We only use the .o-style debug info here regardless, so having
it run all three debuginfo styles was a waste.
This also strips out the custom build function and uses the
TestBase.build() method.
llvm-svn: 282508
This is the Linux counterpart to the sampling support I added
on the macOS side.
This change also introduces zip-file compression if the size of
the sample output is greater than 10 KB. The Linux side can be
quite large and the textual content is averaging over a 10x
compression factor on tests that I force to time out. When
compression takes place, the filename becomes:
{session_dir}/{TestFilename.py}-{pid}.sample.zip
This support relies on the linux 'perf' tool. If it isn't
present, the behavior is to ignore pre-kill processing of
the timed out test process.
Note calling the perf tool under the timeout command appears
to nuke the profiled process. This was causing the timeout
kill logic to fail due to the process having disappeared.
I modified the kill logic to catch the case of the process
not existing, and I have it ignore the kill request in that
case. Any other exception is still raised.
Reviewers: labath
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D24890
llvm-svn: 282436
This allows debugging of the JIT and other analyses of the internals of the
expression parser. I've also added a testcase that verifies that the setting
works correctly when off and on.
llvm-svn: 282434
CommandData breakpoint commands didn't know whether they were
Python or Command line commands, so they couldn't serialize &
deserialize themselves properly. Fix that.
I also changed the "breakpoint list" command to note in the output
when the commands are Python commands. Fortunately only one test
was relying on this explicit bit of text output.
llvm-svn: 282432
Summary:
The current implementation of the test suite allows the user to run
a certain subset of tests using '-p', but does not allow the inverse,
where a user wants to run all but some number of known failing tests.
Implement this functionality.
Reviewers: labath, zturner, tfiala
Subscribers: jingham, sas, lldb-commits
Differential Revision: https://reviews.llvm.org/D24629
llvm-svn: 282298
Summary:
When extracting options for long options (starting with `--`), the use of
`MIUtilString::SplitConsiderQuotes` to split all the arguments was being
conditioned on the option type to be expected. This was wrong as this caused
other options to be parsed incorrectly since it was not taking into account the
presence of quotes.
Patch by Ed Munoz <edmunoz@microsoft.com>
Reviewers: edmunoz, ki.stfu
Subscribers: ki.stfu, lldb-commits
Projects: #lldb
Differential Revision: https://reviews.llvm.org/D24202
llvm-svn: 282135
This change introduces optional marking of the column within a source
line where a thread is stopped. This marking will show up when the
source code for a thread stop is displayed, when the debug info
knows the column information, and if the optional column marking is
enabled.
There are two separate methods for handling the marking of the stop
column:
* via ANSI terminal codes, which are added inline to the source line
display. The default ANSI mark-up is to underline the column.
* via a pure text-based caret that is added in the appropriate column
in a newly-inserted blank line underneath the source line in
question.
There are some new options that control how this all works.
* settings set stop-show-column
This takes one of 4 values:
* ansi-or-caret: use the ANSI terminal code mechanism if LLDB
is running with color enabled; if not, use the caret-based,
pure text method (see the "caret" mode below).
* ansi: only use the ANSI terminal code mechanism to highlight
the stop line. If LLDB is running with color disabled, no
stop column marking will occur.
* caret: only use the pure text caret method, which introduces
a newly-inserted line underneath the current line, where
the only character in the new line is a caret that highlights
the stop column in question.
* none: no stop column marking will be attempted.
* settings set stop-show-column-ansi-prefix
This is a text format that indicates the ANSI formatting
code to insert into the stream immediately preceding the
column where the stop column character will be marked up.
It defaults to ${ansi.underline}; however, it can contain
any valid LLDB format codes, e.g.
${ansi.fg.red}${ansi.bold}${ansi.underline}
* settings set stop-show-column-ansi-suffix
This is the text format that specifies the ANSI terminal
codes to end the markup that was started with the prefix
described above. It defaults to: ${ansi.normal}. This
should be sufficient for the common cases.
Significant leg-work was done by Adrian Prantl. (Thanks, Adrian!)
differential review: https://reviews.llvm.org/D20835
reviewers: clayborg, jingham
llvm-svn: 282105
Serialize breakpoint names & the hardware_requested attributes.
Also added a few missing affordances to SBBreakpoint whose absence
writing the tests pointed out.
<rdar://problem/12611863>
llvm-svn: 282036
The pexpect-based tests properly checked for the stub reporting
DarwinLog support. The event-based ones did not. This is fixed
here. Swift CI bots are not currently building debugserver on
macOS, so they don't have the DarwinLog support even when they
pass the macOS 10.12 check.
llvm-svn: 281696
It is a new attribute emitted by clang as a GNU extension and will
be part of Dwarf5. The purpose of the attribute is to specify a compile
unit level base value for all DW_AT_ranges to reduce the number of
relocations have to be done by the linker.
Fixes (at least partially): https://llvm.org/pr28826
Differential revision: https://reviews.llvm.org/D24514
llvm-svn: 281595
VS 2015 and higher begin making use of c++14 in their standard
library headers. As such, -std=c++11 makes it so you can't compile
trivial programs. Bump this to -std=c++14 when this situation is
detected.
llvm-svn: 281420
using to enqueue all the jobs wasn't enough time on a slow/overloaded
system. Instead use a global to indicate when all the work has
been enqueued, let's see if this makes the CIs work more reliably.
llvm-svn: 281418
the expectedFlakeyDarwin annotation.
I've been running this test in isolation on my macOS Sierra system
and haven't seen a failure in 20-30 runs. The number of simultaneous
debug sessions that it spins up could be a problem when the testbots
are running under load, so I'm reducing this from 20 simultaneous
debug sessions to see if we can get enough stability to leave this
enabled.
llvm-svn: 281291
It looks like the message-content-retrieval aspect of DarwinLog
support is flaky, not just the regex match against it. Slightly
less frequently than the regex matching, I am seeing the
direct string-match variant of log-message-content matching
also fail.
Tracked by:
llvm.org/pr30299
rdar://28237450
llvm-svn: 281251
Summary: This patch adds a new test and fixes extra new-line before exit
Reviewers: abidh
Subscribers: ki.stfu, dawn, lldb-commits, abidh
Differential Revision: https://reviews.llvm.org/D9740
llvm-svn: 281199
It turns out that self.dbg.GetSelectedPlatform().GetTriple() is not a good way
to get the triple of the process, as it returns the incorrect triple in case of a
32-bit process running on a 64-bit platform.
Instead, go the long way round and ask the stub for the process triple. This
fixes the test for i386.
llvm-svn: 280922
Summary:
This adds the jModulesInfo packet, which is the equivalent of qModulesInfo, but it enables us to
query multiple modules at once. This makes a significant speed improvement in case the
application has many (over a hundred) modules, and the communication link has a non-negligible
latency. This functionality is accessed by ProcessGdbRemote::PrefetchModuleSpecs(), which does
the caching. GetModuleSpecs() is modified to first consult the cache before asking the remote
stub. PrefetchModuleSpecs is currently only called from POSIX-DYLD dynamic loader plugin, after
it reads the list of modules from the inferior memory, but other uses are possible.
This decreases the attach time to an android application by about 40%.
Reviewers: clayborg
Subscribers: tberghammer, lldb-commits, danalbert
Differential Revision: https://reviews.llvm.org/D24236
llvm-svn: 280919
This wasn't actually a problem with the reformat, but rather a
problem with Visual Studio 2015 Update 3, which uses some c++14
features in its standard libraries. So we had to change -std=c++11
to -std=c++14.
llvm-svn: 280759
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
This reverts commit rL280668 because the register tests fail on i386
Linux.
I investigated a little bit what causes the failure - there are missing
registers when running 'register read -a'.
This is the output I got at the bottom:
"""
...
Memory Protection Extensions:
bnd0 = {0x0000000000000000 0x0000000000000000}
bnd1 = {0x0000000000000000 0x0000000000000000}
bnd2 = {0x0000000000000000 0x0000000000000000}
bnd3 = {0x0000000000000000 0x0000000000000000}
unknown:
2 registers were unavailable.
"""
Also looking at the packets exchanged between the client and server:
"""
...
history[308] tid=0x7338 < 19> send packet: $qRegisterInfo4a#d7
history[309] tid=0x7338 < 130> read packet:
$name:bnd0;bitsize:128;offset:1032;encoding:vector;format:vector-uint64;set:Memory
Protection Extensions;ehframe:101;dwarf:101;#48
history[310] tid=0x7338 < 19> send packet: $qRegisterInfo4b#d8
history[311] tid=0x7338 < 130> read packet:
$name:bnd1;bitsize:128;offset:1048;encoding:vector;format:vector-uint64;set:Memory
Protection Extensions;ehframe:102;dwarf:102;#52
history[312] tid=0x7338 < 19> send packet: $qRegisterInfo4c#d9
history[313] tid=0x7338 < 130> read packet:
$name:bnd2;bitsize:128;offset:1064;encoding:vector;format:vector-uint64;set:Memory
Protection Extensions;ehframe:103;dwarf:103;#53
history[314] tid=0x7338 < 19> send packet: $qRegisterInfo4d#da
history[315] tid=0x7338 < 130> read packet:
$name:bnd3;bitsize:128;offset:1080;encoding:vector;format:vector-uint64;set:Memory
Protection Extensions;ehframe:104;dwarf:104;#54
history[316] tid=0x7338 < 19> send packet: $qRegisterInfo4e#db
history[317] tid=0x7338 < 76> read packet:
$name:bndcfgu;bitsize:64;offset:1096;encoding:vector;format:vector-uint8;#99
history[318] tid=0x7338 < 19> send packet: $qRegisterInfo4f#dc
history[319] tid=0x7338 < 78> read packet:
$name:bndstatus;bitsize:64;offset:1104;encoding:vector;format:vector-uint8;#8e
...
"""
The bndcfgu and bndstatus registers don't have the 'Memory Protections
Extension' set. I looked at the code and it seems that that is set
correctly.
So I'm not sure what's the problem or where does it come from.
Also there is a second failure related to something like this in the
tests:
"""
registerSet.GetName().lower()
"""
For some reason the registerSet.GetName() returns None.
llvm-svn: 280703
When a process stops due to a crash, we get the crashing instruction and the
crashing memory location (if there is one). From the user's perspective it is
often unclear what the reason for the crash is in a symbolic sense.
To address this, I have added new fuctionality to StackFrame to parse the
disassembly and reconstruct the sequence of dereferneces and offsets that were
applied to a known variable (or fuction retrn value) to obtain the invalid
pointer.
This makes use of enhancements in the disassembler, as well as new information
provided by the DWARF expression infrastructure, and is exposed through a
"frame diagnose" command. It is also used to provide symbolic information, when
available, in the event of a crash.
The algorithm is very rudimentary, and it needs a bunch of work, including
- better parsing for assembly, preferably with help from LLVM
- support for non-Apple platforms
- cleanup of the algorithm core, preferably to make it all work in terms of
Operands instead of register/offset pairs
- improvement of the GetExpressioPath() logic to make prettier expression
paths, and
- better handling of vtables.
I welcome all suggestios, improvements, and testcases.
llvm-svn: 280692
As Pavel pointed out in a comment on llvm.org/pr30271, the VPATH I was
using here to eliminate duplication of a .cpp file had a side effect of
attempting to pull in a .o/.obj file from that same parent dir, where
other tests can be running in parallel. This is no good.
For now, I have removed the VPATH, which should address
llvm.org/pr30271. I have also removed the XFAIL.
llvm-svn: 280675
Summary:
The Intel(R) Memory Protection Extensions (Intel(R) MPX) associates pointers
to bounds, against which the software can check memory references to
prevent out of bound memory access.
This patch allows accessing the MPX registers:
* bnd0-3: 128-bit registers to hold the bound values,
* bndcfgu, bndstatus: 64-bit configuration registers,
This patch also adds read/write tests for the MPX registers in the register
command tests and adds a new subdirectory for MPX specific tests.
Signed-off-by: Valentina Giusti <valentina.giusti@intel.com>
Reviewers: labath, granata.enrico, lldb-commits, clayborg
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D24187
llvm-svn: 280668
This code represents the Week of Code work I did on bringing up
lldb-server LLGS support for Darwin. It does not include the
Xcode project changes needed, as we don't want to throw that switch
until more support is implemented (i.e. this change is inert, no
build systems use it yet. I've verified on Ubuntu 16.04, macOS
Xcode and macOS cmake builds).
This change does some minimal refactoring of code that is shared
with the Linux LLGS portion, moving it from NativeProcessLinux into
NativeProcessProtocol. That code is also used by NativeProcessDarwin.
Current state on Darwin:
* Process launching is implemented. (Attach is not).
Launching on devices has not yet been tested (FBS/BKS might
need a bit of work).
* Inferior waitpid monitoring and communication of exit status
via MainLoop callback is implemented.
* Memory read/write, breakpoints, thread register context, etc.
are not yet implemented. This impacts process stop/resume, as
the initial launch suspended immediately starts the process
up and running because it doesn't know it is supposed to remain
stopped.
* I implemented the equivalent of MachThreadList as
NativeThreadListDarwin, in anticipation that we might want to
factor out common parts into NativeThreadList{Protocol} and share
some code here. After writing it, though, the fallout from merging
Mach Task/Process into a single concept plus some other minor
changes makes the whole NativeThreadListDarwin concept nothing more
than dead weight. I am likely going to get rid of this class and
just manage it directly in NativeProcessDarwin, much like I did
for NativeProcessLinux.
* There is a stub-out call for starting a STDIO thread. That will
go away and adopt the MainLoop pselect-based IOObject reading.
I am developing the fully-integrated changes in the following repo,
which contains the necessary Xcode bits and the glue that enables
lldb-debugserver on a macOS system:
https://github.com/tfiala/lldb/tree/llgs-darwin
This change also breaks out a few of the lldb-server tests into
their own directory, and adds some $qHostInfo tests (not sure why
I didn't write those tests back when I initially implemented that
on the Linux side).
llvm-svn: 280604