Pass EvalCallOptions via runCheckersForEvalCall into defaultEvalCall.
Update the AnalysisOrderChecker to support evalCall for testing.
Differential Revision: https://reviews.llvm.org/D82256
Party based on this thread:
http://lists.llvm.org/pipermail/cfe-dev/2020-February/064754.html.
This patch merges two of CXXAllocatorCall's parameters, so that we are able to
supply a CallEvent object to check::NewAllocatorCall (see the description of
D75430 to see why this would be great).
One of the things mentioned by @NoQ was the following:
I think at this point we might actually do a good job sorting out this
check::NewAllocator issue because we have a "separate" "Environment" to hold
the other SVal, which is "objects under construction"! - so we should probably
simply teach CXXAllocatorCall to extract the value from the
objects-under-construction trait of the program state and we're good.
I had MallocChecker in my crosshair for now, so I admittedly threw together
something as a proof of concept. Now that I know that this effort is worth
pursuing though, I'll happily look for a solution better then demonstrated in
this patch.
Differential Revision: https://reviews.llvm.org/D75431
Exactly what it says on the tin! The included testfile demonstrates why this is
important -- for C++ dynamic memory operators, we don't always recognize custom,
or even standard-specified new/delete operators as CXXAllocatorCall or
CXXDeallocatorCall.
Differential Revision: https://reviews.llvm.org/D77391
Some checkers may not only depend on language options but also analyzer options.
To make this possible this patch changes the parameter of the shouldRegister*
function to CheckerManager to be able to query the analyzer options when
deciding whether the checker should be registered.
Differential Revision: https://reviews.llvm.org/D75271
This patch introduced additional PointerEscape callbacks after conservative
calls for output parameters. This should not really affect the current
checkers but the upcoming FuchsiaHandleChecker relies on this heavily.
Differential Revision: https://reviews.llvm.org/D71224
Since D57922, the config table contains every checker option, and it's default
value, so having it as an argument for getChecker*Option is redundant.
By the time any of the getChecker*Option function is called, we verified the
value in CheckerRegistry (after D57860), so we can confidently assert here, as
any irregularities detected at this point must be a programmer error. However,
in compatibility mode, verification won't happen, so the default value must be
restored.
This implies something else, other than adding removing one more potential point
of failure -- debug.ConfigDumper will always contain valid values for
checker/package options!
Differential Revision: https://reviews.llvm.org/D59195
llvm-svn: 361042
Under the term "subchecker", I mean checkers that do not have a checker class on
their own, like unix.MallocChecker to unix.DynamicMemoryModeling.
Since a checker object was required in order to retrieve checker options,
subcheckers couldn't possess options on their own.
This patch is also an excuse to change the argument order of getChecker*Option,
it always bothered me, now it resembles the actual command line argument
(checkername:option=value).
Differential Revision: https://reviews.llvm.org/D57579
llvm-svn: 355297
Introduce the boolean ento::shouldRegister##CHECKERNAME(const LangOptions &LO)
function very similarly to ento::register##CHECKERNAME. This will force every
checker to implement this function, but maybe it isn't that bad: I saw a lot of
ObjC or C++ specific checkers that should probably not register themselves based
on some LangOptions (mine too), but they do anyways.
A big benefit of this is that all registry functions now register their checker,
once it is called, registration is guaranteed.
This patch is a part of a greater effort to reinvent checker registration, more
info here: D54438#1315953
Differential Revision: https://reviews.llvm.org/D55424
llvm-svn: 352277
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
ClangCheckerRegistry is a very non-obvious, poorly documented, weird concept.
It derives from CheckerRegistry, and is placed in lib/StaticAnalyzer/Frontend,
whereas it's base is located in lib/StaticAnalyzer/Core. It was, from what I can
imagine, used to circumvent the problem that the registry functions of the
checkers are located in the clangStaticAnalyzerCheckers library, but that
library depends on clangStaticAnalyzerCore. However, clangStaticAnalyzerFrontend
depends on both of those libraries.
One can make the observation however, that CheckerRegistry has no place in Core,
it isn't used there at all! The only place where it is used is Frontend, which
is where it ultimately belongs.
This move implies that since
include/clang/StaticAnalyzer/Checkers/ClangCheckers.h only contained a single function:
class CheckerRegistry;
void registerBuiltinCheckers(CheckerRegistry ®istry);
it had to re purposed, as CheckerRegistry is no longer available to
clangStaticAnalyzerCheckers. It was renamed to BuiltinCheckerRegistration.h,
which actually describes it a lot better -- it does not contain the registration
functions for checkers, but only those generated by the tblgen files.
Differential Revision: https://reviews.llvm.org/D54436
llvm-svn: 349275
One of the reasons why AnalyzerOptions is so chaotic is that options can be
retrieved from the command line whenever and wherever. This allowed for some
options to be forgotten for a looooooong time. Have you ever heard of
"region-store-small-struct-limit"? In order to prevent this in the future, I'm
proposing to restrict AnalyzerOptions' interface so that only checker options
can be retrieved without special getters. I would like to make every option be
accessible only through a getter, but checkers from plugins are a thing, so I'll
have to figure something out for that.
This also forces developers who'd like to add a new option to register it
properly in the .def file.
This is done by
* making the third checker pointer parameter non-optional, and checked by an
assert to be non-null.
* I added new, but private non-checkers option initializers, meant only for
internal use,
* Renamed these methods accordingly (mind the consistent name for once with
getBooleanOption!):
- getOptionAsString -> getCheckerStringOption,
- getOptionAsInteger -> getCheckerIntegerOption
* The 3 functions meant for initializing data members (with the not very
descriptive getBooleanOption, getOptionAsString and getOptionAsUInt names)
were renamed to be overloads of the getAndInitOption function name.
* All options were in some way retrieved via getCheckerOption. I removed it, and
moved the logic to getStringOption and getCheckerStringOption. This did cause
some code duplication, but that's the only way I could do it, now that checker
and non-checker options are separated. Note that the non-checker version
inserts the new option to the ConfigTable with the default value, but the
checker version only attempts to find already existing entries. This is how
it always worked, but this is clunky and I might end reworking that too, so we
can eventually get a ConfigTable that contains the entire configuration of the
analyzer.
Differential Revision: https://reviews.llvm.org/D53483
llvm-svn: 346113
The CoreEngine only gives us a ReturnStmt if the last element in the
CFGBlock is a CFGStmt, otherwise the ReturnStmt is nullptr.
This patch adds support for the case when the last element is a
CFGAutomaticObjDtor, by returning its TriggerStmt as a ReturnStmt.
Differential Revision: https://reviews.llvm.org/D49811
llvm-svn: 338777
This expression may or may not be evaluated in compile time, so tracking the
result symbol is of potential interest. However, run-time offsetof is not yet
supported by the analyzer, so for now this callback is only there to assist
future implementation.
Patch by Henry Wong!
Differential Revision: https://reviews.llvm.org/D42300
llvm-svn: 324790
If the return statement is stored, we might as well allow querying
against it.
Also fix the bug where the return statement is not stored
if there is no return value.
This change un-merges two ExplodedNodes during call exit when the state
is otherwise identical - the CallExitBegin node itself and the "Bind
Return Value"-tagged node.
And expose the return statement through
getStatement helper function.
Differential Revision: https://reviews.llvm.org/D42130
llvm-svn: 324052
PreStmt<CXXNewExpr> was never called.
Additionally, under c++-allocator-inlining=true, PostStmt<CXXNewExpr> was
called twice when the allocator was inlined: once after evaluating the
new-expression itself, once after evaluating the allocator call which, for the
lack of better options, uses the new-expression as the call site.
This patch fixes both problems.
Differential Revision: https://reviews.llvm.org/D41934
rdar://problem/12180598
llvm-svn: 322797
Adjustments should be considered properly; we should copy the unadjusted object
over the whole temporary base region. If the unadjusted object is no longer
available in the Environment, invalidate the temporary base region, and then
copy the adjusted object into the adjusted sub-region of the temporary region.
This fixes a regression introduced by r288263, that caused various
false positives, due to copying only adjusted object into the adjusted region;
the rest of the base region therefore remained undefined.
Before r288263, the adjusted value was copied over the unadjusted region,
which is incorrect, but accidentally worked better due to how region store
disregards compound value bindings to non-base regions.
An additional test machinery is introduced to make sure that despite making
two binds, we only notify checkers once for both of them, without exposing
the partially copied objects.
This fix is a hack over a hack. The proper fix would be to model C++ temporaries
in the CFG, and after that dealing with adjustments would no longer be
necessary, and the values we need would no longer disappear from the
Environment.
rdar://problem/30658168
Differential Revision: https://reviews.llvm.org/D30534
llvm-svn: 298924
This patch also introduces AnalysisOrderChecker which is intended for testing
of callback call correctness.
Differential Revision: https://reviews.llvm.org/D23804
llvm-svn: 280367