As commented by @craig.topper on rG1ba5c550d418, we can't guarantee that we'll be extending zero bits, just sign bit. So, revert to the old code for zero_extend_vector_inreg cases.
There is a bunch of similar bitfield extraction code throughout *ISelDAGToDAG.
E.g, ARMISelDAGToDAG, AArch64ISelDAGToDAG, and AMDGPUISelDAGToDAG all contain
code that matches a bitfield extract from an and + right shift.
Rather than duplicating code in the same way, this adds two opcodes:
- G_UBFX (unsigned bitfield extract)
- G_SBFX (signed bitfield extract)
They work like this
```
%x = G_UBFX %y, %lsb, %width
```
Where `lsb` and `width` are
- The least-significant bit of the extraction
- The width of the extraction
This will extract `width` bits from `%y`, starting at `lsb`. G_UBFX zero-extends
the result, while G_SBFX sign-extends the result.
This should allow us to use the combiner to match the bitfield extraction
patterns rather than duplicating pattern-matching code in each target.
Differential Revision: https://reviews.llvm.org/D98464
Reuse the existing KnownBits multiplication code to handle the 'extend + multiply + extract high bits' pattern for multiply-high ops.
Noticed while looking at the codegen for D88785 / D98587 - the patch helps division-by-constant expansion code in particular, which suggests that we might have some further KnownBits div/rem cases we could handle - but this was far easier to implement.
Differential Revision: https://reviews.llvm.org/D98857
Followup to D96345, handle unary shuffles of binops (as well as binary shuffles) if we can merge the shuffle with inner operand shuffles.
Differential Revision: https://reviews.llvm.org/D98646
Extend this to support ComputeNumSignBits of the (used) source vector elements so that we can handle more than just the case where we're sext_in_reg from the source element signbit.
Noticed while investigating the poor codegen in D98587.
byval requires an implicit copy between the caller and callee such
that the callee may write into the stack area without it modifying the
value in the parent. Previously, this was passing through the raw
pointer value which would break if the callee wrote into it.
Most of the time, this copy can be optimized out (however we don't
have the optimization SelectionDAG does yet).
This will trigger more fallbacks for AMDGPU now, since we don't have
legalization for memcpy yet (although we should stop using byval
anyway).
Add ISD::ABS to the existing unary instructions handling for splat detection
This is similar to D83605, but doesn't appear to need to touch any of the wasm refactoring.
Differential Revision: https://reviews.llvm.org/D98778
These are pseudos without any users, so DCE was killing them in the combiner.
Marking them as having side effects doesn't seem quite right since they don't.
Gives a nice 0.3% geomean size win on CTMark -Os.
Differential Revision: https://reviews.llvm.org/D98811
The previous technique relied on early-exiting the legalizer predicate
initialization, leaving an empty rule table. That causes a fallback
for most instructions, but some have legacy rules defined like G_ZEXT
which can try continue, but then crash.
We should fall back earlier, in the translator, to avoid this issue.
Differential Revision: https://reviews.llvm.org/D98730
Fixed section of code that iterated through a SmallDenseMap and added
instructions in each iteration, causing non-deterministic code; replaced
SmallDenseMap with MapVector to prevent non-determinism.
This reverts commit 01ac6d1587e8613ba4278786e8341f8b492ac941.
This caused non-deterministic compiler output; see comment on the
code review.
> This patch updates the various IR passes to correctly handle dbg.values with a
> DIArgList location. This patch does not actually allow DIArgLists to be produced
> by salvageDebugInfo, and it does not affect any pass after codegen-prepare.
> Other than that, it should cover every IR pass.
>
> Most of the changes simply extend code that operated on a single debug value to
> operate on the list of debug values in the style of any_of, all_of, for_each,
> etc. Instances of setOperand(0, ...) have been replaced with with
> replaceVariableLocationOp, which takes the value that is being replaced as an
> additional argument. In places where this value isn't readily available, we have
> to track the old value through to the point where it gets replaced.
>
> Differential Revision: https://reviews.llvm.org/D88232
This reverts commit df69c69427dea7f5b3b3a4d4564bc77b0926ec88.
The main part of the patch is the change in RegAllocGreedy.cpp: Q.collectInterferringVregs()
needs to be called before iterating the interfering live ranges.
The rest of the patch offers support that is the case: instead of clearing the query's
InterferingVRegs field, we invalidate it. The clearing happens when the live reg matrix
is invalidated (existing triggering mechanism).
Without the change in RegAllocGreedy.cpp, the compiler ices.
This patch should make it more easily discoverable by developers that
collectInterferringVregs needs to be called before iterating.
I will follow up with a subsequent patch to improve the usability and maintainability of Query.
Differential Revision: https://reviews.llvm.org/D98232
Prefer (self-documenting) return values to output parameters (which are
liable to be used).
While here, rename Noop to Nop which is more widely used and improves
consistency with hasEmitNops/setEmitNops/emitNop/etc.
This patch addresses a few issues when dealing with scalable-vector
INSERT_SUBVECTOR and EXTRACT_SUBVECTOR nodes.
When legalizing in DAGTypeLegalizer::SplitVecRes_INSERT_SUBVECTOR, we
store the low and high halves to the stack separately. The offset for
the high half was calculated incorrectly.
Additionally, we can optimize this process when we can detect that the
subvector is contained entirely within the low/high split vector type.
While this optimization is valid on scalable vectors, when performing
the 'high' optimization, the subvector must also be a scalable vector.
Note that the 'low' optimization is still conservative: it may be
possible to insert v2i32 into the low half of a split nxv1i32/nxv1i32,
but we can't guarantee it. It is always possible to insert v2i32 into
nxv2i32 or v2i32 into nxv4i32+2 as we know vscale is at least 1.
Lastly, in SelectionDAG::isSplatValue, we early-exit on the extracted subvector value
type being a scalable vector, forgetting that we can also extract a
fixed-length vector from a scalable one.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D98495
Change was reverted in commit 8d20f2c2c66eb486ff23cc3d55a53bd840b36971 because it was causing an infinite loop. 9228f2f32 fixed the root issue in the code structure, this change just reapplies the original change w/adaptation to the new code structure.
This fixes the bug demonstrated by the test case in the commit message of 8d20f2c2 (which was a revert of cf82700). The root issue was that we have two transforms which are inverses of each other. We use one for simple induction variables (where we can use the post-inc form), and the other for everything else. The problem was that the two transforms could disagree about whether something was an induction variable.
The reverted commit made a change to one of the matcher routines which was used for one of the two transforms without updating the other matcher. However, it's worth noting the existing code w/o the reverted change also has cases where the decision could differ between the two paths.
The fix is simply to consolidate the code such that two paths must agree by construction, and to add an assert to catch any potential future re-divergence.
Triggering the infinite loop requires side stepping the SunkAddrs cache. The SunkAddrs cache has the effect of suppressing the iteration in the common case, but there are codepaths through CGP which restart iteration and clear this cache.
Unfortunately, I have not been able to construct a standalone IR test case for this. The original test case is a c++ program which when compiled by clang demonstrates the infinite loop, but all of my attempts at extracting an IR test case runnable through opt/llc have failed to reproduce. (Including capturing the IR at point of the transform itself!) I have no idea what weird state clang is creating here.
I also tried creating a test case by hand, but gave up after about an hour of trying to find the right combination to dance through multiple transforms to create the end result needed to trip the bug.
A 1-bit smulo overflows is both inputs are -1 since the result
should be +1 which can't be represented in a signed 1 bit value.
We can detect this with an AND and a setcc. The multiply result
can also use the same AND.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D97634
This reverts commit cf82700af8c658ae09b14c3d01bb1e73e48d3bd3 due to a compile timeout when building the following with `clang -O2`:
```
template <class, class = int> class a;
struct b {
using d = int *;
};
struct e {
using f = b::d;
};
class g {
public:
e::f h;
e::f i;
};
template <class, class> class a : g {
public:
long j() const { return i - h; }
long operator[](long) const noexcept;
};
template <class c, class k> long a<c, k>::operator[](long l) const noexcept {
return h[l];
}
template <typename m, typename n> int fn1(m, n, const char *);
int o, p;
class D {
void q(const a<long> &);
long r;
};
void D::q(const a<long> &l) {
int s;
if (l[0])
for (; l.j(); ++s) {
if (l[s])
while (fn1(o, 0, ""))
;
r = l[s] / p;
}
}
```
This removes some (but not all) uses of type-less CreateGEP()
and CreateInBoundsGEP() APIs, which are incompatible with opaque
pointers.
There are a still a number of tricky uses left, as well as many
more variation APIs for CreateGEP.
byval arguments need to be assumed writable. Only implicitly stack
passed arguments which aren't addressable in the IR can be assumed
immutable.
Mips is still broken since for some reason its doing its own thing
with the ValueHandlers (and x86 doesn't actually handle byval
arguments now, although some of the code is there).
This was essentially ignoring byval and treating them as a pointer
argument which needed to be loaded from. This should copy the frame
index value to the virtual register, not insert a load from the frame
index into the pointer value.
For AMDGPU, this was producing a load from the byval pointer argument,
to a pointer used for the byval arguments. I do not understand how
AArch64 managed to work before since it appears to be similarly
broken.
We could also change the ValueHandler API to avoid the extra copy from
the frame index, since currently it returns a new register.
I believe there is still an issue with outgoing byval arguments. These
should have a copy inserted in case the callee decided to overwrite
the memory.
Use a more general strategy when splitting a vector into scalar parts (and vice-versa) to correctly handle vector types whose element size is not a power of 2 (and a multiple of 8).
Reviewed By: atanasyan
Differential Revision: https://reviews.llvm.org/D98273
Recently we improved the lowering of low overhead loops and tail
predicated loops, but concentrated first on the DLS do style loops. This
extends those improvements over to the WLS while loops, improving the
chance of lowering them successfully. To do this the lowering has to
change a little as the instructions are terminators that produce a value
- something that needs to be treated carefully.
Lowering starts at the Hardware Loop pass, inserting a new
llvm.test.start.loop.iterations that produces both an i1 to control the
loop entry and an i32 similar to the llvm.start.loop.iterations
intrinsic added for do loops. This feeds into the loop phi, properly
gluing the values together:
%wls = call { i32, i1 } @llvm.test.start.loop.iterations.i32(i32 %div)
%wls0 = extractvalue { i32, i1 } %wls, 0
%wls1 = extractvalue { i32, i1 } %wls, 1
br i1 %wls1, label %loop.ph, label %loop.exit
...
loop:
%lsr.iv = phi i32 [ %wls0, %loop.ph ], [ %iv.next, %loop ]
..
%iv.next = call i32 @llvm.loop.decrement.reg.i32(i32 %lsr.iv, i32 1)
%cmp = icmp ne i32 %iv.next, 0
br i1 %cmp, label %loop, label %loop.exit
The llvm.test.start.loop.iterations need to be lowered through ISel
lowering as a pair of WLS and WLSSETUP nodes, which each get converted
to t2WhileLoopSetup and t2WhileLoopStart Pseudos. This helps prevent
t2WhileLoopStart from being a terminator that produces a value,
something difficult to control at that stage in the pipeline. Instead
the t2WhileLoopSetup produces the value of LR (essentially acting as a
lr = subs rn, 0), t2WhileLoopStart consumes that lr value (the Bcc).
These are then converted into a single t2WhileLoopStartLR at the same
point as t2DoLoopStartTP and t2LoopEndDec. Otherwise we revert the loop
to prevent them from progressing further in the pipeline. The
t2WhileLoopStartLR is a single instruction that takes a GPR and produces
LR, similar to the WLS instruction.
%1:gprlr = t2WhileLoopStartLR %0:rgpr, %bb.3
t2B %bb.1
...
bb.2.loop:
%2:gprlr = PHI %1:gprlr, %bb.1, %3:gprlr, %bb.2
...
%3:gprlr = t2LoopEndDec %2:gprlr, %bb.2
t2B %bb.3
The t2WhileLoopStartLR can then be treated similar to the other low
overhead loop pseudos, eventually being lowered to a WLS providing the
branches are within range.
Differential Revision: https://reviews.llvm.org/D97729
RISCV makes all fixed vector MVTs with size less than or equal
to a command line option legal.
This didn't include v1f16 because it was missing but did include v1f32 and v1f64.
One test is affected where we did test this type, but it is a horizontal
reduction so it is non-sensical. Perhaps we should canonicalize that
away somewhere.
I'm not sure if we should be making v1 types legal, but this will at
least make RISCV consistent across all types.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D98365
For attribute sets, the return index is at 0, and arguments start at
1. getParamAlignment adds the offset of 1, so we need to convert from
attribute index back to IR index.
This patch improves salvageDebugInfoImpl by allowing it to salvage arithmetic
operations with two or more non-const operands; this includes the GetElementPtr
instruction, and most Binary Operator instructions. These salvages produce
DIArgList locations and are only valid for dbg.values, as currently variadic
DIExpressions must use DW_OP_stack_value. This functionality is also only added
for salvageDebugInfoForDbgValues; other functions that directly call
salvageDebugInfoImpl (such as in ISel or Coroutine frame building) can be
updated in a later patch.
Differential Revision: https://reviews.llvm.org/D91722
Recently gc.result has been marked with readnone instead of readonly and
this opens a door for different optimization to duplicate gc.result.
Statepoint lowering is not ready to see several gc.results.
The problem appears when there are gc.results with one located in the same
basic block and another located in other basic block.
In this case we need both export VR and fill local setValue.
Note that this case is not sufficient optimization done before CodeGen.
It is evident that local gc.result dominates all other gc.results and it is handled
by GVN and EarlyCSE.
But anyway, even if IR is not optimal Backend should not crash on a valid IR.
Reviewers: reames, dantrushin
Reviewed By: dantrushin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D98393
For locally scoped lambdas like this there's no particular benefit to
explicitly listing captures - or avoiding capturing this. Switch to [&]
and make it all easier to maintain.
(& driveby change std::function to llvm::function_ref)
On riscv32, i64 isn't a legal scalar type but we would like to
support scalable vectors of i64.
This patch introduces a new node that can represent a splat made
of multiple scalar values. I've used this new node to solve the current
crashes we experience when getConstant is used after type legalization.
For RISCV, we are now default expanding SPLAT_VECTOR to SPLAT_VECTOR_PARTS
when needed and then handling the SPLAT_VECTOR_PARTS later during
LegalizeOps. I've remove the special case I previously put in for
ABS for D97991 as the default expansion is now able to succesfully
use getConstant.
Reviewed By: frasercrmck
Differential Revision: https://reviews.llvm.org/D98004
This patch adds handling for DBG_VALUE_LIST in the MIR-passes (after
finalize-isel), excluding the debug liveness passes and DWARF emission. This
most significantly affects MachineSink, which now needs to consider all used
registers of a debug value when sinking, but for most passes this change is
simply replacing getDebugOperand(0) with an iteration over all debug operands.
Differential Revision: https://reviews.llvm.org/D92578
This patch allows DBG_VALUE_LIST instructions to be emitted to DWARF with valid
DW_AT_locations. This change mainly affects DbgEntityHistoryCalculator, which
now tracks multiple registers per value, and DwarfDebug+DwarfExpression, which
can now emit multiple machine locations as part of a DWARF expression.
Differential Revision: https://reviews.llvm.org/D83495
It is good to have a combined `divrem` instruction when the
`div` and `rem` are computed from identical input operands.
Some targets can lower them through a single expansion that
computes both division and remainder. It effectively reduces
the number of instructions than individually expanding them.
Reviewed By: arsenm, paquette
Differential Revision: https://reviews.llvm.org/D96013
If it was decided to relocate derived pointer using the spill its value is
not exported in general case.
When gc.relocate is located in an another block than a statepoint we cannot
get SD for derived value but for spill case it is not required at all.
However implementation of gc.relocate lowering unconditionally request SD value
causing the assert triggering.
The CL fixes this by handling spill case earlier than SD is really required.
Reviewers: reames, dantrushin
Reviewed By: dantrushin
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D98324
This patch adds support for DBG_VALUE_LIST in the LiveDebugVariables pass. The
changes are mostly in computeIntervals, extendDef, and addDefsFromCopies; when
extending the def of a DBG_VALUE_LIST the live ranges of every used register
must be considered, and when such a def is killed by more than one of its used
registers being killed at the same time it is necessary to find valid copies of
all of those registers to create a new def with.
The DebugVariableValue class has also been changed to reference multiple
location numbers instead of just one. This has been accomplished by using a
C-style array with a unique_ptr and an array length packed into 6 bits, to
minimize the size of the class (which must be kept low to be used with
IntervalMap). This may not be the most efficient solution possible, and should
be looked at if performance issues arise.
Differential Revision: https://reviews.llvm.org/D83895
LSR prefers to schedule iv increments just before the latch. The recent 80511565 broadened this to moving increments in the original IR. This pointed out a robustness problem with the CGP transform.
When we have a use of an induction increment outside of the loop (we canonicalize away from this form, but it happens e.g. unanalyzeable loops) we'd avoid performing the uadd/usub transform. Interestingly, all of these involve moving the increment closer to it's operands, so there's no concern about dominating all uses. We can handle that case cheaply, resulting in a more robust transform.
If every element is extracted from a G_BUILD_VECTOR, pass through the source
registers. This is different to the extract(build_vector) combine because this
one tolerates multiple users as long as they're exhaustive.
Differential Revision: https://reviews.llvm.org/D97890