This cleanup patch unifies all methods called GetByteSize() in the
ValueObject hierarchy to return an optional, like the methods in
CompilerType do. This means fewer magic 0 values, which could fix bugs
down the road in languages where types can have a size of zero, such
as Swift and C (but not C++).
Differential Revision: https://reviews.llvm.org/D84285
Beside these two functions just being wrappers around GetTypeName they are also
just a leftover from migrating the CompilerType interface to ConstString.
Summary:
The only use of this class was to implement the SharedCluster of ValueObjects.
However, the same functionality can be implemented using a regular
std::shared_ptr, and its little-known "sub-object pointer" feature, where the
pointer can point to one thing, but actually delete something else when it goes
out of scope.
This patch reimplements SharedCluster using this feature --
SharedClusterPointer::GetObject now returns a std::shared_pointer which points
to the ValueObject, but actually owns the whole cluster. The only change I
needed to make here is that now the SharedCluster object needs to be created
before the root ValueObject. This means that all private ValueObject
constructors get a ClusterManager argument, and their static Create functions do
the create-a-manager-and-pass-it-to-value-object dance.
Reviewers: teemperor, JDevlieghere, jingham
Subscribers: mgorny, jfb, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D74153
StringRef will call strlen on the C string which is inefficient (as ConstString already
knows the string lenght and so does StringRef). This patch replaces all those calls
with GetStringRef() which doesn't recompute the length.
I previously removed the code in ValueObject::GetExpressionPath that
took advantage of the parameter `qualify_cxx_base_classes`. As a result,
this is now unused and can be removed.
Summary:
A *.cpp file header in LLDB (and in LLDB) should like this:
```
//===-- TestUtilities.cpp -------------------------------------------------===//
```
However in LLDB most of our source files have arbitrary changes to this format and
these changes are spreading through LLDB as folks usually just use the existing
source files as templates for their new files (most notably the unnecessary
editor language indicator `-*- C++ -*-` is spreading and in every review
someone is pointing out that this is wrong, resulting in people pointing out that this
is done in the same way in other files).
This patch removes most of these inconsistencies including the editor language indicators,
all the different missing/additional '-' characters, files that center the file name, missing
trailing `===//` (mostly caused by clang-format breaking the line).
Reviewers: aprantl, espindola, jfb, shafik, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: dexonsmith, wuzish, emaste, sdardis, nemanjai, kbarton, MaskRay, atanasyan, arphaman, jfb, abidh, jsji, JDevlieghere, usaxena95, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D73258
Summary:
This commit achieves the following:
- Functions used to return a `TypeSystem *` return an
`llvm::Expected<TypeSystem *>` now. This means that the result of a call
is always checked, forcing clients to move more carefully.
- `TypeSystemMap::GetTypeSystemForLanguage` will either return an Error or a
non-null pointer to a TypeSystem.
Reviewers: JDevlieghere, davide, compnerd
Subscribers: jdoerfert, lldb-commits
Differential Revision: https://reviews.llvm.org/D65122
llvm-svn: 367360
Summary:
NFC = [[ https://llvm.org/docs/Lexicon.html#nfc | Non functional change ]]
This commit is the result of modernizing the LLDB codebase by using
`nullptr` instread of `0` or `NULL`. See
https://clang.llvm.org/extra/clang-tidy/checks/modernize-use-nullptr.html
for more information.
This is the command I ran and I to fix and format the code base:
```
run-clang-tidy.py \
-header-filter='.*' \
-checks='-*,modernize-use-nullptr' \
-fix ~/dev/llvm-project/lldb/.* \
-format \
-style LLVM \
-p ~/llvm-builds/debug-ninja-gcc
```
NOTE: There were also changes to `llvm/utils/unittest` but I did not
include them because I felt that maybe this library shall be updated in
isolation somehow.
NOTE: I know this is a rather large commit but it is a nobrainer in most
parts.
Reviewers: martong, espindola, shafik, #lldb, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: arsenm, jvesely, nhaehnle, hiraditya, JDevlieghere, teemperor, rnkovacs, emaste, kubamracek, nemanjai, ki.stfu, javed.absar, arichardson, kbarton, jrtc27, MaskRay, atanasyan, dexonsmith, arphaman, jfb, jsji, jdoerfert, lldb-commits, llvm-commits
Tags: #lldb, #llvm
Differential Revision: https://reviews.llvm.org/D61847
llvm-svn: 361484
My apologies for the large patch. With the exception of ConstString.h
itself it was entirely produced by sed.
ConstString has exactly one const char * data member, so passing a
ConstString by reference is not any more efficient than copying it by
value. In both cases a single pointer is passed. But passing it by
value makes it harder to accidentally return the address of a local
object.
(This fixes rdar://problem/48640859 for the Apple folks)
Differential Revision: https://reviews.llvm.org/D59030
llvm-svn: 355553
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This patch removes the comments following the header includes. They were
added after running IWYU over the LLDB codebase. However they add little
value, are often outdates and burdensome to maintain.
Differential revision: https://reviews.llvm.org/D54385
llvm-svn: 346625
Clang recently improved its DWARF support for C VLA types. The DWARF
now looks like this:
0x00000051: DW_TAG_variable [4]
DW_AT_location( fbreg -32 )
DW_AT_name( "__vla_expr" )
DW_AT_type( {0x000000d3} ( long unsigned int ) )
DW_AT_artificial( true )
...
0x000000da: DW_TAG_array_type [10] *
DW_AT_type( {0x000000cc} ( int ) )
0x000000df: DW_TAG_subrange_type [11]
DW_AT_type( {0x000000e9} ( __ARRAY_SIZE_TYPE__ ) )
DW_AT_count( {0x00000051} )
Without this patch LLDB will naively interpret the DIE offset 0x51 as
the static size of the array, which is clearly wrong. This patch
extends ValueObject::GetNumChildren to query the dynamic properties of
incomplete array types.
See the testcase for an example:
4 int foo(int a) {
5 int vla[a];
6 for (int i = 0; i < a; ++i)
7 vla[i] = i;
8
-> 9 pause(); // break here
10 return vla[a-1];
11 }
(lldb) fr v vla
(int []) vla = ([0] = 0, [1] = 1, [2] = 2, [3] = 3)
(lldb) quit
rdar://problem/21814005
Differential Revision: https://reviews.llvm.org/D53530
llvm-svn: 346165
These three classes have no external dependencies, but they are used
from various low-level APIs. Moving them down to Utility improves
overall code layering (although it still does not break any particular
dependency completely).
The XCode project will need to be updated after this change.
Differential Revision: https://reviews.llvm.org/D49740
llvm-svn: 339127
This renames the LLDB error class to Status, as discussed
on the lldb-dev mailing list.
A change of this magnitude cannot easily be done without
find and replace, but that has potential to catch unwanted
occurrences of common strings such as "Error". Every effort
was made to find all the obvious things such as the word "Error"
appearing in a string, etc, but it's possible there are still
some lingering occurences left around. Hopefully nothing too
serious.
llvm-svn: 302872
This adjusts header file includes for headers and source files
in Core. In doing so, one dependency cycle is eliminated
because all the includes from Core to that project were dead
includes anyway. In places where some files in other projects
were only compiling due to a transitive include from another
header, fixups have been made so that those files also include
the header they need. Tested on Windows and Linux, and plan
to address failures on OSX and FreeBSD after watching the
bots.
llvm-svn: 299714
In the process, found some functions that were duplicates of
existing StringRef member functions. So deleted those functions
and used the StringRef functions instead.
llvm-svn: 287279
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
Summary:
Along with this, support for an optional argument to the "num_children"
method of a Python synthetic child provider has also been added. These have
been added with the following use case in mind:
Synthetic child providers currently have a method "has_children" and
"num_children". While the former is good enough to know if there are
children, it does not give any insight into how many children there are.
Though the latter serves this purpose, calculating the number for children
of a data structure could be an O(N) operation if the data structure has N
children. The new method added in this change provide a middle ground.
One can call GetNumChildren(K) to know if a child exists at an index K
which can be as large as the callers tolerance can be. If the caller wants
to know about children beyond K, it can make an other call with 2K. If the
synthetic child provider maintains state about it counting till K
previosly, then the next call is only an O(K) operation. Infact, all
calls made progressively with steps of K will be O(K) operations.
Reviewers: vharron, clayborg, granata.enrico
Subscribers: labath, lldb-commits
Differential Revision: http://reviews.llvm.org/D13778
llvm-svn: 250930
This cleans up type systems to be more pluggable. Prior to this we had issues:
- Module, SymbolFile, and many others has "ClangASTContext &GetClangASTContext()" functions. All have been switched over to use "TypeSystem *GetTypeSystemForLanguage()"
- Cleaned up any places that were using the GetClangASTContext() functions to use TypeSystem
- Cleaned up Module so that it no longer has dedicated type system member variables:
lldb::ClangASTContextUP m_ast; ///< The Clang AST context for this module.
lldb::GoASTContextUP m_go_ast; ///< The Go AST context for this module.
Now we have a type system map:
typedef std::map<lldb::LanguageType, lldb::TypeSystemSP> TypeSystemMap;
TypeSystemMap m_type_system_map; ///< A map of any type systems associated with this module
- Many places in code were using ClangASTContext static functions to place with CompilerType objects and add modifiers (const, volatile, restrict) and to make typedefs, L and R value references and more. These have been made into CompilerType functions that are abstract:
class CompilerType
{
...
//----------------------------------------------------------------------
// Return a new CompilerType that is a L value reference to this type if
// this type is valid and the type system supports L value references,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
GetLValueReferenceType () const;
//----------------------------------------------------------------------
// Return a new CompilerType that is a R value reference to this type if
// this type is valid and the type system supports R value references,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
GetRValueReferenceType () const;
//----------------------------------------------------------------------
// Return a new CompilerType adds a const modifier to this type if
// this type is valid and the type system supports const modifiers,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
AddConstModifier () const;
//----------------------------------------------------------------------
// Return a new CompilerType adds a volatile modifier to this type if
// this type is valid and the type system supports volatile modifiers,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
AddVolatileModifier () const;
//----------------------------------------------------------------------
// Return a new CompilerType adds a restrict modifier to this type if
// this type is valid and the type system supports restrict modifiers,
// else return an invalid type.
//----------------------------------------------------------------------
CompilerType
AddRestrictModifier () const;
//----------------------------------------------------------------------
// Create a typedef to this type using "name" as the name of the typedef
// this type is valid and the type system supports typedefs, else return
// an invalid type.
//----------------------------------------------------------------------
CompilerType
CreateTypedef (const char *name, const CompilerDeclContext &decl_ctx) const;
};
Other changes include:
- Removed "CompilerType TypeSystem::GetIntTypeFromBitSize(...)" and CompilerType TypeSystem::GetFloatTypeFromBitSize(...) and replaced it with "CompilerType TypeSystem::GetBuiltinTypeForEncodingAndBitSize(lldb::Encoding encoding, size_t bit_size);"
- Fixed code in Type.h to not request the full type for a type for no good reason, just request the forward type and let the type expand as needed
llvm-svn: 247953
Create a new "lldb_private::CompilerDeclContext" class that will replace all direct uses of "clang::DeclContext" when used in compiler agnostic code, yet still allow for conversion to clang::DeclContext subclasses by clang specific code. This completes the abstraction of type parsing by removing all "clang::" references from the SymbolFileDWARF. The new "lldb_private::CompilerDeclContext" class abstracts decl contexts found in compiler type systems so they can be used in internal API calls. The TypeSystem is required to support CompilerDeclContexts with new pure virtual functions that start with "DeclContext" in the member function names. Converted all code that used lldb_private::ClangNamespaceDecl over to use the new CompilerDeclContext class and removed the ClangNamespaceDecl.cpp and ClangNamespaceDecl.h files.
Removed direct use of clang APIs from SBType and now use the abstract type systems to correctly explore types.
Bulk renames for things that used to return a ClangASTType which is now CompilerType:
"Type::GetClangFullType()" to "Type::GetFullCompilerType()"
"Type::GetClangLayoutType()" to "Type::GetLayoutCompilerType()"
"Type::GetClangForwardType()" to "Type::GetForwardCompilerType()"
"Value::GetClangType()" to "Value::GetCompilerType()"
"Value::SetClangType (const CompilerType &)" to "Value::SetCompilerType (const CompilerType &)"
"ValueObject::GetClangType ()" to "ValueObject::GetCompilerType()"
many more renames that are similar.
llvm-svn: 245905
This is more preparation for multiple different kinds of types from different compilers (clang, Pascal, Go, RenderScript, Swift, etc).
llvm-svn: 244689
Rationale:
Pretty simply, the idea is that sometimes type names are way too long and contain way too many details for the average developer to care about. For instance, a plain ol' vector of int might be shown as
std::__1::vector<int, std::__1::allocator<....
rather than the much simpler std::vector<int> form, which is what most developers would actually type in their code
Proposed solution:
Introduce a notion of "display name" and a corresponding API GetDisplayTypeName() to return such a crafted for visual representation type name
Obviously, the display name and the fully qualified (or "true") name are not necessarily the same - that's the whole point
LLDB could choose to pick the "display name" as its one true notion of a type name, and if somebody really needs the fully qualified version of it, let them deal with the problem
Or, LLDB could rename what it currently calls the "type name" to be the "display name", and add new APIs for the fully qualified name, making the display name the default choice
The choice that I am making here is that the type name will keep meaning the same, and people who want a type name suited for display will explicitly ask for one
It is the less risky/disruptive choice - and it should eventually make it fairly obvious when someone is asking for the wrong type
Caveats:
- for now, GetDisplayTypeName() == GetTypeName(), there is no logic to produce customized display type names yet.
- while the fully-qualified type name is still the main key to the kingdom of data formatters, if we start showing custom names to people, those should match formatters
llvm-svn: 209072
pure virtual base class and made StackFrame a subclass of that. As
I started to build on top of that arrangement today, I found that it
wasn't working out like I intended. Instead I'll try sticking with
the single StackFrame class -- there's too much code duplication to
make a more complicated class hierarchy sensible I think.
llvm-svn: 193983
defines a protocol that all subclasses will implement. StackFrame
is currently the only subclass and the methods that Frame vends are
nearly identical to StackFrame's old methods.
Update all callers to use Frame*/Frame& instead of pointers to
StackFrames.
This is almost entirely a mechanical change that touches a lot of
the code base so I'm committing it alone. No new functionality is
added with this patch, no new subclasses of Frame exist yet.
I'll probably need to tweak some of the separation, possibly moving
some of StackFrame's methods up in to Frame, but this is a good
starting point.
<rdar://problem/15314068>
llvm-svn: 193907
A long time ago we start with clang types that were created by the symbol files and there were many functions in lldb_private::ClangASTContext that helped. Later we create ClangASTType which contains a clang::ASTContext and an opauque QualType, but we didn't switch over to fully using it. There were a lot of places where we would pass around a raw clang_type_t and also pass along a clang::ASTContext separately. This left room for error.
This checkin change all type code over to use ClangASTType everywhere and I cleaned up the interfaces quite a bit. Any code that was in ClangASTContext that was type related, was moved over into ClangASTType. All code that used these types was switched over to use all of the new goodness.
llvm-svn: 186130
lets a ValueObject's contents be set from raw
data. This has certain limitations (notably,
registers can only be set to data that is as
large as the register) but will be useful for
the new Materializer.
I also exposed this interface through SBValue.
I have added a testcase that exercises various
special cases of SBValue::SetData().
llvm-svn: 179437
Major fixed to allow reading files that are over 4GB. The main problems were that the DataExtractor was using 32 bit offsets as a data cursor, and since we mmap all of our object files we could run into cases where if we had a very large core file that was over 4GB, we were running into the 4GB boundary.
So I defined a new "lldb::offset_t" which should be used for all file offsets.
After making this change, I enabled warnings for data loss and for enexpected implicit conversions temporarily and found a ton of things that I fixed.
Any functions that take an index internally, should use "size_t" for any indexes and also should return "size_t" for any sizes of collections.
llvm-svn: 173463
ValueObject, and make sure that ValueObjects that
have null type names (because they have null types)
also have null qualified type names. This avoids
some potential crashes if
ValueObject::GetQualifiedTypeName tries to get the
name of their type by calling GetClangTypeImpl().
llvm-svn: 153718
Fixed type lookups to "do the right thing". Prior to this fix, looking up a type using "foo::bar" would result in a type list that contains all types that had "bar" as a basename unless the symbol file was able to match fully qualified names (which our DWARF parser does not).
This fix will allow type matches to be made based on the basename and then have the types that don't match filtered out. Types by name can be fully qualified, or partially qualified with the new "bool exact_match" parameter to the Module::FindTypes() method.
This fixes some issue that we discovered with dynamic type resolution as well as improves the overall type lookups in LLDB.
llvm-svn: 153482
This solves an issue where a ValueObject was getting a wrong children count (usually, a huge value) and trying to resize the vector of children to fit that many ValueObject*
Added a loop detection algorithm to the synthetic children provider for std::list
Added a few more checks to the synthetic children provider for std::vector
Both std::list and std::vector's synthetic children providers now cache the count of children instead of recomputing it every time
std::map has a field that stores the count, so there is little need to cache it on our side
llvm-svn: 152371
Objective-C classes. This allows LLDB to find
ivars declared in class extensions in modules other
than where the debugger is currently stopped (we
already supported this when the debugger was
stopped in the same module as the definition).
This involved the following main changes:
- The ObjCLanguageRuntime now knows how to hunt
for the authoritative version of an Objective-C
type. It looks for the symbol indicating a
definition, and then gets the type from the
module containing that symbol.
- ValueObjects now report their type with a
potential override, and the override is set if
the type of the ValueObject is an Objective-C
class or pointer type that is defined somewhere
other than the original reported type. This
means that "frame variable" will always use the
complete type if one is available.
- The ClangASTSource now looks for the complete
type when looking for ivars. This means that
"expr" will always use the complete type if one
is available.
- I added a testcase that verifies that both
"frame variable" and "expr" work.
llvm-svn: 151214
objects for the backlink to the lldb_private::Process. The issues we were
running into before was someone was holding onto a shared pointer to a
lldb_private::Thread for too long, and the lldb_private::Process parent object
would get destroyed and the lldb_private::Thread had a "Process &m_process"
member which would just treat whatever memory that used to be a Process as a
valid Process. This was mostly happening for lldb_private::StackFrame objects
that had a member like "Thread &m_thread". So this completes the internal
strong/weak changes.
Documented the ExecutionContext and ExecutionContextRef classes so that our
LLDB developers can understand when and where to use ExecutionContext and
ExecutionContextRef objects.
llvm-svn: 151009
the lldb_private::StackFrame objects hold onto a weak pointer to the thread
object. The lldb_private::StackFrame objects the the most volatile objects
we have as when we are doing single stepping, frames can often get lost or
thrown away, only to be re-created as another object that still refers to the
same frame. We have another bug tracking that. But we need to be able to
have frames no longer be able to get the thread when they are not part of
a thread anymore, and this is the first step (this fix makes that possible
but doesn't implement it yet).
Also changed lldb_private::ExecutionContextScope to return shared pointers to
all objects in the execution context to further thread harden the internals.
llvm-svn: 150871
internals. The first part of this is to use a new class:
lldb_private::ExecutionContextRef
This class holds onto weak pointers to the target, process, thread and frame
and it also contains the thread ID and frame Stack ID in case the thread and
frame objects go away and come back as new objects that represent the same
logical thread/frame.
ExecutionContextRef objcets have accessors to access shared pointers for
the target, process, thread and frame which might return NULL if the backing
object is no longer available. This allows for references to persistent program
state without needing to hold a shared pointer to each object and potentially
keeping that object around for longer than it needs to be.
You can also "Lock" and ExecutionContextRef (which contains weak pointers)
object into an ExecutionContext (which contains strong, or shared pointers)
with code like
ExecutionContext exe_ctx (my_obj->GetExectionContextRef().Lock());
llvm-svn: 150801
Also change the SourceInitFile to look for .lldb-<APPNAME> and source that
preferentially if it exists.
Also made the breakpoint site report its address as well as its breakpoint number
when it gets hit and can't find any the associated locations (usually because the
breakpoint got disabled or deleted programmatically between the time it was hit
and reported.)
Changed ThreadPlanCallFunction to initialize the ivar m_func in the initializers of the
constructor, rather than waiting to initialize till later on in the function.
Fixed a bug where if you make an SBError and the ask it Success, it returns false.
Fixed ValueObject::ResolveValue so that it resolves a temporary value, rather than
overwriting the one in the value object.
llvm-svn: 137536
This is helping us track down some extra references to ModuleSP objects that
are causing things to get kept around for too long.
Added a module pointer accessor to target and change a lot of code to use
it where it would be more efficient.
"taret delete" can now specify "--clean=1" which will cleanup the global module
list for any orphaned module in the shared module cache which can save memory
and also help track down module reference leaks like we have now.
llvm-svn: 137294
"struct ", "class ", and "union " from the start of any type names that are
extracted from clang QualType objects. I had to fix test suite cases that
were expecting the struct/union/class prefix to be there.
llvm-svn: 134132
into some cleanup I have been wanting to do when reading/writing registers.
Previously all RegisterContext subclasses would need to implement:
virtual bool
ReadRegisterBytes (uint32_t reg, DataExtractor &data);
virtual bool
WriteRegisterBytes (uint32_t reg, DataExtractor &data, uint32_t data_offset = 0);
There is now a new class specifically designed to hold register values:
lldb_private::RegisterValue
The new register context calls that subclasses must implement are:
virtual bool
ReadRegister (const RegisterInfo *reg_info, RegisterValue ®_value) = 0;
virtual bool
WriteRegister (const RegisterInfo *reg_info, const RegisterValue ®_value) = 0;
The RegisterValue class must be big enough to handle any register value. The
class contains an enumeration for the value type, and then a union for the
data value. Any integer/float values are stored directly in an appropriate
host integer/float. Anything bigger is stored in a byte buffer that has a length
and byte order. The RegisterValue class also knows how to copy register value
bytes into in a buffer with a specified byte order which can be used to write
the register value down into memory, and this does the right thing when not
all bytes from the register values are needed (getting a uint8 from a uint32
register value..).
All RegiterContext and other sources have been switched over to using the new
regiter value class.
llvm-svn: 131096
pointer to a ValueObject or any of its dependent ValueObjects, and the whole cluster will
stay around as long as that shared pointer stays around.
llvm-svn: 130035