`DTLS_on_libc_memalign` is called from primary
allocator, so `__sanitizer_get_allocated_begin`
should also be aware of allocation,
and correctly handled by `GetDTLSRange`.
Since glibc 2.34, dlsym does
1. malloc 1
2. malloc 2
3. free pointer from malloc 1
4. free pointer from malloc 2
These sequence was not handled by trivial dlsym hack.
This fixes https://bugs.llvm.org/show_bug.cgi?id=52278
Reviewed By: eugenis, morehouse
Differential Revision: https://reviews.llvm.org/D112588
dfsan does not use sanitizer allocator as others. In practice,
we let it use glibc's allocator since tcmalloc needs more work
to be working with dfsan well. With glibc, we observe large
memory leakage. This could relate to two things:
1) glibc allocator has limitation: for example, tcmalloc can reduce memory footprint 2x easily
2) glibc may call unmmap directly as an internal system call by using system call number. so DFSan has no way to release shadow spaces for those unmmap.
Using sanitizer allocator addresses the above issues
1) its memory management is close to tcmalloc
2) we can register callback when sanitizer allocator calls unmmap, so dfsan can release shadow spaces correctly.
Our experiment with internal server-based application proved that with the change, in a-few-day run, memory usage leakage is close to what tcmalloc does w/o dfsan.
This change mainly follows MSan's code.
1) define allocator callbacks at dfsan_allocator.h|cpp
2) mark allocator APIs to be discard
3) intercept allocator APIs
4) make dfsan_set_label consistent with MSan's SetShadow when setting 0 labels, define dfsan_release_meta_memory when unmap is called
5) add flags about whether zeroing memory after malloc/free. dfsan works at byte-level, so bit-level oparations can cause reading undefined shadow. See D96842. zeroing memory after malloc helps this. About zeroing after free, reading after free is definitely UB, but if user code does so, it is hard to debug an overtainting caused by this w/o running MSan. So we add the flag to help debugging.
This change will be split to small changes for review. Before that, a question is
"this code shares a lot of with MSan, for example, dfsan_allocator.* and dfsan_new_delete.*.
Does it make sense to unify the code at sanitizer_common? will that introduce some
maintenance issue?"
Reviewed By: morehouse
Differential Revision: https://reviews.llvm.org/D101204
This is a follow up patch of https://reviews.llvm.org/D88755.
When set 0 label for an address range, we can release pages within the
corresponding shadow address range to OS, and set only addresses outside
the pages to be 0.
Reviewed-by: morehouse, eugenis
Differential Revision: https://reviews.llvm.org/D89199
After D88686, munmap uses MADV_DONTNEED to ensure zero-out before the
next access. Because the entire shadow space is created by MAP_PRIVATE
and MAP_ANONYMOUS, the first access is also on zero-filled values.
So it is fine to not zero-out data, but use madvise(MADV_DONTNEED) at
mmap. This reduces runtime
overhead.
Reviewed-by: morehouse
Differential Revision: https://reviews.llvm.org/D88755
When an application does a lot of pairs of mmap and munmap, if we did
not release shadoe memory used by mmap addresses, this would increase
memory usage.
Reviewed-by: morehouse
Differential Revision: https://reviews.llvm.org/D88686
InitializeInterceptors() calls dlsym(), which calls calloc(). Depending
on the allocator implementation, calloc() may invoke mmap(), which
results in a segfault since REAL(mmap) is still being resolved.
We fix this by doing a direct syscall if interceptors haven't been fully
resolved yet.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D86168