This change fixes the following warnings:
llvm/clang/unittests/StaticAnalyzer/RangeSetTest.cpp:727:55: warning: ISO C++11 requires at least one argument for the "..." in a variadic macro
727 | TYPED_TEST_SUITE(RangeSetCastToNoopTest, NoopCastTypes);
| ^
llvm/clang/unittests/StaticAnalyzer/RangeSetTest.cpp:728:65: warning: ISO C++11 requires at least one argument for the "..." in a variadic macro
728 | TYPED_TEST_SUITE(RangeSetCastToPromotionTest, PromotionCastTypes);
| ^
llvm/clang/unittests/StaticAnalyzer/RangeSetTest.cpp:729:67: warning: ISO C++11 requires at least one argument for the "..." in a variadic macro
729 | TYPED_TEST_SUITE(RangeSetCastToTruncationTest, TruncationCastTypes);
| ^
llvm/clang/unittests/StaticAnalyzer/RangeSetTest.cpp:730:67: warning: ISO C++11 requires at least one argument for the "..." in a variadic macro
730 | TYPED_TEST_SUITE(RangeSetCastToConversionTest, ConversionCastTypes);
| ^
llvm/clang/unittests/StaticAnalyzer/RangeSetTest.cpp:732:46: warning: ISO C++11 requires at least one argument for the "..." in a variadic macro
732 | PromotionConversionCastTypes);
| ^
llvm/clang/unittests/StaticAnalyzer/RangeSetTest.cpp:734:47: warning: ISO C++11 requires at least one argument for the "..." in a variadic macro
734 | TruncationConversionCastTypes);
| ^
Reviewed By: steakhal
Differential Revision: https://reviews.llvm.org/D142439
This avoids recomputing string length that is already known at compile time.
It has a slight impact on preprocessing / compile time, see
https://llvm-compile-time-tracker.com/compare.php?from=3f36d2d579d8b0e8824d9dd99bfa79f456858f88&to=e49640c507ddc6615b5e503144301c8e41f8f434&stat=instructions:u
This a recommit of e953ae5bbc313fd0cc980ce021d487e5b5199ea4 and the subsequent fixes caa713559bd38f337d7d35de35686775e8fb5175 and 06b90e2e9c991e211fecc97948e533320a825470.
The above patchset caused some version of GCC to take eons to compile clang/lib/Basic/Targets/AArch64.cpp, as spotted in aa171833ab0017d9732e82b8682c9848ab25ff9e.
The fix is to make BuiltinInfo tables a compilation unit static variable, instead of a private static variable.
Differential Revision: https://reviews.llvm.org/D139881
Revert "Fix lldb option handling since e953ae5bbc313fd0cc980ce021d487e5b5199ea4 (part 2)"
Revert "Fix lldb option handling since e953ae5bbc313fd0cc980ce021d487e5b5199ea4"
GCC build hangs on this bot https://lab.llvm.org/buildbot/#/builders/37/builds/19104
compiling CMakeFiles/obj.clangBasic.dir/Targets/AArch64.cpp.d
The bot uses GNU 11.3.0, but I can reproduce locally with gcc (Debian 12.2.0-3) 12.2.0.
This reverts commit caa713559bd38f337d7d35de35686775e8fb5175.
This reverts commit 06b90e2e9c991e211fecc97948e533320a825470.
This reverts commit e953ae5bbc313fd0cc980ce021d487e5b5199ea4.
getAPSIntType crashes when analzying a simple case that uses a fixed
point type. getAPSIntType needs to handle fixed point types differently
to get sign information. LIT and Unittests were added since there were
none previously added.
clang: <root>/clang/include/clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h:155:
clang::ento::APSIntType clang::ento::BasicValueFactory::getAPSIntType(clang::QualType) const:
Assertion `T->isIntegralOrEnumerationType() || Loc::isLocType(T)' failed.
Program received signal SIGABRT, Aborted.
0x00007ffff66e2387 in raise () from /lib64/libc.so.6
(gdb) bt
at <root>/clang/include/clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h:155
at <root>/clang/include/clang/StaticAnalyzer/Core/PathSensitive/BasicValueFactory.h:172
LHS=0x108965a0, op=clang::BO_Shr, RHS=..., resultTy=...) at
<root>/clang/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp:213
(this=0x1088e460, state=..., op=clang::BO_Shr, lhs=..., rhs=..., resultTy=...)
at <root>/clang/lib/StaticAnalyzer/Core/SimpleSValBuilder.cpp:681
Reviewed By: steakhal
Differential Revision: https://reviews.llvm.org/D139759
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
---
Troubleshooting list to deal with any breakage seen with this patch:
1) The most likely effect one would see by this patch is a change in how
a type is printed. The type printer will, by design and default,
print types as written. There are customization options there, but
not that many, and they mainly apply to how to print a type that we
somehow failed to track how it was written. This patch fixes a
problem where we failed to distinguish between a type
that was written without any elaborated-type qualifiers,
such as a 'struct'/'class' tags and name spacifiers such as 'std::',
and one that has been stripped of any 'metadata' that identifies such,
the so called canonical types.
Example:
```
namespace foo {
struct A {};
A a;
};
```
If one were to print the type of `foo::a`, prior to this patch, this
would result in `foo::A`. This is how the type printer would have,
by default, printed the canonical type of A as well.
As soon as you add any name qualifiers to A, the type printer would
suddenly start accurately printing the type as written. This patch
will make it print it accurately even when written without
qualifiers, so we will just print `A` for the initial example, as
the user did not really write that `foo::` namespace qualifier.
2) This patch could expose a bug in some AST matcher. Matching types
is harder to get right when there is sugar involved. For example,
if you want to match a type against being a pointer to some type A,
then you have to account for getting a type that is sugar for a
pointer to A, or being a pointer to sugar to A, or both! Usually
you would get the second part wrong, and this would work for a
very simple test where you don't use any name qualifiers, but
you would discover is broken when you do. The usual fix is to
either use the matcher which strips sugar, which is annoying
to use as for example if you match an N level pointer, you have
to put N+1 such matchers in there, beginning to end and between
all those levels. But in a lot of cases, if the property you want
to match is present in the canonical type, it's easier and faster
to just match on that... This goes with what is said in 1), if
you want to match against the name of a type, and you want
the name string to be something stable, perhaps matching on
the name of the canonical type is the better choice.
3) This patch could expose a bug in how you get the source range of some
TypeLoc. For some reason, a lot of code is using getLocalSourceRange(),
which only looks at the given TypeLoc node. This patch introduces a new,
and more common TypeLoc node which contains no source locations on itself.
This is not an inovation here, and some other, more rare TypeLoc nodes could
also have this property, but if you use getLocalSourceRange on them, it's not
going to return any valid locations, because it doesn't have any. The right fix
here is to always use getSourceRange() or getBeginLoc/getEndLoc which will dive
into the inner TypeLoc to get the source range if it doesn't find it on the
top level one. You can use getLocalSourceRange if you are really into
micro-optimizations and you have some outside knowledge that the TypeLocs you are
dealing with will always include some source location.
4) Exposed a bug somewhere in the use of the normal clang type class API, where you
have some type, you want to see if that type is some particular kind, you try a
`dyn_cast` such as `dyn_cast<TypedefType>` and that fails because now you have an
ElaboratedType which has a TypeDefType inside of it, which is what you wanted to match.
Again, like 2), this would usually have been tested poorly with some simple tests with
no qualifications, and would have been broken had there been any other kind of type sugar,
be it an ElaboratedType or a TemplateSpecializationType or a SubstTemplateParmType.
The usual fix here is to use `getAs` instead of `dyn_cast`, which will look deeper
into the type. Or use `getAsAdjusted` when dealing with TypeLocs.
For some reason the API is inconsistent there and on TypeLocs getAs behaves like a dyn_cast.
5) It could be a bug in this patch perhaps.
Let me know if you need any help!
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
This reverts commit 7c51f02effdbd0d5e12bfd26f9c3b2ab5687c93f because it
stills breaks the LLDB tests. This was re-landed without addressing the
issue or even agreement on how to address the issue. More details and
discussion in https://reviews.llvm.org/D112374.
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
---
Troubleshooting list to deal with any breakage seen with this patch:
1) The most likely effect one would see by this patch is a change in how
a type is printed. The type printer will, by design and default,
print types as written. There are customization options there, but
not that many, and they mainly apply to how to print a type that we
somehow failed to track how it was written. This patch fixes a
problem where we failed to distinguish between a type
that was written without any elaborated-type qualifiers,
such as a 'struct'/'class' tags and name spacifiers such as 'std::',
and one that has been stripped of any 'metadata' that identifies such,
the so called canonical types.
Example:
```
namespace foo {
struct A {};
A a;
};
```
If one were to print the type of `foo::a`, prior to this patch, this
would result in `foo::A`. This is how the type printer would have,
by default, printed the canonical type of A as well.
As soon as you add any name qualifiers to A, the type printer would
suddenly start accurately printing the type as written. This patch
will make it print it accurately even when written without
qualifiers, so we will just print `A` for the initial example, as
the user did not really write that `foo::` namespace qualifier.
2) This patch could expose a bug in some AST matcher. Matching types
is harder to get right when there is sugar involved. For example,
if you want to match a type against being a pointer to some type A,
then you have to account for getting a type that is sugar for a
pointer to A, or being a pointer to sugar to A, or both! Usually
you would get the second part wrong, and this would work for a
very simple test where you don't use any name qualifiers, but
you would discover is broken when you do. The usual fix is to
either use the matcher which strips sugar, which is annoying
to use as for example if you match an N level pointer, you have
to put N+1 such matchers in there, beginning to end and between
all those levels. But in a lot of cases, if the property you want
to match is present in the canonical type, it's easier and faster
to just match on that... This goes with what is said in 1), if
you want to match against the name of a type, and you want
the name string to be something stable, perhaps matching on
the name of the canonical type is the better choice.
3) This patch could exposed a bug in how you get the source range of some
TypeLoc. For some reason, a lot of code is using getLocalSourceRange(),
which only looks at the given TypeLoc node. This patch introduces a new,
and more common TypeLoc node which contains no source locations on itself.
This is not an inovation here, and some other, more rare TypeLoc nodes could
also have this property, but if you use getLocalSourceRange on them, it's not
going to return any valid locations, because it doesn't have any. The right fix
here is to always use getSourceRange() or getBeginLoc/getEndLoc which will dive
into the inner TypeLoc to get the source range if it doesn't find it on the
top level one. You can use getLocalSourceRange if you are really into
micro-optimizations and you have some outside knowledge that the TypeLocs you are
dealing with will always include some source location.
4) Exposed a bug somewhere in the use of the normal clang type class API, where you
have some type, you want to see if that type is some particular kind, you try a
`dyn_cast` such as `dyn_cast<TypedefType>` and that fails because now you have an
ElaboratedType which has a TypeDefType inside of it, which is what you wanted to match.
Again, like 2), this would usually have been tested poorly with some simple tests with
no qualifications, and would have been broken had there been any other kind of type sugar,
be it an ElaboratedType or a TemplateSpecializationType or a SubstTemplateParmType.
The usual fix here is to use `getAs` instead of `dyn_cast`, which will look deeper
into the type. Or use `getAsAdjusted` when dealing with TypeLocs.
For some reason the API is inconsistent there and on TypeLocs getAs behaves like a dyn_cast.
5) It could be a bug in this patch perhaps.
Let me know if you need any help!
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
In method `TypeRetrievingVisitor::VisitConcreteInt`, `ASTContext::getIntTypeForBitwidth` is used to get the type for `ConcreteInt`s.
However, the getter in ASTContext cannot handle the boolean type with the bit width of 1, which will make method `SVal::getType` return a Null `Type`.
In this patch, a check for this case is added to fix this problem by returning the bool type directly when the bit width is 1.
Differential Revision: https://reviews.llvm.org/D129737
This reverts commit bdc6974f92304f4ed542241b9b89ba58ba6b20aa because it
breaks all the LLDB tests that import the std module.
import-std-module/array.TestArrayFromStdModule.py
import-std-module/deque-basic.TestDequeFromStdModule.py
import-std-module/deque-dbg-info-content.TestDbgInfoContentDequeFromStdModule.py
import-std-module/forward_list.TestForwardListFromStdModule.py
import-std-module/forward_list-dbg-info-content.TestDbgInfoContentForwardListFromStdModule.py
import-std-module/list.TestListFromStdModule.py
import-std-module/list-dbg-info-content.TestDbgInfoContentListFromStdModule.py
import-std-module/queue.TestQueueFromStdModule.py
import-std-module/stack.TestStackFromStdModule.py
import-std-module/vector.TestVectorFromStdModule.py
import-std-module/vector-bool.TestVectorBoolFromStdModule.py
import-std-module/vector-dbg-info-content.TestDbgInfoContentVectorFromStdModule.py
import-std-module/vector-of-vectors.TestVectorOfVectorsFromStdModule.py
https://green.lab.llvm.org/green/view/LLDB/job/lldb-cmake/45301/
Without this patch, clang will not wrap in an ElaboratedType node types written
without a keyword and nested name qualifier, which goes against the intent that
we should produce an AST which retains enough details to recover how things are
written.
The lack of this sugar is incompatible with the intent of the type printer
default policy, which is to print types as written, but to fall back and print
them fully qualified when they are desugared.
An ElaboratedTypeLoc without keyword / NNS uses no storage by itself, but still
requires pointer alignment due to pre-existing bug in the TypeLoc buffer
handling.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Differential Revision: https://reviews.llvm.org/D112374
Summary: Handle casts for ranges working similarly to APSIntType::apply function but for the whole range set. Support promotions, truncations and conversions.
Example:
promotion: char [0, 42] -> short [0, 42] -> int [0, 42] -> llong [0, 42]
truncation: llong [4295033088, 4295033130] -> int [65792, 65834] -> short [256, 298] -> char [0, 42]
conversion: char [-42, 42] -> uint [0, 42]U[4294967254, 4294967295] -> short[-42, 42]
Differential Revision: https://reviews.llvm.org/D103094
Since CallDescriptions can only be matched against CallEvents that are created
during symbolic execution, it was not possible to use it in syntactic-only
contexts. For example, even though InnerPointerChecker can check with its set of
CallDescriptions whether a function call is interested during analysis, its
unable to check without hassle whether a non-analyzer piece of code also calls
such a function.
The patch adds the ability to use CallDescriptions in syntactic contexts as
well. While we already have that in Signature, we still want to leverage the
ability to use dynamic information when we have it (function pointers, for
example). This could be done with Signature as well (StdLibraryFunctionsChecker
does it), but it makes it even less of a drop-in replacement.
Differential Revision: https://reviews.llvm.org/D119004
`CallDescriptions` for builtin functions relaxes the match rules
somewhat, so that the `CallDescription` will match for calls that have
some prefix or suffix. This was achieved by doing a `StringRef::contains()`.
However, this is somewhat problematic for builtins that are substrings
of each other.
Consider the following:
`CallDescription{ builtin, "memcpy"}` will match for
`__builtin_wmemcpy()` calls, which is unfortunate.
This patch addresses/works around the issue by checking if the
characters around the function's name are not part of the 'name'
semantically. In other words, to accept a match for `"memcpy"` the call
should not have alphanumeric (`[a-zA-Z]`) characters around the 'match'.
So, `CallDescription{ builtin, "memcpy"}` will not match on:
- `__builtin_wmemcpy: there is a `w` alphanumeric character before the match.
- `__builtin_memcpyFOoBar_inline`: there is a `F` character after the match.
- `__builtin_memcpyX_inline`: there is an `X` character after the match.
But it will still match for:
- `memcpy`: exact match
- `__builtin_memcpy`: there is an _ before the match
- `__builtin_memcpy_inline`: there is an _ after the match
- `memcpy_inline_builtinFooBar`: there is an _ after the match
Reviewed By: NoQ
Differential Revision: https://reviews.llvm.org/D118388
Some tests were skipped in D114454 to resolve test failures on some
platforms, where the pointers have different bitwidth than expected.
This patch re-enables these tests, by relaxing the requirements on the
types of the SVal.
The issue:
There is no way to reconstruct the type of the `SVal` perfectly
accurately, since there could be multiple types having the required
bitwidth and signedness.
Consider platforms where `int` and `long` have the same bitwidth.
Additionally, we need to be careful about casting a pointer to an
integral representation, because we don't know what smallest integral
type can represent that.
To workaround these issues, I propose enforcing a type that has the
same signedness and bitwidth as the expected type, instead of perfect
equality.
In the `GetLocAsIntType` test, in case of pointer-to-integral casts
I'm using the widest standard integral type (long long) to make sure
that the pointer can be represented by the type without losing
precision. This won't affect the test in any meaningful way, since the
type of the `lvalue` remained the same.
In one case, I had to replace `getUIntPtrType()` with `UnsignedLongTy`
because on some platforms `getUIntPtrType()` is different then `long
int`.
In this patch, I also enforce that the tests must compile without
errors, to prevent narrowing conversions in the future.
Reviewed By: stevewan
Differential Revision: https://reviews.llvm.org/D115349
Summary: Handle intersected and adjacent ranges uniting them into a single one.
Example:
intersection [0, 10] U [5, 20] = [0, 20]
adjacency [0, 10] U [11, 20] = [0, 20]
Differential Revision: https://reviews.llvm.org/D99797
Clang static analyzer uses bitwidth to infer the integer value type, that is, any 32-bit integer is considered of type `int`, and any 64-bit integer is considered of type `long`. This isn't always true, for instance, in ILP32 (e.g., 32-bit AIX), 32-bit could be `long`, and in LP64 (e.g., 64-bit wasm64), 64-bit could be `long long`.
Reviewed By: steakhal
Differential Revision: https://reviews.llvm.org/D114454
This patch replaces each use of the previous API with the new one.
In variadic cases, it will use the ADL `matchesAny(Call, CDs...)`
variadic function.
Also simplifies some code involving such operations.
Reviewed By: martong, xazax.hun
Differential Revision: https://reviews.llvm.org/D113591
`CallDescriptions` deserve its own translation unit.
This patch simply moves the corresponding parts.
Also includes the `CallDescription.h` where it's necessary.
Reviewed By: martong, xazax.hun, Szelethus
Differential Revision: https://reviews.llvm.org/D113587
Previously, if accidentally multiple checkers `eval::Call`-ed the same
`CallEvent`, in debug builds the analyzer detected this and crashed
with the message stating this. Unfortunately, the message did not state
the offending checkers violating this invariant.
This revision addresses this by printing a more descriptive message
before aborting.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D112889
Fallback to stringification and string comparison if we cannot compare
the `IdentifierInfo`s, which is the case for C++ overloaded operators,
constructors, destructors, etc.
Examples:
{ "std", "basic_string", "basic_string", 2} // match the 2 param std::string constructor
{ "std", "basic_string", "~basic_string" } // match the std::string destructor
{ "aaa", "bbb", "operator int" } // matches the struct bbb conversion operator to int
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D111535
This NFC change accomplishes three things:
1) Splits up the single unittest into reasonable segments.
2) Extends the test infra using a template to select the AST-node
from which it is supposed to construct a `CallEvent`.
3) Adds a *lot* of different tests, documenting the current
capabilities of the `CallDescription`. The corresponding tests are
marked with `FIXME`s, where the current behavior should be different.
Both `CXXMemberCallExpr` and `CXXOperatorCallExpr` are derived from
`CallExpr`, so they are matched by using the default template parameter.
On the other hand, `CXXConstructExpr` is not derived from `CallExpr`.
In case we want to match for them, we need to pass the type explicitly
to the `CallDescriptionAction`.
About destructors:
They have no AST-node, but they are generated in the CFG machinery in
the analyzer. Thus, to be able to match against them, we would need to
construct a CFG and walk on that instead of simply walking the AST.
I'm also relaxing the `EXPECT`ation in the
`CallDescriptionConsumer::performTest()`, to check the `LookupResult`
only if we matched for the `CallDescription`.
This is necessary to allow tests in which we expect *no* matches at all.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D111794
D105553 added NoStateChangeFuncVisitor, an abstract class to aid in creating
notes such as "Returning without writing to 'x'", or "Returning without changing
the ownership status of allocated memory". Its clients need to define, among
other things, what a change of state is.
For code like this:
f() {
g();
}
foo() {
f();
h();
}
We'd have a path in the ExplodedGraph that looks like this:
-- <g> -->
/ \
--- <f> --------> --- <h> --->
/ \ / \
-------- <foo> ------ <foo> -->
When we're interested in whether f neglected to change some property,
NoStateChangeFuncVisitor asks these questions:
÷×~
-- <g> -->
ß / \$ @&#*
--- <f> --------> --- <h> --->
/ \ / \
-------- <foo> ------ <foo> -->
Has anything changed in between # and *?
Has anything changed in between & and *?
Has anything changed in between @ and *?
...
Has anything changed in between $ and *?
Has anything changed in between × and ~?
Has anything changed in between ÷ and ~?
...
Has anything changed in between ß and *?
...
This is a rather thorough line of questioning, which is why in D105819, I was
only interested in whether state *right before* and *right after* a function
call changed, and early returned to the CallEnter location:
if (!CurrN->getLocationAs<CallEnter>())
return;
Except that I made a typo, and forgot to negate the condition. So, in this
patch, I'm fixing that, and under the same hood allow all clients to decide to
do this whole-function check instead of the thorough one.
Differential Revision: https://reviews.llvm.org/D108695
D105553 added NoStateChangeFuncVisitor, an abstract class to aid in creating
notes such as "Returning without writing to 'x'", or "Returning without changing
the ownership status of allocated memory". Its clients need to define, among
other things, what a change of state is.
For code like this:
f() {
g();
}
foo() {
f();
h();
}
We'd have a path in the ExplodedGraph that looks like this:
-- <g> -->
/ \
--- <f> --------> --- <h> --->
/ \ / \
-------- <foo> ------ <foo> -->
When we're interested in whether f neglected to change some property,
NoStateChangeFuncVisitor asks these questions:
÷×~
-- <g> -->
ß / \$ @&#*
--- <f> --------> --- <h> --->
/ \ / \
-------- <foo> ------ <foo> -->
Has anything changed in between # and *?
Has anything changed in between & and *?
Has anything changed in between @ and *?
...
Has anything changed in between $ and *?
Has anything changed in between × and ~?
Has anything changed in between ÷ and ~?
...
Has anything changed in between ß and *?
...
This is a rather thorough line of questioning, which is why in D105819, I was
only interested in whether state *right before* and *right after* a function
call changed, and early returned to the CallEnter location:
if (!CurrN->getLocationAs<CallEnter>())
return;
Except that I made a typo, and forgot to negate the condition. So, in this
patch, I'm fixing that, and under the same hood allow all clients to decide to
do this whole-function check instead of the thorough one.
Differential Revision: https://reviews.llvm.org/D108695
`PathSensitiveBughReport` has a function to mark a symbol as interesting but
it was not possible to clear this flag. This can be useful in some cases,
so the functionality is added.
Reviewed By: NoQ
Differential Revision: https://reviews.llvm.org/D105637
This commit adds a function to the top-class of SVal hierarchy to
provide type information about the value. That can be extremely
useful when this is the only piece of information that the user is
actually caring about.
Additionally, this commit introduces a testing framework for writing
unit-tests for symbolic values.
Differential Revision: https://reviews.llvm.org/D104550
<string> is currently the highest impact header in a clang+llvm build:
https://commondatastorage.googleapis.com/chromium-browser-clang/llvm-include-analysis.html
One of the most common places this is being included is the APInt.h header, which needs it for an old toString() implementation that returns std::string - an inefficient method compared to the SmallString versions that it actually wraps.
This patch replaces these APInt/APSInt methods with a pair of llvm::toString() helpers inside StringExtras.h, adjusts users accordingly and removes the <string> from APInt.h - I was hoping that more of these users could be converted to use the SmallString methods, but it appears that most end up creating a std::string anyhow. I avoided trying to use the raw_ostream << operators as well as I didn't want to lose having the integer radix explicit in the code.
Differential Revision: https://reviews.llvm.org/D103888
Since @bkramer bumped gtest to 1.10.0 I think it's a good time to clean
up some of my hacks.
Reviewed By: Szelethus
Differential Revision: https://reviews.llvm.org/D102643
ImmutableSet doesn't seem like the perfect fit for the RangeSet
data structure. It is good for saving memory in a persistent
setting, but not for the case when the population of the container
is tiny. This commit replaces RangeSet implementation and
redesigns the most common operations to be more efficient.
Differential Revision: https://reviews.llvm.org/D86465
For /C++/ constructor initializers `ExprEngine:computeUnderConstruction()`
asserts that they are all member initializers. This is not neccessarily
true when this function is used to get the return value for the
construction context thus attempts to fetch return values of base and
delegating constructor initializers result in assertions. This small
patch fixes this issue.
Differential Revision: https://reviews.llvm.org/D85351