs.count(CanonPVD) == 0) {
Diag(Step->getExprLoc(), diag::err_omp_expected_uniform_param)
<< Step->getSourceRange();
} else if (E->isValueDependent() || E->isTypeDependent() ||
E->isInstantiationDependent() ||
E->containsUnexpandedParameterPack() ||
CanonPVD->getType()->hasIntegerRepresentation())
NewSteps.push_back(Step);
else {
Diag(Step->getExprLoc(), diag::err_omp_expected_int_param)
<< Step->getSourceRange();
}
continue;
}
NewStep = Step;
if (Step && !Step->isValueDependent() && !Step->isTypeDependent() &&
!Step->isInstantiationDependent() &&
!Step->containsUnexpandedParameterPack()) {
NewStep = PerformOpenMPImplicitIntegerConversion(Step->getExprLoc(), Step)
.get();
if (NewStep)
NewStep = VerifyIntegerConstantExpression(NewStep).get();
}
NewSteps.push_back(NewStep);
}
auto *NewAttr = OMPDeclareSimdDeclAttr::CreateImplicit(
Context, BS, SL.get(), const_cast<Expr **>(Uniforms.data()),
Uniforms.size(), const_cast<Expr **>(Aligneds.data()), Aligneds.size(),
const_cast<Expr **>(NewAligns.data()), NewAligns.size(), SR);
const_cast<Expr **>(NewAligns.data()), NewAligns.size(),
const_cast<Expr **>(Linears.data()), Linears.size(),
const_cast<unsigned *>(LinModifiers.data()), LinModifiers.size(),
NewSteps.data(), NewSteps.size(), SR);
ADecl->addAttr(NewAttr);
return ConvertDeclToDeclGroup(ADecl);
}
@ -8653,6 +8778,65 @@ OMPClause *Sema::ActOnOpenMPReductionClause(
buildPostUpdate(*this, ExprPostUpdates));
}
bool Sema::CheckOpenMPLinearModifier(OpenMPLinearClauseKind LinKind,
SourceLocation LinLoc) {
if ((!LangOpts.CPlusPlus && LinKind != OMPC_LINEAR_val) ||
LinKind == OMPC_LINEAR_unknown) {
Diag(LinLoc, diag::err_omp_wrong_linear_modifier) << LangOpts.CPlusPlus;
return true;
}
return false;
}
bool Sema::CheckOpenMPLinearDecl(ValueDecl *D, SourceLocation ELoc,
OpenMPLinearClauseKind LinKind,
QualType Type) {
auto *VD = dyn_cast_or_null<VarDecl>(D);
// A variable must not have an incomplete type or a reference type.
if (RequireCompleteType(ELoc, Type, diag::err_omp_linear_incomplete_type))
return true;
if ((LinKind == OMPC_LINEAR_uval || LinKind == OMPC_LINEAR_ref) &&
!Type->isReferenceType()) {
Diag(ELoc, diag::err_omp_wrong_linear_modifier_non_reference)
<< Type << getOpenMPSimpleClauseTypeName(OMPC_linear, LinKind);
return true;
}
Type = Type.getNonReferenceType();
// A list item must not be const-qualified.
if (Type.isConstant(Context)) {
Diag(ELoc, diag::err_omp_const_variable)
<< getOpenMPClauseName(OMPC_linear);
if (D) {
bool IsDecl =
!VD ||
VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
Diag(D->getLocation(),
IsDecl ? diag::note_previous_decl : diag::note_defined_here)
<< D;
}
return true;
}
// A list item must be of integral or pointer type.
Type = Type.getUnqualifiedType().getCanonicalType();
const auto *Ty = Type.getTypePtrOrNull();
if (!Ty || (!Ty->isDependentType() && !Ty->isIntegralType(Context) &&
!Ty->isPointerType())) {
Diag(ELoc, diag::err_omp_linear_expected_int_or_ptr) << Type;
if (D) {
bool IsDecl =
!VD ||
VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
Diag(D->getLocation(),
IsDecl ? diag::note_previous_decl : diag::note_defined_here)
<< D;
}
return true;
}
return false;
}
OMPClause *Sema::ActOnOpenMPLinearClause(
ArrayRef<Expr *> VarList, Expr *Step, SourceLocation StartLoc,
SourceLocation LParenLoc, OpenMPLinearClauseKind LinKind,
@ -8662,11 +8846,8 @@ OMPClause *Sema::ActOnOpenMPLinearClause(
SmallVector<Expr *, 8> Inits;
SmallVector<Decl *, 4> ExprCaptures;
SmallVector<Expr *, 4> ExprPostUpdates;
if ((!LangOpts.CPlusPlus && LinKind != OMPC_LINEAR_val) ||
LinKind == OMPC_LINEAR_unknown) {
Diag(LinLoc, diag::err_omp_wrong_linear_modifier) << LangOpts.CPlusPlus;
if (CheckOpenMPLinearModifier(LinKind, LinLoc))
LinKind = OMPC_LINEAR_val;
}
for (auto &RefExpr : VarList) {
assert(RefExpr && "NULL expr in OpenMP linear clause.");
SourceLocation ELoc;
@ -8699,45 +8880,9 @@ OMPClause *Sema::ActOnOpenMPLinearClause(
continue;
}
// A variable must not have an incomplete type or a reference type.
if (RequireCompleteType(ELoc, Type,
diag::err_omp_linear_incomplete_type))
if (CheckOpenMPLinearDecl(D, ELoc, LinKind, Type))
continue;
if ((LinKind == OMPC_LINEAR_uval || LinKind == OMPC_LINEAR_ref) &&
!Type->isReferenceType()) {
Diag(ELoc, diag::err_omp_wrong_linear_modifier_non_reference)
<< Type << getOpenMPSimpleClauseTypeName(OMPC_linear, LinKind);
continue;
}
Type = Type.getNonReferenceType();
// A list item must not be const-qualified.
if (Type.isConstant(Context)) {
Diag(ELoc, diag::err_omp_const_variable)
<< getOpenMPClauseName(OMPC_linear);
bool IsDecl =
!VD ||
VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
Diag(D->getLocation(),
IsDecl ? diag::note_previous_decl : diag::note_defined_here)
<< D;
continue;
}
// A list item must be of integral or pointer type.
Type = Type.getUnqualifiedType().getCanonicalType();
const auto *Ty = Type.getTypePtrOrNull();
if (!Ty || (!Ty->isDependentType() && !Ty->isIntegralType(Context) &&
!Ty->isPointerType())) {
Diag(ELoc, diag::err_omp_linear_expected_int_or_ptr) << Type;
bool IsDecl =
!VD ||
VD->isThisDeclarationADefinition(Context) == VarDecl::DeclarationOnly;
Diag(D->getLocation(),
IsDecl ? diag::note_previous_decl : diag::note_defined_here)
<< D;
continue;
}
Type = Type.getNonReferenceType().getUnqualifiedType().getCanonicalType();
// Build private copy of original var.
auto *Private = buildVarDecl(*this, ELoc, Type, D->getName(),

View File

@ -239,15 +239,13 @@ instantiateDependentModeAttr(Sema &S,
static void instantiateOMPDeclareSimdDeclAttr(
Sema &S, const MultiLevelTemplateArgumentList &TemplateArgs,
const OMPDeclareSimdDeclAttr &Attr, Decl *New) {
ExprResult Simdlen;
if (auto *E = Attr.getSimdlen())
Simdlen = S.SubstExpr(E, TemplateArgs);
// Allow 'this' in clauses with varlists.
if (auto *FTD = dyn_cast<FunctionTemplateDecl>(New))
New = FTD->getTemplatedDecl();
auto *FD = cast<FunctionDecl>(New);
auto *ThisContext = dyn_cast_or_null<CXXRecordDecl>(FD->getDeclContext());
SmallVector<Expr *, 4> Uniforms, Aligneds, Alignments;
SmallVector<Expr *, 4> Uniforms, Aligneds, Alignments, Linears, Steps;
SmallVector<unsigned, 4> LinModifiers;
auto &&Subst = [&](Expr *E) -> ExprResult {
if (auto *DRE = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts()))
@ -264,6 +262,10 @@ static void instantiateOMPDeclareSimdDeclAttr(
return S.SubstExpr(E, TemplateArgs);
};
ExprResult Simdlen;
if (auto *E = Attr.getSimdlen())
Simdlen = Subst(E);
if (Attr.uniforms_size() > 0) {
for(auto *E : Attr.uniforms()) {
ExprResult Inst = Subst(E);
@ -285,9 +287,24 @@ static void instantiateOMPDeclareSimdDeclAttr(
Alignments.push_back(Inst.get());
++AI;
}
auto SI = Attr.steps_begin();
for (auto *E : Attr.linears()) {
ExprResult Inst = Subst(E);
if (Inst.isInvalid())
continue;
Linears.push_back(Inst.get());
Inst = ExprEmpty();
if (*SI)
Inst = S.SubstExpr(*SI, TemplateArgs);
Steps.push_back(Inst.get());
++SI;
}
LinModifiers.append(Attr.modifiers_begin(), Attr.modifiers_end());
(void)S.ActOnOpenMPDeclareSimdDirective(
S.ConvertDeclToDeclGroup(New), Attr.getBranchState(), Simdlen.get(),
Uniforms, Aligneds, Alignments, Attr.getRange());
Uniforms, Aligneds, Alignments, Linears, LinModifiers, Steps,
Attr.getRange());
}
void Sema::InstantiateAttrs(const MultiLevelTemplateArgumentList &TemplateArgs,

View File

@ -7,15 +7,15 @@
#define HEADER
#pragma omp declare simd aligned(b : 64)
#pragma omp declare simd simdlen(32) aligned(d, s1)
#pragma omp declare simd inbranch, uniform(d)
#pragma omp declare simd notinbranch simdlen(2), uniform(s1, s2)
void add_1(float *d, float *s1, float *s2, double b[]) __attribute__((cold));
#pragma omp declare simd simdlen(32) aligned(d, b)
#pragma omp declare simd inbranch, uniform(d) linear(val(s1, s2) : 32)
#pragma omp declare simd notinbranch simdlen(2), uniform(s1, s2) linear(d: s1)
void add_1(float *d, int s1, float *s2, double b[]) __attribute__((cold));
// CHECK: #pragma omp declare simd notinbranch simdlen(2) uniform(s1, s2)
// CHECK-NEXT: #pragma omp declare simd inbranch uniform(d)
// CHECK-NEXT: #pragma omp declare simd simdlen(32) aligned(d) aligned(s1)
// CHECK: #pragma omp declare simd notinbranch simdlen(2) uniform(s1, s2) linear(val(d): s1)
// CHECK-NEXT: #pragma omp declare simd inbranch uniform(d) linear(val(s1): 32) linear(val(s2): 32)
// CHECK-NEXT: #pragma omp declare simd simdlen(32) aligned(d) aligned(b)
// CHECK-NEXT: #pragma omp declare simd aligned(b: 64)
// CHECK-NEXT: void add_1(float *d, float *s1, float *s2, double b[]) __attribute__((cold))
// CHECK-NEXT: void add_1(float *d, int s1, float *s2, double b[]) __attribute__((cold))
#endif

View File

@ -6,14 +6,14 @@
#ifndef HEADER
#define HEADER
#pragma omp declare simd
#pragma omp declare simd linear(d: 8)
#pragma omp declare simd inbranch simdlen(32)
#pragma omp declare simd notinbranch
void add_1(float *d) __attribute__((cold));
// CHECK: #pragma omp declare simd notinbranch
// CHECK-NEXT: #pragma omp declare simd inbranch simdlen(32)
// CHECK-NEXT: #pragma omp declare simd
// CHECK-NEXT: #pragma omp declare simd linear(val(d): 8)
// CHECK-NEXT: void add_1(float *d) __attribute__((cold));
//
@ -48,28 +48,28 @@ void h(int *hp, int *hp2, int *hq, int *lin)
}
class VV {
// CHECK: #pragma omp declare simd uniform(this, a)
// CHECK: #pragma omp declare simd uniform(this, a) linear(val(b): a)
// CHECK-NEXT: int add(int a, int b) __attribute__((cold)) {
// CHECK-NEXT: return a + b;
// CHECK-NEXT: }
#pragma omp declare simd uniform(this, a)
#pragma omp declare simd uniform(this, a) linear(val(b): a)
int add(int a, int b) __attribute__((cold)) { return a + b; }
// CHECK: #pragma omp declare simd aligned(b: 4) aligned(a)
// CHECK: #pragma omp declare simd aligned(b: 4) aligned(a) linear(ref(b): 4) linear(val(this)) linear(val(a))
// CHECK-NEXT: float taddpf(float *a, float *&b) {
// CHECK-NEXT: return *a + *b;
// CHECK-NEXT: }
#pragma omp declare simd aligned (b: 4) aligned(a)
#pragma omp declare simd aligned (b: 4) aligned(a) linear(ref(b): 4) linear(this, a)
float taddpf(float *a, float *&b) { return *a + *b; }
// CHECK: #pragma omp declare simd aligned(b: 8)
// CHECK-NEXT: #pragma omp declare simd
// CHECK-NEXT: int tadd(int (&b)[]) {
// CHECK-NEXT: #pragma omp declare simd linear(uval(c): 8)
// CHECK-NEXT: int tadd(int (&b)[], int &c) {
// CHECK-NEXT: return this->x[b[0]] + b[0];
// CHECK-NEXT: }
#pragma omp declare simd
#pragma omp declare simd linear(uval(c): 8)
#pragma omp declare simd aligned(b : 8)
int tadd(int (&b)[]) { return x[b[0]] + b[0]; }
int tadd(int (&b)[], int &c) { return x[b[0]] + b[0]; }
private:
int x[10];
@ -78,7 +78,7 @@ private:
// CHECK: template <int X = 16, typename T = float> class TVV {
// CHECK: #pragma omp declare simd
// CHECK-NEXT: int tadd(int a, int b);
// CHECK: #pragma omp declare simd aligned(a: 16 * 2) aligned(b)
// CHECK: #pragma omp declare simd aligned(a: 16 * 2) aligned(b) linear(ref(b): 16)
// CHECK-NEXT: float taddpf(float *a, float *&b) {
// CHECK-NEXT: return *a + *b;
// CHECK-NEXT: }
@ -100,7 +100,7 @@ public:
// CHECK-NEXT: return a + b;
// CHECK-NEXT: }
#pragma omp declare simd aligned(a : X * 2) aligned(b)
#pragma omp declare simd aligned(a : X * 2) aligned(b) linear(ref(b): X)
float taddpf(float *a, T *&b) { return *a + *b; }
// CHECK: #pragma omp declare simd aligned(a: X * 2) aligned(b)
@ -123,13 +123,13 @@ private:
};
// CHECK: };
// CHECK: #pragma omp declare simd simdlen(64) aligned(b: 64 * 2)
// CHECK: template <int N = 64> void foo(int (&b)[64])
// CHECK: #pragma omp declare simd simdlen(N) aligned(b: N * 2)
// CHECK: template <int N> void foo(int (&b)[N])
#pragma omp declare simd simdlen(N) aligned(b : N * 2)
// CHECK: #pragma omp declare simd simdlen(64) aligned(b: 64 * 2) linear(uval(c): 64)
// CHECK: template <int N = 64> void foo(int (&b)[64], float *&c)
// CHECK: #pragma omp declare simd simdlen(N) aligned(b: N * 2) linear(uval(c): N)
// CHECK: template <int N> void foo(int (&b)[N], float *&c)
#pragma omp declare simd simdlen(N) aligned(b : N * 2) linear(uval(c): N)
template <int N>
void foo(int (&b)[N]);
void foo(int (&b)[N], float *&c);
// CHECK: TVV<16, float> t16;
TVV<16, float> t16;
@ -140,7 +140,7 @@ void f() {
float r = t16.taddpf(&a, p);
int res = t16.tadd(b);
int c[64];
foo(c);
foo(c, p);
}
#endif

View File

@ -144,6 +144,57 @@ void test() {
#pragma omp declare simd aligned(b: -1)
// expected-warning@+1 {{aligned clause will be ignored because the requested alignment is not a power of 2}}
#pragma omp declare simd aligned(b: 3)
// expected-error@+1 {{expected '(' after 'linear'}}
#pragma omp declare simd linear
// expected-note@+3 {{to match this '('}}
// expected-error@+2 {{expected ')'}}
// expected-error@+1 {{expected expression}}
#pragma omp declare simd linear(
// expected-error@+1 {{expected expression}}
#pragma omp declare simd linear()
// expected-note@+3 {{to match this '('}}
// expected-error@+2 {{expected ')'}}
// expected-error@+1 {{expected expression}}
#pragma omp declare simd linear(a:
// expected-error@+1 {{expected expression}}
#pragma omp declare simd linear(a:)
// expected-warning@+2 {{extra tokens at the end of '#pragma omp declare simd' are ignored}}
// expected-error@+1 {{expected '(' after 'linear'}}
#pragma omp declare simd linear :)
// expected-note@+3 {{to match this '('}}
// expected-error@+2 {{expected ')'}}
// expected-error@+1 {{invalid use of 'this' outside of a non-static member function}}
#pragma omp declare simd linear(this
// expected-note@+3 {{to match this '('}}
// expected-error@+2 {{expected ')'}}
// expected-error@+1 {{invalid use of 'this' outside of a non-static member function}}
#pragma omp declare simd linear(this,b
// expected-error@+1 {{expected expression}}
#pragma omp declare simd linear(, b)
// expected-note@+4 {{defined as linear}}
// expected-error@+3 {{linear variable cannot be linear}}
// expected-error@+2 {{expected expression}}
// expected-error@+1 {{expected ',' or ')' in 'linear' clause}}
#pragma omp declare simd linear(b) linear(b ; 64)
// expected-note@+2 {{defined as linear}}
// expected-error@+1 {{linear variable cannot be linear}}
#pragma omp declare simd linear(b) linear(b: 64)
#pragma omp declare simd linear(b: -1)
#pragma omp declare simd linear(b: 3)
// expected-error@+1 {{expected a reference to a parameter specified in a 'uniform' clause}}
#pragma omp declare simd linear(b: a)
// expected-note@+2 {{defined as uniform}}
// expected-error@+1 {{linear variable cannot be uniform}}
#pragma omp declare simd uniform(a), linear(a: 4)
// expected-note@+2 {{defined as uniform}}
// expected-error@+1 {{linear variable cannot be uniform}}
#pragma omp declare simd linear(a: 4) uniform(a)
// expected-error@+1 {{variable of non-reference type 'int *' can be used only with 'val' modifier, but used with 'uval'}}
#pragma omp declare simd linear(uval(b))
// expected-error@+1 {{variable of non-reference type 'int *' can be used only with 'val' modifier, but used with 'ref'}}
#pragma omp declare simd linear(ref(b))
// expected-error@+1 {{expected one of 'ref', val' or 'uval' modifiers}}
#pragma omp declare simd linear(uref(b))
void bar(int a, int *b);
template <class T>
@ -152,11 +203,14 @@ struct St {
#pragma init_seg(compiler)
#pragma omp declare simd
#pragma init_seg(compiler)
// expected-note@+7 {{defined as uniform}}
// expected-error@+6 {{expected a reference to a parameter specified in a 'uniform' clause}}
// expected-error@+5 {{linear variable cannot be uniform}}
// expected-note@+4 {{defined as aligned}}
// expected-error@+3 {{argument to 'aligned' clause must be a strictly positive integer value}}
// expected-error@+2 {{'this' cannot appear in more than one aligned clause}}
// expected-error@+1 {{use of undeclared identifier 't'}}
#pragma omp declare simd uniform(this, t) aligned(this: 4) aligned(this: -4)
#pragma omp declare simd uniform(this, t) aligned(this: 4) aligned(this: -4) linear(this: hp)
void h(T *hp) {
// expected-error@+1 {{unexpected OpenMP directive '#pragma omp declare simd'}}
#pragma omp declare simd