Merges `TransferOptions` into the newly-introduced
`DataflowAnalysisContext::Options` and removes explicit parameter for
`TransferOptions`, relying instead on the common options carried by the analysis
context. Given that there was no intent to allow different options between calls
to `transfer`, a common value for the options is preferable.
Differential Revision: https://reviews.llvm.org/D140703
This reverts commit 2b1a517a92bfdfa3b692a660e19a2bb22513a567. It's a fix forward
with two memory errors fixed, one of which was the cause of the build breakage
in the buildbots.
Original message:
Previously, the model for structs modeled all fields in a struct when
`createValue` was called for that type. This patch adds a prepass on the
function under analysis to discover the fields referenced in the scope and then
limits modeling to only those fields. This reduces wasted memory usage
(modeling unused fields) which can be important for programs that use large
structs.
Note: This patch obviates the need for https://reviews.llvm.org/D123032.
Previously, the model for structs modeled all fields in a struct when
`createValue` was called for that type. This patch adds a prepass on the
function under analysis to discover the fields referenced in the scope and then
limits modeling to only those fields. This reduces wasted memory usage
(modeling unused fields) which can be important for programss that use large
structs.
Note: This patch obviates the need for https://reviews.llvm.org/D123032.
Differential Revision: https://reviews.llvm.org/D140694
This is a straightfoward way to handle unions in dataflow analysis. Without this change, nullability verification crashes on files that contain unions.
Reviewed By: gribozavr2, ymandel
Differential Revision: https://reviews.llvm.org/D140696
The handling of return statements, added in support of context-sensitive
analysis, has a bug relating to functions that return reference
types. Specifically, interpretation of such functions can result in a crash from
a bad cast. This patch fixes the bug and guards all of that code with the
context-sensitive option, since there's no reason to execute at all when
context-sensitive analysis is off.
Differential Revision: https://reviews.llvm.org/D140430
This patch adds interpretation of binding declarations resulting from a
structured binding (`DecompositionDecl`) to a tuple-like type. Currently, the
framework only supports binding to a struct.
Fixes issue #57252.
Differential Revision: https://reviews.llvm.org/D139544
Some compilers can't determine that all cases of the switch return (or are
unreachable) and warn about control reaching end of non-void
function. Explicitly mark with `llvm_unreachable`.
Differential Revision: https://reviews.llvm.org/D135978
Currently, our boolean formulas (`BoolValue`) don't form a lattice, since they
have no Top element. This patch adds such an element, thereby "completing" the
built-in model of bools to be a proper semi-lattice. It still has infinite
height, which is its own problem, but that can be solved separately, through
widening and the like.
Patch 1 for Issue #56931.
Differential Revision: https://reviews.llvm.org/D135397
This patch adds a `Depth` field (default value 2) to `ContextSensitiveOptions`, allowing context-sensitive analysis of functions that call other functions. This also requires replacing the `DeclCtx` field on `Environment` with a `CallString` field that contains a vector of decl contexts, to ensure that the analysis doesn't try to analyze recursive or mutually recursive calls (which would result in a crash, due to the way we handle `StorageLocation`s).
Reviewed By: xazax.hun
Differential Revision: https://reviews.llvm.org/D131809
This patch restructures `DataflowAnalysisOptions` and `TransferOptions` to use `llvm::Optional`, in preparation for adding more sub-options to the `ContextSensitiveOptions` struct introduced here.
Reviewed By: sgatev, xazax.hun
Differential Revision: https://reviews.llvm.org/D131779
This patch adds the ability to context-sensitively analyze constructor bodies, by changing `pushCall` to allow both `CallExpr` and `CXXConstructExpr`, and extracting the main context-sensitive logic out of `VisitCallExpr` into a new `transferInlineCall` method which is now also called at the end of `VisitCXXConstructExpr`.
Reviewed By: ymandel, sgatev, xazax.hun
Differential Revision: https://reviews.llvm.org/D131438
This patch adds the ability to context-sensitively analyze constructor bodies, by changing `pushCall` to allow both `CallExpr` and `CXXConstructExpr`, and extracting the main context-sensitive logic out of `VisitCallExpr` into a new `transferInlineCall` method which is now also called at the end of `VisitCXXConstructExpr`.
Reviewed By: ymandel, sgatev, xazax.hun
Differential Revision: https://reviews.llvm.org/D131438
This patch adds a `ReturnLoc` field to the `Environment`, serving a similar to the `ThisPointeeLoc` field in the `DataflowAnalysisContext`. It then uses that (along with a new `VisitReturnStmt` method in `TransferVisitor`) to handle non-`void`-returning functions in context-sensitive analysis.
Reviewed By: ymandel, sgatev
Differential Revision: https://reviews.llvm.org/D130600
This patch modifies context-sensitive analysis of functions to use a cache,
rather than recreate the `ControlFlowContext` from a function decl on each
encounter. However, this is just step 1 (of N) in adding support for a
configurable map of "modeled" function decls (see issue #56879). The map will go
from the actual function decl to the `ControlFlowContext` used to model it. Only
functions pre-configured in the map will be modeled in a context-sensitive way.
We start with a cache because it introduces the desired map, while retaining the
current behavior. Here, functions are mapped to their actual implementations
(when available).
Differential Revision: https://reviews.llvm.org/D131039
This patch enables context-sensitive analysis of multiple different calls to the same function (see the `ContextSensitiveSetBothTrueAndFalse` example in the `TransferTest` suite) by replacing the `Environment` copy-assignment with a call to the new `popCall` method, which `std::move`s some fields but specifically does not move `DeclToLoc` and `ExprToLoc` from the callee back to the caller.
To enable this, the `StorageLocation` for a given parameter needs to be stable across different calls to the same function, so this patch also improves the modeling of parameter initialization, using `ReferenceValue` when necessary (for arguments passed by reference).
This approach explicitly does not work for recursive calls, because we currently only plan to use this context-sensitive machinery to support specialized analysis models we write, not analysis of arbitrary callees.
Reviewed By: ymandel, xazax.hun
Differential Revision: https://reviews.llvm.org/D130726
This patch adds initial support for context-sensitive analysis of simple functions whose definition is available in the translation unit, guarded by the `ContextSensitive` flag in the new `TransferOptions` struct. When this option is true, the `VisitCallExpr` case in the builtin transfer function has a fallthrough case which checks for a direct callee with a body. In that case, it constructs a CFG from that callee body, uses the new `pushCall` method on the `Environment` to make an environment to analyze the callee, and then calls `runDataflowAnalysis` with a `NoopAnalysis` (disabling context-sensitive analysis on that sub-analysis, to avoid problems with recursion). After the sub-analysis completes, the `Environment` from its exit block is simply assigned back to the environment at the callsite.
The `pushCall` method (which currently only supports non-method functions with some restrictions) maps the `SourceLocation`s for all the parameters to the existing source locations for the corresponding arguments from the callsite.
This patch adds a few tests to check that this context-sensitive analysis works on simple functions. More sophisticated functionality will be added later; the most important next step is to explicitly model context in some fields of the `DataflowAnalysisContext` class, as mentioned in a `FIXME` comment in the `pushCall` implementation.
Reviewed By: ymandel, xazax.hun
Differential Revision: https://reviews.llvm.org/D130306
Depends On D130305
This patch adds initial support for context-sensitive analysis of simple functions whose definition is available in the translation unit, guarded by the `ContextSensitive` flag in the new `TransferOptions` struct. When this option is true, the `VisitCallExpr` case in the builtin transfer function has a fallthrough case which checks for a direct callee with a body. In that case, it constructs a CFG from that callee body, uses the new `pushCall` method on the `Environment` to make an environment to analyze the callee, and then calls `runDataflowAnalysis` with a `NoopAnalysis` (disabling context-sensitive analysis on that sub-analysis, to avoid problems with recursion). After the sub-analysis completes, the `Environment` from its exit block is simply assigned back to the environment at the callsite.
The `pushCall` method (which currently only supports non-method functions with some restrictions) first calls `initGlobalVars`, then maps the `SourceLocation`s for all the parameters to the existing source locations for the corresponding arguments from the callsite.
This patch adds a few tests to check that this context-sensitive analysis works on simple functions. More sophisticated functionality will be added later; the most important next step is to explicitly model context in some fields of the `DataflowAnalysisContext` class, as mentioned in a `TODO` comment in the `pushCall` implementation.
Reviewed By: ymandel, xazax.hun
Differential Revision: https://reviews.llvm.org/D130306
The latter way to abbreviate is a lot more common in the LLVM codebase.
Reviewed By: sgatev, xazax.hun
Differential Revision: https://reviews.llvm.org/D130423
When a `nullptr` is assigned to a pointer variable, it is wrapped in a `ImplicitCastExpr` with cast kind `CK_NullTo(Member)Pointer`. This patch assigns singleton pointer values representing null to these expressions.
For each pointee type, a singleton null `PointerValue` is created and stored in the `NullPointerVals` map of the `DataflowAnalysisContext` class. The pointee type is retrieved from the implicit cast expression, and used to initialise the `PointeeLoc` field of the `PointerValue`. The `PointeeLoc` created is not mapped to any `Value`, reflecting the absence of value indicated by null pointers.
Reviewed By: gribozavr2, sgatev, xazax.hun
Differential Revision: https://reviews.llvm.org/D128056
This is part of the implementation of the dataflow analysis framework.
See "[RFC] A dataflow analysis framework for Clang AST" on cfe-dev.
Differential Revision: https://reviews.llvm.org/D120495
Reviewed-by: ymandel, xazax.hun
Support for unions is incomplete (per 99f7d55e) and the `this` pointee
storage location is not set for unions. The assert in
`VisitCXXThisExpr` is then guaranteed to trigger when analyzing member
functions of a union.
This commit changes the assert to an early-return. Any expression may
be undefined, and so having a value for the `CXXThisExpr` is not a
postcondition of the transfer function.
Differential Revision: https://reviews.llvm.org/D126405
Sub-expressions that are logical operators are not spelled out
separately in basic blocks, so we need to manually visit them when we
encounter them. We do this in both the `TerminatorVisitor`
(conditionally) and the `TransferVisitor` (unconditionally), which can
cause cause an expression to be visited twice when the binary
operators are nested 2+ times.
This changes the visit in `TransferVisitor` to check if it has been
evaluated before trying to visit the sub-expression.
Differential Revision: https://reviews.llvm.org/D125821
A follow-up to 62b2a47 to centralize the logic that skips expressions
that the CFG does not emit. This allows client code to avoid
sprinkling this logic everywhere.
Add redirects in the transfer function to similarly skip such
expressions by forwarding the visit to the sub-expression.
Differential Revision: https://reviews.llvm.org/D124965
`IgnoreParenImpCasts` will remove implicit casts to bool
(e.g. `PointerToBoolean`), such that the resulting expression may not
be of the `bool` type. The `cast_or_null<BoolValue>` in
`extendFlowCondition` will then trigger an assert, as the pointer
expression will not have a `BoolValue`.
Instead, we only skip `ExprWithCleanups` and `ParenExpr` nodes, as the
CFG does not emit them.
Differential Revision: https://reviews.llvm.org/D124807
Remove constraint that an initializing expression of struct type must have an
associated `Value`. This invariant is not and will not be guaranteed by the
framework, because of potentially uninitialized fields.
Differential Revision: https://reviews.llvm.org/D123961
This patch adds basic modeling of `__builtin_expect`, just to propagate the
(first) argument, making the call transparent.
Driveby: adds tests for proper handling of other builtins.
Differential Revision: https://reviews.llvm.org/D122908
This is part of the implementation of the dataflow analysis framework.
See "[RFC] A dataflow analysis framework for Clang AST" on cfe-dev.
Differential Revision: https://reviews.llvm.org/D121455
This is part of the implementation of the dataflow analysis framework.
See "[RFC] A dataflow analysis framework for Clang AST" on cfe-dev.
Reviewed-by: ymandel, xazax.hun
Differential Revision: https://reviews.llvm.org/D120984
This is part of the implementation of the dataflow analysis framework.
See "[RFC] A dataflow analysis framework for Clang AST" on cfe-dev.
Reviewed-by: ymandel, xazax.hun
Differential Revision: https://reviews.llvm.org/D120149
This is part of the implementation of the dataflow analysis framework.
See "[RFC] A dataflow analysis framework for Clang AST" on cfe-dev.
Reviewed-by: xazax.hun
Differential Revision: https://reviews.llvm.org/D119953
This is part of the implementation of the dataflow analysis framework.
See "[RFC] A dataflow analysis framework for Clang AST" on cfe-dev.
Reviewed-by: xazax.hun
Differential Revision: https://reviews.llvm.org/D118236
This is part of the implementation of the dataflow analysis framework.
See "[RFC] A dataflow analysis framework for Clang AST" on cfe-dev.
Reviewed-by: xazax.hun
Differential Revision: https://reviews.llvm.org/D118119
This is part of the implementation of the dataflow analysis framework.
See "[RFC] A dataflow analysis framework for Clang AST" on cfe-dev.
Reviewed-by: xazax.hun
Differential Revision: https://reviews.llvm.org/D117667
This is part of the implementation of the dataflow analysis framework.
See "[RFC] A dataflow analysis framework for Clang AST" on cfe-dev.
Reviewed-by: xazax.hun
Differential Revision: https://reviews.llvm.org/D117567
This is part of the implementation of the dataflow analysis framework.
See "[RFC] A dataflow analysis framework for Clang AST" on cfe-dev.
Reviewed-by: xazax.hun
Differential Revision: https://reviews.llvm.org/D117496
Since Environment's setValue method already does part of the work that
initValueInStorageLocation does, we can factor out a new createValue
method to reduce the duplication.
This is part of the implementation of the dataflow analysis framework.
See "[RFC] A dataflow analysis framework for Clang AST" on cfe-dev.
Reviewed-by: ymandel, xazax.hun
Differential Revision: https://reviews.llvm.org/D117493
This is part of the implementation of the dataflow analysis framework.
See "[RFC] A dataflow analysis framework for Clang AST" on cfe-dev.
Differential Revision: https://reviews.llvm.org/D117339