The production buildbot master apparently has not yet been restarted
since https://github.com/llvm/llvm-zorg/pull/393 landed.
This reverts commit 96d1baedefc3581b53bc4389bb171760bec6f191.
Remove the FLANG_INCLUDE_RUNTIME option which was replaced by
LLVM_ENABLE_RUNTIMES=flang-rt.
The FLANG_INCLUDE_RUNTIME option was added in #122336 which disables the
non-runtimes build instructions for the Flang runtime so they do not
conflict with the LLVM_ENABLE_RUNTIMES=flang-rt option added in #110217.
In order to not maintain multiple build instructions for the same thing,
this PR completely removes the old build instructions (effectively
forcing FLANG_INCLUDE_RUNTIME=OFF).
As per discussion in
https://discourse.llvm.org/t/buildbot-changes-with-llvm-enable-runtimes-flang-rt/83571/2
we now implicitly add LLVM_ENABLE_RUNTIMES=flang-rt whenever Flang is
compiled in a bootstrapping (non-standalone) build. Because it is
possible to build Flang-RT separately, this behavior can be disabled
using `-DFLANG_ENABLE_FLANG_RT=OFF`. Also see the discussion an
implicitly adding runtimes/projects in #123964.
Mostly mechanical changes in preparation of extracting the Flang-RT
"subproject" in #110217. This PR intends to only move pre-existing files
to the new folder structure, with no behavioral change. Common files
(headers, testing, cmake) shared by Flang-RT and Flang remain in
`flang/`.
Some cosmetic changes and files paths were necessary:
* Relative paths to the new path for the source files and
`add_subdirectory`.
* Add the new location's include directory to `include_directories`
* The unittest/Evaluate directory has unitests for flang-rt and Flang. A
new `CMakeLists.txt` was introduced for the flang-rt tests.
* Change the `#include` paths relative to the include directive
* clang-format on the `#include` directives
* Since the paths are part if the copyright header and include guards, a
script was used to canonicalize those
* `test/Runtime` and runtime tests in `test/Driver` are moved, but the
lit.cfg.py mechanism to execute the will only be added in #110217.
Following the conclusion of the
[RFC](https://discourse.llvm.org/t/rfc-names-for-flang-rt-libraries/84321),
rename Flang's runtime libraries as follows:
* libFortranRuntime.(a|so) to libflang_rt.runtime.(a|so)
* libFortranFloat128Math.a to libflang_rt.quadmath.a
* libCufRuntime_cuda_${CUDAToolkit_VERSION_MAJOR}.(a|so) to
libflang_rt.cuda_${CUDAToolkit_VERSION_MAJOR}.(a|so)
This follows the same naming scheme as Compiler-RT libraries
(`libclang_rt.${component}.(a|so)`). It provides some consistency
between Flang's runtime libraries for current and potential future
library components.
Introduce the CMake switch FLANG_INCLUDE_RUNTIME. When set to off, do
not add build instructions for the runtime.
This is required for Flang-RT (#110217) and the current runtime CMake
code to co-exist. When using `LLVM_ENABLE_RUNTIME=flang-rt`, the in-tree
build instructions are in conflict and must be disabled.
The non-GTest library will be shared by unittests of Flang and Flang-RT.
Promote it as a regular library for use by both projects.
In the long term, we may want to convert these to regular GTest checks
to avoid having multiple testing frameworks.
Move non-common files from FortranCommon to FortranSupport (analogous to
LLVMSupport) such that
* declarations and definitions that are only used by the Flang compiler,
but not by the runtime, are moved to FortranSupport
* declarations and definitions that are used by both ("common"), the
compiler and the runtime, remain in FortranCommon
* generic STL-like/ADT/utility classes and algorithms remain in
FortranCommon
This allows a for cleaner separation between compiler and runtime
components, which are compiled differently. For instance, runtime
sources must not use STL's `<optional>` which causes problems with CUDA
support. Instead, the surrogate header `flang/Common/optional.h` must be
used. This PR fixes this for `fast-int-sel.h`.
Declarations in include/Runtime are also used by both, but are
header-only. `ISO_Fortran_binding_wrapper.h`, a header used by compiler
and runtime, is also moved into FortranCommon.
Implement the UNSIGNED extension type and operations under control of a
language feature flag (-funsigned).
This is nearly identical to the UNSIGNED feature that has been available
in Sun Fortran for years, and now implemented in GNU Fortran for
gfortran 15, and proposed for ISO standardization in J3/24-116.txt.
See the new documentation for details; but in short, this is C's
unsigned type, with guaranteed modular arithmetic for +, -, and *, and
the related transformational intrinsic functions SUM & al.
Fortran.h and target.h are defining symbols where some are used by both, the Fortran runtime (Flang-RT) and Fortran compiler (Flang), and others are used by Flang only. With the upcoming refactoring of the Fortran runtime into its own subproject (#110217), move the declarations that are used by both into new headers to minimize the amount of code that will need to be shared by Flang-RT and Flang.
Details:
* `Fortran.h`: Flang-RT only uses some enum definitions out of this file, but not `AsFortran` which is defined in `Fortran.cpp`. Moving the enums into `Fortran-consts.h` allows keeping `Fortran.cpp` within Flang.
* `target.h`: Contains some floating-point definitions that is used by the non-GTest unittests in `fp-testing.h`. Flang-RT also uses some non-GTest as well. Moving those definitions avoids the dependence on the entire FortranEvaluate library.
As specified in the docs,
1) raw_string_ostream is always unbuffered and
2) the underlying buffer may be used directly
( 65b13610a5226b84889b923bae884ba395ad084d for further reference )
Avoid unneeded calls to raw_string_ostream::str(), to avoid excess indirection.
Update the folder titles for targets in the monorepository that have not
seen taken care of for some time. These are the folders that targets are
organized in Visual Studio and XCode (`set_property(TARGET <target>
PROPERTY FOLDER "<title>")`) when using the respective CMake's IDE
generator.
* Ensure that every target is in a folder
* Use a folder hierarchy with each LLVM subproject as a top-level folder
* Use consistent folder names between subprojects
* When using target-creating functions from AddLLVM.cmake, automatically
deduce the folder. This reduces the number of
`set_property`/`set_target_property`, but are still necessary when
`add_custom_target`, `add_executable`, `add_library`, etc. are used. A
LLVM_SUBPROJECT_TITLE definition is used for that in each subproject's
root CMakeLists.txt.
Compiler was rewriting SIZE(PACK(x, MASK)) to COUNT(MASK). It was
wrapping the COUNT call without a KIND argument (leading to INTEGER(4)
result in the characteristics) in an Expr<ExtentType> (implying
INTEGER(8) result), this lead to inconsistencies that later hit verifier
errors in lowering.
Set the KIND argument to the KIND of ExtentType to ensure the built
expression is consistent.
This requires giving access to some safe place where the "kind" name can
be saved and turned into a CharBlock (count has a DIM argument that
require using the KIND keyword here). For the FoldingContext that belong
to SemanticsContext, this is the same string set as the one used by
SemanticsContext for similar purposes.
Before emitting a warning message, code should check that the usage in
question should be diagnosed by calling ShouldWarn(). A fair number of
sites in the code do not, and can emit portability warnings
unconditionally, which can confuse a user that hasn't asked for them
(-pedantic) and isn't terribly concerned about portability *to* other
compilers.
Add calls to ShouldWarn() or IsEnabled() around messages that need them,
and add -pedantic to tests that now require it to test their portability
messages, and add more expected message lines to those tests when
-pedantic causes other diagnostics to fire.
A recent PR addressed zero and one element edge cases but did not cover
another case where the descriptors of arrays with more than two elements
may have byte strides that are not perfect multiples, like when creating
a descriptor for A(:, 1:1:2).
In general, the byte stride in a dimension is only meaningful if that
dimension has more than one element. Update IsContiguous and
CFI_is_contiguous to reflect that.
The byte strides in zero and one element array descriptor may not be
perfect multiple of the element size and previous and extents.
IsContiguous and its CFI equivalent should still return true for such
arrays (Fortran 2018 standards says in 8.5.7 that an array is not
contiguous if it has two or more elements and ....).
This reverts commit 6403287eff71a3d6f6c862346d6ed3f0f000eb70.
This is failing on all but 1 of Linaro's flang builders.
CMake Error at /home/tcwg-buildbot/worker/clang-aarch64-full-2stage/llvm/flang-rt/unittests/CMakeLists.txt:37 (message):
Target llvm_gtest not found.
See discourse thread https://discourse.llvm.org/t/rfc-support-cmake-option-to-control-link-type-built-for-flang-runtime-libraries/71602/18 for full details.
Flang-rt is the new library target for the flang runtime libraries. It builds the Flang-rt library (which contains the sources of FortranRuntime and FortranDecimal) and the Fortran_main library. See documentation in this patch for detailed description (flang-rt/docs/GettingStarted.md).
This patch aims to:
- integrate Flang's runtime into existing llvm infrasturcture so that Flang's runtime can be built similarly to other runtimes via the runtimes target or via the llvm target as an enabled runtime
- decouple the FortranDecimal library sources that were used by both compiler and runtime so that different build configurations can be applied for compiler vs runtime
- add support for running flang-rt testsuites, which were created by migrating relevant tests from `flang/test` and `flang/unittest` to `flang-rt/test` and `flang-rt/unittest`, using a new `check-flang-rt` target.
- provide documentation on how to build and use the new FlangRT runtime
Reviewed By: DanielCChen
Differential Revision: https://reviews.llvm.org/D154869
I decided to clean up the CMake files as well.
Only FotranEvaluate directly needs quadmath, so we only need
to link these two together.
Differential Revision: https://reviews.llvm.org/D156808
This update allows constant folding for many 128 bit floating point intrinsics
through the library quadmath, which is only available on some platforms.
Differential Revision: https://reviews.llvm.org/D156435
Current implementations of x87 80-bit extended precision floating
point interpret 7FFF8000000000000000 as +Inf, not a Nan. The explicit
MSB in the significand must be set for an infinity.
Differential Revision: https://reviews.llvm.org/D151739
Create a TargetCharacteristics class to centralize the few items of
target specific information that are relevant to semantics. Use the
new class for all target queries, including derived type component layout
modeling.
Future work will initialize this class with target information
provided or forwarded by the drivers, and use it to fold layout-dependent
intrinsic functions like TRANSFER().
Differential Revision: https://reviews.llvm.org/D129018
Updates: Attempts to work around build issues on Windows.
Replace the latter half of the SQRT() folding algorithm with code that
calculates an exact root with extra rounding bits, and then lets the
usual normalization and rounding code do the right thing. Extend
tests to catch regressions.
Differential Revision: https://reviews.llvm.org/D128395
The intrinsics DREAL, DIMAG, and DCONJG are from Fortran 77 extensions.
For DREAL, the type of argument is extended to any complex. For DIMAG
and DCONJG, the type of argument for them should be complex(8). For DIMAG,
the result type should be real(8). For DCONJG, the result type should be
complex(8). Fix the intrinsic interface for them and add test cases for
the semantic checks and the lowering.
Reviewed By: Jean Perier
Differential Revision: https://reviews.llvm.org/D123459
The float number is represented as (-1)^s * 1.f * 2^(-127) for 32-bit,
where s is the signed flag, f is the mantissa. When the exponent bits
are all zeros, the float number is represented as (-1)^s * 0.f *2^(-126)
for 32-bit, in which case, the intPart is '0'.
Reviewed By: Jean Perier
https://reviews.llvm.org/D123673
Some intrinsic functions weren't findable because the table
wasn't strictly in order of names.
And complete a missing generalization of the extension DCONJG
to accept any kind of complex argument, like DREAL and DIMAG
were.
Differential Revision: https://reviews.llvm.org/D110002
Move the closure of the subset of flang/runtime/*.h header files that
are referenced by source files outside flang/runtime (apart from unit tests)
into a new directory (flang/include/flang/Runtime) so that relative
include paths into ../runtime need not be used.
flang/runtime/pgmath.h.inc is moved to flang/include/flang/Evaluate;
it's not used by the runtime.
Differential Revision: https://reviews.llvm.org/D109107
Flang front end function DumpHexadecimal generates a string
representation of a REAL value. When the value is a NaN, the string
contains a blank, as in "NaN 0x7fc00000". This function is used by
lowering to generate a string that is then passed to llvm Support
function convertFromStringSpecials, which does not expect a blank
in the string. Remove the blank to allow correct recognition of a
NaN by this llvm function.
Note that function DumpHexadecimal is not exercised by the front end
itself. This functionality is only exercised by code that is not yet
present in llvm.
argument instead of a result result object.
Change the reshape flang unit test to use the new interface. Also, add an
order argument to exercise the order subscript code in the rehsape runtime
routine.
Differential Revision: https://reviews.llvm.org/D104586
When chasing down another unrelated bug, I noticed that the
implementations of various character intrinsic functions assume
that the lower bounds of (some of) their arguments were 1.
This isn't necessarily the case, so I've cleaned them up, tweaked
the unit tests to exercise the fix, and regularized the allocation
pattern used for results to use SetBounds() before Allocate() rather
than the old original Descriptor::Allocate() wrapper around
CFI_allocate().
Since there were few other remaining uses of the old original
Descriptor::Allocate() wrapper, I also converted them to the
new one and deleted the old one.
Differential Revision: https://reviews.llvm.org/D104325
Define APIs, naively implement, and add basic sanity unit tests for
the transformational intrinsic functions CSHIFT, EOSHIFT, PACK,
SPREAD, TRANSPOSE, and UNPACK. These are the remaining transformational
intrinsic functions that rearrange data without regard to type
(except for default boundary values in EOSHIFT); RESHAPE was already
in place as a stress test for the runtime's descriptor handling
facilities.
Code is in place to create copies of allocatable/automatic
components when transforming arrays of derived type, but it won't
do anything until we have derived type information being passed to the
runtime from the frontend.
Differential Revision: https://reviews.llvm.org/D102857
The current code computes the minimum element length based on the `type`
used to create the descriptor and uses that as the element length
whenever it is greater than 0. This means that the `elem_len` parameter
is essentially ignored for any type where we can compute a minimum
element length (which includes `CFI_type_char[16|32]_t`), and we may
therefore end up with descriptors with a lower element length than
expected.
This patch fixes the issue by explicitly doing what the standard says,
i.e. it uses the given `elem_len` for character types, `CFI_type_struct`
and `CFI_type_other`, and ignores it (falls back to the minimum element
length) for everything else.
Differential Revision: https://reviews.llvm.org/D101659
It looks like CFI_type_struct was once used as the last valid CFI_type
value, but in the meantime CFI_type_char16_t and CFI_type_char32_t were
added, making that assumption no longer true. Luckily, in the meantime
we also got a define for CFI_TYPE_LAST, which we can now use to allow
CFI_establish and CFI_allocate to work with descriptors of
CFI_type_char16_t, CFI_type_char32_t and any other future types.
Differential Revision: https://reviews.llvm.org/D101658
Add runtime APIs, implementations, and tests for ALL, ANY, COUNT,
MAXLOC, MAXVAL, MINLOC, MINVAL, PRODUCT, and SUM reduction
transformantional intrinsic functions for all relevant argument
and result types and kinds, both without DIM= arguments
(total reductions) and with (partial reductions).
Complex-valued reductions have their APIs in C so that
C's _Complex types can be used for their results.
Some infrastructure work was also necessary or noticed:
* Usage of "long double" in the compiler was cleaned up a
bit, and host dependences on x86 / MSVC have been isolated
in a new Common/long-double header.
* Character comparison has been exposed via an extern template
so that reductions could use it.
* Mappings from Fortran type category/kind to host C++ types
and vice versa have been isolated into runtime/cpp-type.h and
then used throughout the runtime as appropriate.
* The portable 128-bit integer package in Common/uint128.h
was generalized to support signed comparisons.
* Bugs in descriptor indexing code were fixed.
Differential Revision: https://reviews.llvm.org/D99666
In parser::AllCookedSources, implement a map from CharBlocks to
the CookedSource instances that they cover. This permits a fast
Find() operation based on std::map::equal_range to map a CharBlock
to its enclosing CookedSource instance.
Add a creation order number to each CookedSource. This allows
AllCookedSources to provide a Precedes(x,y) predicate that is a
true source stream ordering between two CharBlocks -- x is less
than y if it is in an earlier CookedSource, or in the same
CookedSource at an earlier position.
Add a reference to the singleton SemanticsContext to each Scope.
All of this allows operator< to be implemented on Symbols by
means of a true source ordering. From a Symbol, we get to
its Scope, then to the SemanticsContext, and then use its
AllCookedSources reference to call Precedes().
Differential Revision: https://reviews.llvm.org/D98743
As usual, it's difficult to handle all different configuration in the first row,
but this one has been extensively tested
Differential Revision: https://reviews.llvm.org/D89452
- Rework the host runtime table so that it is constexpr to avoid
having to construct it and to store/propagate it.
- Make the interface simpler (remove many templates and a file)
- Enable 16bits float folding using 32bits float host runtime
- Move StaticMultimapView into its own header to use it for host
folding
Reviewed By: klausler, PeteSteinfeld
Differential Revision: https://reviews.llvm.org/D88981
Harmonize usage of LLVM components througout Flang.
Explicit LLVM Libs where used across several CMakeFIles, which led to
incompatibilities with LLVM shlibs.
Fortunately, the LLVM component system can be relied on to harmoniously handle
both cases.
Differential Revision: https://reviews.llvm.org/D87893
The std::string holding the content of a CookedSource no longer
needs to be exposed in its API after the recent work that allows
the parsing context to hold multiple instances of a CookedSource.
So clean the API. These changes were extracted from some work in
progress that was made easier by the API changes.
Differential Revision: https://reviews.llvm.org/D87635
These are owned by an instance of a new class AllCookedSources.
This removes the need for a Scope to own a string containing
a module's cooked source stream, and will enable errors to be
emitted when parsing module files in the future.
Differential Revision: https://reviews.llvm.org/D86891
The intrinsic lowering facility is based on the generic intrinsic names to avoid
duplicating implementations. Specific intrinsics call are re-written to call to
the generic versions by the front-end but this cannot be done when specific intrinsics
are passed as arguments (the rewrite would give illegal/ambiguous unparsed Fortran).
Solve the issue by making the specific to generic name mapping accessible to lowering
and can be later used to generate the unrestricted intrinsic functions.
Reviewed By: schweitz
Differential Revision: https://reviews.llvm.org/D84842
Summary:
As a corrollary, these tests are now run as part of the check-flang
target.
Reviewers: sscalpone
Subscribers: mgorny, delcypher, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D83946
Fix fronted shared library builds by eliminating dependences of
the parser on other component libraries, moving some code around that
wasn't in the right library, and making some dependences
explicit in the CMakeLists.txt files. The lowering library
does not yet build as a shared library due to some undefined
names.
Reviewed By: tskeith
Differential Revision: https://reviews.llvm.org/D83515
I added 'num_images()' to the list of functions that are evaluated as intrinsic. I also added a test file in flang/test/Semantics to test calls to 'num_images()'. There was a call to 'num_images()' in flang/test/Semantics/call10.f90 that expected an error, now it no longer produces an error. So I edited that file accordingly. I also edited the intrinsics unit test to add further testing of 'num_images()'.
Differential Revision: https://reviews.llvm.org/D83142