If a template is defined via an external AST source, it won't have a
location. When we emit warnings about misusing such templates we
shouldn't emit a "template is declared here" warning with no location,
as that's just confusing.
Reviewers: llvm-beanz, erichkeane, AaronBallman
Reviewed By: erichkeane, AaronBallman
Pull Request: https://github.com/llvm/llvm-project/pull/71264
Lambdas (closure types) are trivially equality-comparable iff they are
non-capturing, because non-capturing lambdas are convertible to function
pointers: if (lam1 == lam2) compiles, then lam1 and lam2 must have
the same type, and be always-equal, and be empty.
Instantiating a lambda at a scope different from where it is defined
will paralyze clang if the trailing require clause refers to local
variables. This patch fixes this by re-adding the local variables to
`LocalInstantiationScope`.
Fixes#64462
This reverts commit 491b2810fb7fe5f080fa9c4f5945ed0a6909dc92.
This change broke valid code and generated incorrect diagnostics, see
https://reviews.llvm.org/D155064
This patch makes clang diagnose extensive cases of consteval if and is_constant_evaluated usage that are tautologically true or false.
This introduces a new IsRuntimeEvaluated boolean flag to Sema::ExpressionEvaluationContextRecord that means the immediate appearance of if consteval or is_constant_evaluated are tautologically false(e.g. inside if !consteval {} block or non-constexpr-qualified function definition body)
This patch also pushes new expression evaluation context when parsing the condition of if constexpr and initializer of constexpr variables so that Sema can be aware that the use of consteval if and is_consteval are tautologically true in if constexpr condition and constexpr variable initializers.
BEFORE this patch, the warning for is_constant_evaluated was emitted from constant evaluator. This patch moves the warning logic to Sema in order to diagnose tautological use of is_constant_evaluated in the same way as consteval if.
This patch separates initializer evaluation context from InitializerScopeRAII.
This fixes a bug that was happening when user takes address of function address in initializers of non-local variables.
Fixes https://github.com/llvm/llvm-project/issues/43760
Fixes https://github.com/llvm/llvm-project/issues/51567
Reviewed By: cor3ntin, ldionne
Differential Revision: https://reviews.llvm.org/D155064
Like concepts checking, a trailing return type of a lambda
in a dependent context may refer to captures in which case
they may need to be rebuilt, so the map of local decl
should include captures.
This patch reveal a pre-existing issue.
`this` is always recomputed by TreeTransform.
`*this` (like all captures) only become `const`
after the parameter list.
However, if try to recompute the value of `this` (in a parameter)
during template instantiation while determining the type of the call operator,
we will determine it to be const (unless the lambda is mutable).
There is no good way to know at that point that we are in a parameter
or not, the easiest/best solution is to transform the type of this.
Note that doing so break a handful of HLSL tests.
So this is a prototype at this point.
Fixes#65067Fixes#63675
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D159126
Like concepts checking, a trailing return type of a lambda
in a dependent context may refer to captures in which case
they may need to be rebuilt, so the map of local decl
should include captures.
This patch reveal a pre-existing issue.
`this` is always recomputed by TreeTransform.
`*this` (like all captures) only become `const`
after the parameter list.
However, if try to recompute the value of `this` (in a parameter)
during template instantiation while determining the type of the call operator,
we will determine it to be const (unless the lambda is mutable).
There is no good way to know at that point that we are in a parameter
or not, the easiest/best solution is to transform the type of this.
Note that doing so break a handful of HLSL tests.
So this is a prototype at this point.
Fixes#65067Fixes#63675
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D159126
When parsing a trailing return type / noexcept / constraint
of a generic lambda, we need to know that we are in a dependent
context. We currently don't because we only create a TemplateDecl
for the call operator one its fully parsed.
This patch attach a template decl to the call operator as soon
as the parameter declaration clause is parsed - the point at which
we have collected all template parameters
Fixes#64689
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D159358
This is a C++ feature that allows the use of `_` to
declare multiple variable of that name in the same scope;
these variables can then not be referred to.
In addition, while P2169 does not extend to parameter
declarations, we stop warning on unused parameters of that name,
for consistency.
The feature is backported to all C++ language modes.
Reviewed By: #clang-language-wg, aaron.ballman
Differential Revision: https://reviews.llvm.org/D153536
A lambda call operator can be a templated entity -
and therefore have constraints while not being a function template
template<class T> void f() {
[]() requires false { }();
}
In that case, we would check the constraints of the call operator
which is non-viable. However, we would find a viable candidate:
the conversion operator to function pointer, and use it to
perform a surrogate call.
These constraints were not checked because:
* We never check the constraints of surrogate functions
* The lambda conversion operator has non constraints.
From the wording, it is not clear what the intent is but
it seems reasonable to expect the constraints of the lambda conversion
operator to be checked and it is consistent with GCC and MSVC.
This patch also improve the diagnostics for constraint failure
on surrogate calls.
Fixes#63181
Reviewed By: #clang-language-wg, aaron.ballman
Differential Revision: https://reviews.llvm.org/D154368
Rename parameter in Sema::addInitCapture as proposed in review of Sema::addInitCapture. Sorry, that I have missed the comment there!
Reviewed By: ilya-biryukov
Differential Revision: https://reviews.llvm.org/D139541
expr.prim.lambda.capture p5 says:
If an identifier in a capture appears as the declarator-id of a parameter of
the lambda-declarator's parameter-declaration-clause or as the name of a
template parameter of the lambda-expression's template-parameter-list,
the program is ill-formed.
and also has the following example:
```
auto h = [y = 0]<typename y>(y) { return 0; };
```
which now results in
```
error: declaration of 'y' shadows template parameter
auto l1 = [y = 0]<typename y>(y) { return 0; };
^
note: template parameter is declared here
auto l1 = [y = 0]<typename y>(y) { return 0; };
^
```
Fixes https://github.com/llvm/llvm-project/issues/61105
Reviewed By: shafik, cor3ntin
Differential Revision: https://reviews.llvm.org/D148712
This also reverts 282cae0b9a602267ad7ef622f770066491332a11 as the
particular crash is now handled by the new code.
Before this change Clang would always leave declarations inside the
type-locs as `null` if the declarator had an invalid type. This patch
populates declarations even for invalid types if the structure of the
type and the type-locs match.
There are certain cases that may still cause crashes. These happen when
Clang recovers the type in a way that is not reflected in the
declarator's structure, e.g. adding a pointer when it was not present in
the code for ObjC interfaces or ignoring pointers written in the code
in C++ with auto return type (`auto* foo() -> int`). Those cases look
fixable with a better recovery strategy and I plan to follow up with
more patches to address those.
The first attempt caused 31 tests from `check-clang` to crash due to
different structure of the types and type-locs after certain errors. The
good news is that the failure is localized and mismatch in structures is
discovered by assertions inside `DeclaratorLocFiller`. Some notable
cases caught by existing tests:
- Invalid chunks when type is fully ignored and replace with int or now.
Crashed in `C/C2x/n2838.c`.
- Invalid return types in lambdas. Crashed in `CXX/drs/dr6xx.cpp`.
- Invalid member pointers. Crashed in `CXX/dcl.dcl/dcl.spec/dcl.type/dcl.spec.auto/p3-generic-lambda-1y.cpp`
- ObjC recovery that adds pointers. Crashed in `SemaObjC/blocks.m`
This change also updates the output of `Index/complete-blocks.m`.
Not entirely sure what causes the change, but the new function signature
is closer to the source code, so this seems like an improvement.
Reviewed By: aaron.ballman, erichkeane
Differential Revision: https://reviews.llvm.org/D146971
https://llvm.org/pr58819 - clang is giving an externally visible lambda in a static data member internal linkage and the wrong linkage name.
Looks like we should be classifying this case the same as a non-static data member, so far as I can tell from the ABI docs and template examples (seems like the non-template inline-defined case should be the same).
This is a change in ABI, but not sure it qualifies as an ABI break as far as Apple and Sony are concerned - do you folks want this change? (it should fix the example in the bug where a static member in such a lambda ends up bifurcated, and I don't /think/ it'll break existing code since the symbol was previously internal anyway)
Looks like GCC has got this mangling slightly wrong (so we'd still end up with GCC+Clang bifurcation of the local static in the lambda, function address inequality, etc) in that they miss the variable name in the mangling in the non-template case. GCC bug: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=107741
Differential Revision: https://reviews.llvm.org/D138247
Previously, distinct lambdas would get merged, and multiple definitions
of the same lambda would not get merged, because we attempted to
identify lambdas by their ordinal position within their lexical
DeclContext. This failed for lambdas within namespace-scope variables
and within variable templates, where the lexical position in the context
containing the variable didn't uniquely identify the lambda.
In this patch, we instead identify lambda closure types by index within
their context declaration, which does uniquely identify them in a way
that's consistent across modules.
This change causes a deserialization cycle between the type of a
variable with deduced type and a lambda appearing as the initializer of
the variable -- reading the variable's type requires reading and merging
the lambda, and reading the lambda requires reading and merging the
variable. This is addressed by deferring loading the deduced type of a
variable until after we finish recursive deserialization.
This also exposes a pre-existing subtle issue where loading a
variable declaration would trigger immediate loading of its initializer,
which could recursively refer back to properties of the variable. This
particularly causes problems if the initializer contains a
lambda-expression, but can be problematic in general. That is addressed
by switching to lazily loading the initializers of variables rather than
always loading them with the variable declaration. As well as fixing a
deserialization cycle, that should improve laziness of deserialization
in general.
LambdaDefinitionData had 63 spare bits in it, presumably caused by an
off-by-one-error in some previous change. This change claims 32 of those bits
as a counter for the lambda within its context. We could probably move the
numbering to separate storage, like we do for the device-side mangling number,
to optimize the likely-common case where all three numbers (host-side mangling
number, device-side mangling number, and index within the context declaration)
are zero, but that's not done in this change.
Fixes#60985.
Reviewed By: #clang-language-wg, aaron.ballman
Differential Revision: https://reviews.llvm.org/D145737
The current implementation 6da3d66f03f9162ef341cc67218be40e22fe9808
got a few things wrong, particularly that a template, or definition
or member in a templated entity is required to be allowed to have a
trailing requires clause.
This patch corrects this, as reproted by #61748Fixes: #61748
Differential Revision: https://reviews.llvm.org/D147070
Fix a regresion introduced by D124351.
Attributes of lambda call operator were evaluated in the
context of the closure object type rather than its operator,
causing an assertion failure.
This was because we temporarily switch to the class lambda to
produce the mangling of the lambda, but we stayed in that
context too long.
Reviewed By: eandrews, aaron.ballman
Differential Revision: https://reviews.llvm.org/D146535
Fixes#61441.
Currently, Clang stores `nullptr` in the parameter lists inside
`FunctionProtoTypeLoc` if `__fp16` is used without pointer qualifiers.
Any code path that calls `Declarator::setInvalidType()` before
`GetFullTypeForDeclarator` will lead to the same problem downstream.
The relevant code is:
```cpp
if (D.isInvalidType())
return Context.getTrivialTypeSourceInfo(T);
return GetTypeSourceInfoForDeclarator(state, T, TInfo);
```
`GetTypeSourceInfoForDeclarator` sets the parameter `Decl`, but we can't
call it when `isInvalidType() == true` as this causes other assertion
failures that seem harder to fix.
Reviewed By: kadircet
Differential Revision: https://reviews.llvm.org/D146426
This implements P2036R3 and P2579R0.
That is, explicit, int, and implicit capture become visible
at the start of the parameter head.
Reviewed By: aaron.ballman, rupprecht, shafik
Differential Revision: https://reviews.llvm.org/D124351
The `_invoke` function of lambdas was not respecting
the constexpr/consteval specifier of the call operator, so it was possible
to take its address in a non-immmediately invoked context,
even if the call operator was itself consteval.
In addition, we improve the diagnostic emmited in the lambda case
not to show that `invoke` method.
Fixes#57682
Reviewed By: aaron.ballman, #clang-language-wg
Differential Revision: https://reviews.llvm.org/D144627
This reverts commit d708a186b6a9b050d09558163dd353d9f738c82d (and typo fix e4bc9898ddbeb70bc49d713bbf863f050f21e03f). It causes a compilation error for this:
```
struct StringLiteral {
template <int N>
StringLiteral(const char (&array)[N])
__attribute__((enable_if(N > 0 && N == __builtin_strlen(array) + 1,
"invalid string literal")));
};
struct Message {
Message(StringLiteral);
};
void Func1() {
auto x = Message("x"); // Note: this is fine
// Note: "xx\0" to force a different type, StringLiteral<3>, otherwise this
// successfully builds.
auto y = [&](decltype(Message("xx"))) {};
// ^ fails with: repro.cc:18:13: error: reference to local variable 'array'
// declared in enclosing function 'StringLiteral::StringLiteral<3>'
(void)x;
(void)y;
}
```
More details posted to D124351.
This implements P2036R3 and P2579R0.
That is, explicit, int, and implicit capture become visible
at the start of the parameter head.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D124351
Structured bindings were not properly marked odr-used
and therefore captured in generic lambddas.
Fixes#57826
It is unclear to me if further simplification can be gained
through the allowance described in
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/p0588r1.html.
Either way, I think this makes support for P0588 completes,
but we probably want to add test for that in a separate PR.
(and I lack confidence I understand P0588 sufficiently to assert
the completeness of our cnformance).
Reviewed By: aaron.ballman, #clang-language-wg
Differential Revision: https://reviews.llvm.org/D137244
This change will allow users to call getNullability() without providing an ASTContext.
Reviewed By: gribozavr2
Differential Revision: https://reviews.llvm.org/D140104
Ensure that the correct information whether an init-capture of a lambda
is passed by reference or by copy. This information is already computed
and has to be passed to the place where `NewInitCaptureType` is
created.
Before this fix it has been checked whether the VarDecl is a reference
type. This doesn't work for packed expansions, as the information
whether it is passed by reference or by copy is stored at the pattern of
a `PackExpansionType` and not at the type itself.
However, as the information has been already computed, we just have to
pass it.
Add tests that lambda captures with var decls which are reference types
are created in the AST and a disgnotics test for pack expansions.
Fixes#49266
Differential Revision: https://reviews.llvm.org/D139125
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
This reverts commit cecc9a92cfca71c1b6c2a35c5e302ab649496d11.
The problem ended up being how we were handling the lambda-context in
code generation: we were assuming any decl context here would be a
named-decl, but that isn't the case. Instead, we just replace it with
the concept's owning context.
Differential Revision: https://reviews.llvm.org/D136451
This reverts commit b876f6e2f28779211a829d7d4e841fe68885ae20.
Still getting build failures on PPC AIX that aren't obvious what is causing
them, so reverting while I try to figure this out.
This reverts commit b7c922607c5ba93db8b893d4ba461052af8317b5.
This seems to cause some problems with some modules related things,
which makes me think I should have updated the version-major in
ast-bit-codes? Going to revert to confirm this was a problem, then
change that and re-try a commit.
As that bug reports, the problem here is that the lambda's
'context-decl' was not set to the concept, and the lambda picked up
template arguments from the concept. SO, we failed to get the correct
template arguments in SemaTemplateInstantiate.
However, a Concept Specialization is NOT a decl, its an expression, so
we weren't able to put the concept in the decl tree like we needed.
This patch introduces a ConceptSpecializationDecl, which is the smallest
type possible to use for this purpose, containing only the template
arguments.
The net memory impliciation of this is turning a
trailing-objects into a pointer to a type with trailing-objects, so it
should be minor.
As future work, we may consider giving this type more responsibility, or
figuring out how to better merge duplicates, but as this is just a
template-argument collection at the moment, there isn't much value to
it.
Differential Revision: https://reviews.llvm.org/D136451
Added keyword, LangAS and TypeAttrbute for groupshared.
Tanslate it to LangAS with asHLSLLangAS.
Make sure it translated into address space 3 for DirectX target.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D135060
This completes the implementation of P1091R3 and P1381R1.
This patch allow the capture of structured bindings
both for C++20+ and C++17, with extension/compat warning.
In addition, capturing an anonymous union member,
a bitfield, or a structured binding thereof now has a
better diagnostic.
We only support structured bindings - as opposed to other kinds
of structured statements/blocks. We still emit an error for those.
In addition, support for structured bindings capture is entirely disabled in
OpenMP mode as this needs more investigation - a specific diagnostic indicate the feature is not yet supported there.
Note that the rest of P1091R3 (static/thread_local structured bindings) was already implemented.
at the request of @shafik, i can confirm the correct behavior of lldb wit this change.
Fixes https://github.com/llvm/llvm-project/issues/54300
Fixes https://github.com/llvm/llvm-project/issues/54300
Fixes https://github.com/llvm/llvm-project/issues/52720
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D122768
This completes the implementation of P1091R3 and P1381R1.
This patch allow the capture of structured bindings
both for C++20+ and C++17, with extension/compat warning.
In addition, capturing an anonymous union member,
a bitfield, or a structured binding thereof now has a
better diagnostic.
We only support structured bindings - as opposed to other kinds
of structured statements/blocks. We still emit an error for those.
In addition, support for structured bindings capture is entirely disabled in
OpenMP mode as this needs more investigation - a specific diagnostic indicate the feature is not yet supported there.
Note that the rest of P1091R3 (static/thread_local structured bindings) was already implemented.
at the request of @shafik, i can confirm the correct behavior of lldb wit this change.
Fixes https://github.com/llvm/llvm-project/issues/54300
Fixes https://github.com/llvm/llvm-project/issues/54300
Fixes https://github.com/llvm/llvm-project/issues/52720
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D122768
This reverts commit 69dd89fdcbd846375a45e2fe3a88710887236d7a.
This reverts commit 04000c2f928a7adc32138a664d167f01b642bef3.
The current states breaks libstdc++ usage (https://reviews.llvm.org/D119136#3455423).
The fixup has been reverted as it caused other valid code to be disallowed.
I think we should start from the clean state by reverting all relevant commits.
D119136 changed how captures are handled in a lambda call operator
declaration, but did not properly handled dependant context,
which led to crash when refering to init-captures in
a trailing return type.
We fix that bug by making transformations more symetric with parsing,
ie. we first create the call operator, then transform the capture,
then compute the type of the lambda call operaror.
This ensures captures exist and have the right type when
we parse a trailing requires-clause / return type.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D124012
Implement P2036R3.
Captured variables by copy (explicitely or not), are deduced
correctly at the point we know whether the lambda is mutable,
and ill-formed before that.
Up until now, the entire lambda declaration up to the start of the body would be parsed in the parent scope, such that capture would not be available to look up.
The scoping is changed to have an outer lambda scope, followed by the lambda prototype and body.
The lambda scope is necessary because there may be a template scope between the start of the lambda (to which we want to attach the captured variable) and the prototype scope.
We also need to introduce a declaration context to attach the captured variable to (and several parts of clang assume captures are handled from the call operator context), before we know the type of the call operator.
The order of operations is as follow:
* Parse the init capture in the lambda's parent scope
* Introduce a lambda scope
* Create the lambda class and call operator
* Add the init captures to the call operator context and the lambda scope. But the variables are not capured yet (because we don't know their type).
Instead, explicit captures are stored in a temporary map that conserves the order of capture (for the purpose of having a stable order in the ast dumps).
* A flag is set on LambdaScopeInfo to indicate that we have not yet injected the captures.
* The parameters are parsed (in the parent context, as lambda mangling recurses in the parent context, we couldn't mangle a lambda that is attached to the context of a lambda whose type is not yet known).
* The lambda qualifiers are parsed, at this point We can switch (for the second time) inside the lambda context, unset the flag indicating that we have not parsed the lambda qualifiers,
record the lambda is mutable and capture the explicit variables.
* We can parse the rest of the lambda type, transform the lambda and call operator's types and also transform the call operator to a template function decl where necessary.
At this point, both captures and parameters can be injected in the body's scope. When trying to capture an implicit variable, if we are before the qualifiers of a lambda, we need to remember that the variables are still in the parent's context (rather than in the call operator's).
Reviewed By: aaron.ballman, #clang-language-wg, ChuanqiXu
Differential Revision: https://reviews.llvm.org/D119136