Certain applications crashed for us with the AMDGPU backend. While this
is not a proper fix it allows us to compile the code for now. I left a
TODO for someone that understands DWARF.
Differential Revision: https://reviews.llvm.org/D123717
A shift-left > 63 triggers a UBSAN failure. This patch kicks the can
down the road (to the consumer) by emitting a more compact
representation of the shift computation in DWARF expressions.
Relanding (I accidentally pushed an earlier version of the patch previously).
Differential Revision: https://reviews.llvm.org/D118183
A shift-left > 63 triggers a UBSAN failure. This patch kicks the can
down the road (to the consumer) by emitting a more compact
representation of the shift computation in DWARF expressions.
Differential Revision: https://reviews.llvm.org/D118183
A shift-left > 63 triggers a UBSAN failure. This patch kicks the can
down the road (to the consumer) by emitting a more compact
representation of the shift computation in DWARF expressions.
Differential Revision: https://reviews.llvm.org/D118183
DwarfExpression::addUnsignedConstant(const APInt &Value) only supports
wider-than-64-bit values when it is used to emit a top-level DWARF
expression representing the location of a variable. Before this change,
it was possible to call addUnsignedConstant on >64 bit values within a
subexpression when substituting DW_OP_LLVM_arg values.
This can trigger an assertion failure (e.g. PR52584, PR52333) when it
happens in a fragment (DW_OP_LLVM_fragment) expression, as
addUnsignedConstant on >64 bit values splits the constant into separate
DW_OP_pieces, which modifies DwarfExpression::OffsetInBits.
This change papers over the assertion errors by bailing on overly wide
DW_OP_LLVM_arg values. A more comprehensive fix might be to be to split
wide values into pointer-sized fragments.
[0] https://github.com/llvm/llvm-project/blob/e71fa03/llvm/lib/CodeGen/AsmPrinter/DwarfCompileUnit.cpp#L799-L805
Patch by Ricky Zhou!
Differential Revision: https://reviews.llvm.org/D115343
For locally scoped lambdas like this there's no particular benefit to
explicitly listing captures - or avoiding capturing this. Switch to [&]
and make it all easier to maintain.
(& driveby change std::function to llvm::function_ref)
This patch allows DBG_VALUE_LIST instructions to be emitted to DWARF with valid
DW_AT_locations. This change mainly affects DbgEntityHistoryCalculator, which
now tracks multiple registers per value, and DwarfDebug+DwarfExpression, which
can now emit multiple machine locations as part of a DWARF expression.
Differential Revision: https://reviews.llvm.org/D83495
This patch enables AsmPrinter support for complex expression with
entry values. It shouldn't AsmPrinter's call whether these are safe or
not but the pass who introduces the DW_OP_LLVM_entry_value. This patch
on its own has no effect on clang.
Differential Revision: https://reviews.llvm.org/D96559
This patch hides the logic for setting the location kind of an entry
value inside the begin/finalize/cancel functions. This way we get rid
the strange workaround that is currently in setLocation().
In the future, this will allow us to set the location kind of the
entry value independently from the location kind of the main
expression.
Differential Revision: https://reviews.llvm.org/D96554
This patch moves the selection of the style used to emit the numbers
(DW_OP_implicit_value vs. DW_OP_const+DW_OP_stack_value) into
DwarfExpression::addUnsignedConstant. This logic is not FP-specific, and
it will be needed for large integers too.
The refactor also makes DW_OP_implicit_value (DW_OP_stack_value worked
already) be used for floating point constants other than float and
double, so I've added a _Float16 test for it.
Split off from D90916.
Differential Revision: https://reviews.llvm.org/D91058
This commit adds a missed out line in earlier commit for DW_TAG_generic_subrange.
Previous commit ID: a6dd01afa3d5902203d04a72e0b478078f796a35
Differential Revision: https://reviews.llvm.org/D89218
Thanks markus for pointing this out.
This is needed to support fortran assumed rank arrays which
have runtime rank.
Summary:
Fortran assumed rank arrays have dynamic rank. DWARF TAG
DW_TAG_generic_subrange is needed to support that.
Testing:
unit test cases added (hand-written)
check llvm
check debug-info
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D89218
Fix an out-of-bounds shift in emitLegacyZExt by using a slightly more
complicated dwarf expression to create the zext mask.
This addresses a UBSan diagnostic seen when compiling compiler-rt
(llvm.org/PR47927).
rdar://70307714
Differential Revision: https://reviews.llvm.org/D89838
Testing reveals that lldb and gdb have some problems with supporting
DW_OP_convert - gdb with Split DWARF tries to resolve the CU-relative
DIE offset relative to the skeleton DIE. lldb tries to treat the offset
as absolute, which judging by the llvm-dsymutil support for
DW_OP_convert, I guess works OK in MachO? (though probably llvm-dsymutil
is producing invalid DWARF by resolving the relative reference to an
absolute one?).
Specifically this disables DW_OP_convert usage in DWARFv5 if:
* Tuning for GDB and using Split DWARF
* Tuning for LLDB and not targeting MachO
LLVM rejects DWARF operator DW_OP_over. This DWARF operator is needed
for Flang to support assumed rank array.
Summary:
Currently LLVM rejects DWARF operator DW_OP_over. Below error is
produced when llvm finds this operator.
[..]
invalid expression
!DIExpression(151, 20, 16, 48, 30, 35, 80, 34, 6)
warning: ignoring invalid debug info in over.ll
[..]
There were some parts missing in support of this operator, which are
now completed.
Testing
-added a unit testcase
-check-debuginfo
-check-llvm
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D89208
The byte swapping, when dealing with 4 byte (float) FP constants
in DwarfExpression::addConstantFP, added in commit ef8992b9f0189005
was not correct. It always performed byte swapping using an
uint64_t value. When dealing with 4 byte values the 4 interesting
bytes ended up in the big end of the uint64_t, but later we emitted
the 4 bytes at the little end. So we ended up with zeroes being
emitted and faulty debug information.
This patch simplifies things a bit, IMHO. Using the APInt
representation throughout the function, instead of looking at
the internal representation using getRawBytes and without using
reinterpret_cast etc. And using API.byteSwap() should result in
correct byte swapping independent of APInt being 4 or 8 bytes.
Differential Revision: https://reviews.llvm.org/D86272
This patch was reverted in 7c182663a857fc87 due to some failures
observed on PCC based machines. Failures were due to Endianness issue and
long double representation issues.
Patch is revised to address Endianness issue. Furthermore, support
for emission of `DW_OP_implicit_value` for `long double` has been removed
(since it was unclean at the moment). Planning to handle this in
a clean way soon!
For more context, please refer to following review link.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D83560
llvm is missing support for DW_OP_implicit_value operation.
DW_OP_implicit_value op is indispensable for cases such as
optimized out long double variables.
For intro refer: DWARFv5 Spec Pg: 40 2.6.1.1.4 Implicit Location Descriptions
Consider the following example:
```
int main() {
long double ld = 3.14;
printf("dummy\n");
ld *= ld;
return 0;
}
```
when compiled with tunk `clang` as
`clang test.c -g -O1` produces following location description
of variable `ld`:
```
DW_AT_location (0x00000000:
[0x0000000000201691, 0x000000000020169b): DW_OP_constu 0xc8f5c28f5c28f800, DW_OP_stack_value, DW_OP_piece 0x8, DW_OP_constu 0x4000, DW_OP_stack_value, DW_OP_bit_piece 0x10 0x40, DW_OP_stack_value)
DW_AT_name ("ld")
```
Here one may notice that this representation is incorrect(DWARF4
stack could only hold integers(and only up to the size of address)).
Here the variable size itself is `128` bit.
GDB and LLDB confirms this:
```
(gdb) p ld
$1 = <invalid float value>
(lldb) frame variable ld
(long double) ld = <extracting data from value failed>
```
GCC represents/uses DW_OP_implicit_value in these sort of situations.
Based on the discussion with Jakub Jelinek regarding GCC's motivation
for using this, I concluded that DW_OP_implicit_value is most appropriate
in this case.
Link: https://gcc.gnu.org/pipermail/gcc/2020-July/233057.html
GDB seems happy after this patch:(LLDB doesn't have support
for DW_OP_implicit_value)
```
(gdb) p ld
p ld
$1 = 3.14000000000000012434
```
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D83560
This patch was reverted in 9d2da6759b4d due to assertion failure seen
in `test/DebugInfo/Sparc/subreg.ll`. Assertion failure was happening
due to malformed/unhandeled DwarfExpression.
Differential Revision: https://reviews.llvm.org/D83560
Summary:
llvm is missing support for DW_OP_implicit_value operation.
DW_OP_implicit_value op is indispensable for cases such as
optimized out long double variables.
For intro refer: DWARFv5 Spec Pg: 40 2.6.1.1.4 Implicit Location Descriptions
Consider the following example:
```
int main() {
long double ld = 3.14;
printf("dummy\n");
ld *= ld;
return 0;
}
```
when compiled with tunk `clang` as
`clang test.c -g -O1` produces following location description
of variable `ld`:
```
DW_AT_location (0x00000000:
[0x0000000000201691, 0x000000000020169b): DW_OP_constu 0xc8f5c28f5c28f800, DW_OP_stack_value, DW_OP_piece 0x8, DW_OP_constu 0x4000, DW_OP_stack_value, DW_OP_bit_piece 0x10 0x40, DW_OP_stack_value)
DW_AT_name ("ld")
```
Here one may notice that this representation is incorrect(DWARF4
stack could only hold integers(and only up to the size of address)).
Here the variable size itself is `128` bit.
GDB and LLDB confirms this:
```
(gdb) p ld
$1 = <invalid float value>
(lldb) frame variable ld
(long double) ld = <extracting data from value failed>
```
GCC represents/uses DW_OP_implicit_value in these sort of situations.
Based on the discussion with Jakub Jelinek regarding GCC's motivation
for using this, I concluded that DW_OP_implicit_value is most appropriate
in this case.
Link: https://gcc.gnu.org/pipermail/gcc/2020-July/233057.html
GDB seems happy after this patch:(LLDB doesn't have support
for DW_OP_implicit_value)
```
(gdb) p ld
p ld
$1 = 3.14000000000000012434
```
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D83560
Summary:
This is a fix for PR45009.
When working on D67492 I made DwarfExpression emit a single
DW_OP_entry_value operation covering the whole composite location
description that is produced if a register does not have a valid DWARF
number, and is instead composed of multiple register pieces. Looking
closer at the standard, this appears to not be valid DWARF. A
DW_OP_entry_value operation's block can only be a DWARF expression or a
register location description, so it appears to not be valid for it to
hold a composite location description like that.
See DWARFv5 sec. 2.5.1.7:
"The DW_OP_entry_value operation pushes the value that the described
location held upon entering the current subprogram. It has two
operands: an unsigned LEB128 length, followed by a block containing a
DWARF expression or a register location description (see Section
2.6.1.1.3 on page 39)."
Here is a dwarf-discuss mail thread regarding this:
http://lists.dwarfstd.org/pipermail/dwarf-discuss-dwarfstd.org/2020-March/004610.html
There was not a strong consensus reached there, but people seem to lean
towards that operations specified under 2.6 (e.g. DW_OP_piece) may not
be part of a DWARF expression, and thus the DW_OP_entry_value operation
can't contain those.
Perhaps we instead want to emit a entry value operation per each
DW_OP_reg* operation, e.g.:
- DW_OP_entry_value(DW_OP_regx sub_reg0),
DW_OP_stack_value,
DW_OP_piece 8,
- DW_OP_entry_value(DW_OP_regx sub_reg1),
DW_OP_stack_value,
DW_OP_piece 8,
[...]
The question then becomes how the call site should look; should a
composite location description be emitted there, and we then leave it up
to the debugger to match those two composite location descriptions?
Another alternative could be to emit a call site parameter entry for
each sub-register, but firstly I'm unsure if that is even valid DWARF,
and secondly it seems like that would complicate the collection of call
site values quite a bit. As far as I can tell GCC does not emit any
entry values / call sites in these cases, so we do not have something to
compare with, but the former seems like the more reasonable approach.
Currently when trying to emit a call site entry for a parameter composed
of multiple DWARF registers a (DwarfRegs.size() == 1) assert is
triggered in addMachineRegExpression(). Until the call site
representation is figured out, and until there is use for these entry
values in practice, this commit simply stops the invalid DWARF from
being emitted.
Reviewers: djtodoro, vsk, aprantl
Reviewed By: djtodoro, vsk
Subscribers: jyknight, hiraditya, fedor.sergeev, jrtc27, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D75270
Summary:
A struct argument can be passed-by-value to a callee via a pointer to a
temporary stack copy. Add support for emitting an entry value DBG_VALUE
when an indirect parameter DBG_VALUE becomes unavailable. This is done
by omitting DW_OP_stack_value from the entry value expression, to make
the expression describe the location of an object.
rdar://63373691
Reviewers: djtodoro, aprantl, dstenb
Subscribers: hiraditya, lldb-commits, llvm-commits
Tags: #lldb, #llvm
Differential Revision: https://reviews.llvm.org/D80345
llvm rejects DWARF operator DW_OP_push_object_address.This DWARF
operator is needed for Flang to support allocatable array.
Summary:
Currently llvm rejects DWARF operator DW_OP_push_object_address.
below error is produced when llvm finds this operator.
[..]
invalid expression
!DIExpression(151)
warning: ignoring invalid debug info in pushobj.ll
[..]
There are some parts missing in support of this operator, need to
be completed.
Testing
-added a unit testcase
-check-debuginfo
-check-llvm
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D79306
This patch fixes an assertion failure in DwarfExpression that is
triggered when a complex fragment has exactly the size of a
subregister of the register the DBG_VALUE points to *and* there is no
DWARF encoding for the super-register.
I took the opportunity to replace/document some magic values with
static constructor functions to make this code less confusing to read.
rdar://problem/58489125
Differential Revision: https://reviews.llvm.org/D72938
Extends DWARF expression language to express locals/globals locations. (via
target-index operands atm) (possible variants are: non-virtual registers
or address spaces)
The WebAssemblyExplicitLocals can replace virtual registers to targertindex
operand type at the time when WebAssembly backend introduces
{get,set,tee}_local instead of corresponding virtual registers.
Reviewed By: aprantl, dschuff
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D52634
DwarfExpression::addMachineReg() knows how to build a larger register
that isn't expressible in DWARF by combining multiple
subregisters. However, if the entire value fits into just one
subregister, it would still emit the other subregisters, leading to
all sorts of inconsistencies down the line.
This patch fixes that by moving an already existing(!) check whether
the subregister's offset is before the end of the value to the right
place.
rdar://problem/57294211
Differential Revision: https://reviews.llvm.org/D70508
Allow call site paramter descriptions to reference spill slots. Spill
slots are not visible to high-level LLVM IR, so they can safely be
referenced during entry value evaluation (as they cannot be clobbered by
some other function).
This gives a 5% increase in the number of call site parameter DIEs in an
LTO x86_64 build of the xnu kernel.
This reverts commit eb4c98ca3d2590bad9f6542afbf3a7824d2b53fa (
[DebugInfo] Exclude memory location values as parameter entry values),
effectively reintroducing the portion of D60716 which dealt with memory
locations (authored by Djordje, Nikola, Ananth, and Ivan).
This partially addresses llvm.org/PR43343. However, not all memory
operands forwarded to callees live in spill slots. In the xnu build, it
may be possible to use an escape analysis to increase the number of call
site parameter by another 15% (more details in PR43343).
Differential Revision: https://reviews.llvm.org/D70254
Summary:
Internally in LLVM's metadata we use DW_OP_entry_value operations with
the same semantics as DWARF; that is, its operand specifies the number
of bytes that the entry value covers.
At the time of emitting entry values we don't know the emitted size of
the DWARF expression that the entry value will cover. Currently the size
is hardcoded to 1 in DIExpression, and other values causes the verifier
to fail. As the size is 1, that effectively means that we can only have
valid entry values for registers that can be encoded in one byte, which
are the registers with DWARF numbers 0 to 31 (as they can be encoded as
single-byte DW_OP_reg0..DW_OP_reg31 rather than a multi-byte
DW_OP_regx). It is a bit confusing, but it seems like llvm-dwarfdump
will print an operation "correctly", even if the byte size is less than
that, which may make it seem that we emit correct DWARF for registers
with DWARF numbers > 31. If you instead use readelf for such cases, it
will interpret the number of specified bytes as a DWARF expression. This
seems like a limitation in llvm-dwarfdump.
As suggested in D66746, a way forward would be to add an internal
variant of DW_OP_entry_value, DW_OP_LLVM_entry_value, whose operand
instead specifies the number of operations that the entry value covers,
and we then translate that into the byte size at the time of emission.
In this patch that internal operation is added. This patch keeps the
limitation that a entry value can only be applied to simple register
locations, but it will fix the issue with the size operand being
incorrect for DWARF numbers > 31.
Reviewers: aprantl, vsk, djtodoro, NikolaPrica
Reviewed By: aprantl
Subscribers: jyknight, fedor.sergeev, hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D67492
llvm-svn: 374881
Abandon describing of loaded values due to safety concerns. Loaded
values are described as derefed memory location at caller point.
At callee we can unintentionally change that memory location which
would lead to different entry being printed value before and after
the memory location clobbering. This problem is described in
llvm.org/PR43343.
Patch by Nikola Prica
Differential Revision: https://reviews.llvm.org/D67717
llvm-svn: 373089