To authenticate pointers, CodeGen needs access to the key and
discriminators that were used to sign the pointer. That information is
sometimes known from the context, but not always, which is why `Address`
needs to hold that information.
This patch adds methods and data members to `Address`, which will be
needed in subsequent patches to authenticate signed pointers, and uses
the newly added methods throughout CodeGen. Although this patch isn't
strictly NFC as it causes CodeGen to use different code paths in some
cases (e.g., `mergeAddressesInConditionalExpr`), it doesn't cause any
changes in functionality as it doesn't add any information needed for
authentication.
In addition to the changes mentioned above, this patch introduces class
`RawAddress`, which contains a pointer that we know is unsigned, and
adds several new functions for creating `Address` and `LValue` objects.
The goal of this change is to clean up some of the code surrounding
HLSL using CXXThisExpr as a non-pointer l-value. This change cleans up
a bunch of assumptions and inconsistencies around how the type of
`this` is handled through the AST and code generation.
This change is be mostly NFC for HLSL, and completely NFC for other
language modes.
This change introduces a new member to query for the this object's type
and seeks to clarify the normal usages of the this type.
With the introudction of HLSL to clang, CXXThisExpr may now be an
l-value and behave like a reference type rather than C++'s normal
method of it being an r-value of pointer type.
With this change there are now three ways in which a caller might need
to query the type of `this`:
* The type of the `CXXThisExpr`
* The type of the object `this` referrs to
* The type of the implicit (or explicit) `this` argument
This change codifies those three ways you may need to query
respectively as:
* CXXMethodDecl::getThisType()
* CXXMethodDecl::getThisObjectType()
* CXXMethodDecl::getThisArgType()
This change then revisits all uses of `getThisType()`, and in cases
where the only use was to resolve the pointee type, it replaces the
call with `getThisObjectType()`. In other cases it evaluates whether
the desired returned type is the type of the `this` expr, or the type
of the `this` function argument. The `this` expr type is used for
creating additional expr AST nodes and for member lookup, while the
argument type is used mostly for code generation.
Additionally some cases that used `getThisType` in simple queries could
be substituted for `getThisObjectType`. Since `getThisType` is
implemented in terms of `getThisObjectType` calling the later should be
more efficient if the former isn't needed.
Reviewed By: aaron.ballman, bogner
Differential Revision: https://reviews.llvm.org/D159247
Partial progress towards replacing uses of CreateElementBitCast, as it
no longer does what its name suggests.
Reviewed By: barannikov88
Differential Revision: https://reviews.llvm.org/D154229
Partial progress towards replacing in-tree uses of `Type::getPointerTo()`.
This needs to be done before deprecating the API.
Reviewed By: nikic, barannikov88
Differential Revision: https://reviews.llvm.org/D152321
std::optional::value() has undesired exception checking semantics and is
unavailable in older Xcode (see _LIBCPP_AVAILABILITY_BAD_OPTIONAL_ACCESS). The
call sites block std::optional migration.
This makes `ninja clang` work in the absence of llvm::Optional::value.
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
This revision fixes typos where there are 2 consecutive words which are
duplicated. There should be no code changes in this revision (only
changes to comments and docs). Do let me know if there are any
undesirable changes in this revision. Thanks.
"this" parameter of lambda if undef, notnull and differentiable.
So we need to pass something consistent.
Any alloca will work. It will be eliminated as unused later by optimizer.
Otherwise we generate code which Msan is expected to catch.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D132275
Turning on opaque pointers has uncovered an issue with WPD where we currently pattern match away `assume(type.test)` in WPD so that a later LTT doesn't resolve the type test to undef and introduce an `assume(false)`. The pattern matching can fail in cases where we transform two `assume(type.test)`s into `assume(phi(type.test.1, type.test.2))`.
Currently we create `assume(type.test)` for all virtual calls that might be devirtualized. This is to support `-Wl,--lto-whole-program-visibility`.
To prevent this, all virtual calls that may not be in the same LTO module instead use a new `llvm.public.type.test` intrinsic in place of the `llvm.type.test`. Then when we know if `-Wl,--lto-whole-program-visibility` is passed or not, we can either replace all `llvm.public.type.test` with `llvm.type.test`, or replace all `llvm.public.type.test` with `true`. This prevents WPD from trying to pattern match away `assume(type.test)` for public virtual calls when failing the pattern matching will result in miscompiles.
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D128955
Poison trivial class members one-by-one in the reverse order of their
construction, instead of all-at-once at the very end.
For example, in the following code access to `x` from `~B` will
produce an undefined value.
struct A {
struct B b;
int x;
};
Reviewed By: kda
Differential Revision: https://reviews.llvm.org/D119600
-fsanitize-memory-use-after-dtor detects memory access after a
subobject is destroyed but its memory is not yet deallocated.
This is done by poisoning each object memory near the end of its destructor.
Subobjects (members and base classes) do this in their respective
destructors, and the parent class does the same for its members with
trivial destructors.
Inexplicably, base classes with trivial destructors are not handled at
all. This change fixes this oversight by adding the base class poisoning logic
to the parent class destructor.
Reviewed By: vitalybuka
Differential Revision: https://reviews.llvm.org/D119300
To make uses of the deprecated constructor easier to spot, and to
ensure that no new uses are introduced, rename it to
Address::deprecated().
While doing the rename, I've filled in element types in cases
where it was relatively obvious, but we're still left with 135
calls to the deprecated constructor.
Instead use either Type::getPointerElementType() or
Type::getNonOpaquePointerElementType().
This is part of D117885, in preparation for deprecating the API.
In this case, we know statically that we're destroying the most-derived
class, so the vptr must already point to the current class and never
needs to be updated.
Storing the vtable field of an object should use the same address space as
the this pointer. Currently it is assumed to be addr space 0 but this may not
be true.
This assumption (added in 054cc3b1b469de4b0cb25d1dc3af43c679c5dc44) caused
issues for the out-of-tree CHERI targets.
Reviewed by: John McCall, Alexander Richardson
Differential Revision: https://reviews.llvm.org/D109841
Remove uses of to-be-deprecated API. In cases where the correct
element type was not immediately obvious to me, fall back to
explicit getPointerElementType().
vtbl itself is in default global address space. When clang emits
ctor, it gets a pointer to the vtbl field based on the this pointer,
then stores vtbl to the pointer.
Since this pointer can point to any address space (e.g. an object
created in stack), this pointer points to default address space, therefore
the pointer to vtbl field in this object should also be in default
address space.
Currently, clang incorrectly casts the pointer to vtbl field in this object
to global address space. This caused assertions in backend.
This patch fixes that by removing the incorrect addr space cast.
Reviewed by: Artem Belevich
Differential Revision: https://reviews.llvm.org/D103835
This is a Clang-only change and depends on the existing "musttail"
support already implemented in LLVM.
The [[clang::musttail]] attribute goes on a return statement, not
a function definition. There are several constraints that the user
must follow when using [[clang::musttail]], and these constraints
are verified by Sema.
Tail calls are supported on regular function calls, calls through a
function pointer, member function calls, and even pointer to member.
Future work would be to throw a warning if a users tries to pass
a pointer or reference to a local variable through a musttail call.
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D99517
This removes some (but not all) uses of type-less CreateGEP()
and CreateInBoundsGEP() APIs, which are incompatible with opaque
pointers.
There are a still a number of tricky uses left, as well as many
more variation APIs for CreateGEP.