On AArch64, it is safe to let the linker handle relaxation of
unconditional branches; in most cases, the destination is within range,
and the linker doesn't need to do anything. If the linker does insert
fixup code, it clobbers the x16 inter-procedural register, so x16 must
be available across the branch before linking. If x16 isn't available,
but some other register is, we can relax the branch either by spilling
x16 OR using the free register for a manually-inserted indirect branch.
This patch builds on D145211. While that patch is for correctness, this
one is for performance of the common case. As noted in
https://reviews.llvm.org/D145211#4537173, we can trust the linker to
relax cross-section unconditional branches across which x16 is
available.
Programs that use machine function splitting care most about the
performance of hot code at the expense of the performance of cold code,
so we prioritize minimizing hot code size.
Here's a breakdown of the cases:
Hot -> Cold [x16 is free across the branch]
Do nothing; let the linker relax the branch.
Cold -> Hot [x16 is free across the branch]
Do nothing; let the linker relax the branch.
Hot -> Cold [x16 used across the branch, but there is a free register]
Spill x16; let the linker relax the branch.
Spilling requires fewer instructions than manually inserting an
indirect branch.
Cold -> Hot [x16 used across the branch, but there is a free register]
Manually insert an indirect branch.
Spilling would require adding a restore block in the hot section.
Hot -> Cold [No free regs]
Spill x16; let the linker relax the branch.
Cold -> Hot [No free regs]
Spill x16 and put the restore block at the end of the hot function; let the linker relax the branch.
Ex:
[Hot section]
func.hot:
... hot code...
func.restore:
... restore x16 ...
B func.hot
[Cold section]
func.cold:
... spill x16 ...
B func.restore
Putting the restore block at the end of the function instead of
just before the destination increases the cost of executing the
store, but it avoids putting cold code in the middle of hot code.
Since the restore is very rarely taken, this is a worthwhile
tradeoff.
Differential Revision: https://reviews.llvm.org/D156767
This is a reland of 46d2d7599d9ed5e68fb53e910feb10d47ee2667b, which was
reverted because of breaking build
https://lab.llvm.org/buildbot/#/builders/21/builds/78779. However, this
buildbot is spuriously broken due to Flang::underscoring.f90 being
nondeterministic.
Current behavior for relaxing out-of-range conditional branches
is to invert the conditional and insert a fallthrough unconditional
branch to the original destination. This approach biases the branch
predictor in the wrong direction, which can degrading performance.
Machine function splitting introduces many rarely-taken cross-section
conditional branches, which are improperly relaxed. Avoid inverting
these branches; instead, retarget them to trampolines at the end of the
function. Doing so increases the runtime cost of jumping to cold code
but eliminates the misprediction cost of jumping to hot code.
Differential Revision: https://reviews.llvm.org/D156837
Because the code layout is not known during compilation, the distance of
cross-section jumps is not knowable at compile-time. Because of this, we
should assume that any cross-sectional jumps are out of range. This
assumption is necessary for machine function splitting on AArch64, which
introduces cross-section branches in the middle of functions. The linker
relaxes out-of-range unconditional branches, but it clobbers X16 to do
so; it doesn't relax conditional branches, which must be manually
relaxed by the compiler.
Differential Revision: https://reviews.llvm.org/D145211
This change initializes the members TSI, LI, DT, PSI, and ORE pointer feilds of the SelectOptimize class to nullptr.
Reviewed By: LuoYuanke
Differential Revision: https://reviews.llvm.org/D148303
The whole point of this pass is to rewrite branches so that branches are in bounds. We should assert that we succeeded rather than just that we kept our internal data structure in sync.
Differential Revision: https://reviews.llvm.org/D142778
Introduce a parameter in getFallThrough() to optionally
allow returning the fall through basic block in spite of
an explicit branch instruction to it. This parameter is
set to false by default.
Introduce getLogicalFallThrough() which calls
getFallThrough(false) to obtain the block while avoiding
insertion of a jump instruction to its immediate successor.
This patch also reverts the changes made by D134557 and
solves the case where a jump is inserted after another jump
(branch-relax-no-terminators.mir).
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D140790
In branch relaxation pass, restore blocks are created and placed before
the jump destination if indirect branches are required. For example:
foo
sd s11, 0(sp)
jump .restore, s11
bar
bar
bar
j .dest
.restore:
ld s11, 0(sp)
.dest:
baz
The BasicBlock information of the restore MachineBasicBlock should be
identical to the dest MachineBasicBlock.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D131863
Prior to inserting an unconditional branch from X to its
fall through basic block, check if X has any terminators to
avoid inserting additional branches.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D134557
This reverts commit 7f230feeeac8a67b335f52bd2e900a05c6098f20.
Breaks CodeGenCUDA/link-device-bitcode.cu in check-clang,
and many LLVM tests, see comments on https://reviews.llvm.org/D121169
- When an unconditional branch is expanded into an indirect branch, if
there is no scavenged register, an SGPR pair needs spilling to enable
the destination PC calculation. In addition, before jumping into the
destination, that clobbered SGPR pair need restoring.
- As SGPR cannot be spilled to or restored from memory directly, the
spilling/restoring of that SGPR pair reuses the regular SGPR spilling
support but without spilling it into memory. As that spilling and
restoring points are fully controlled, we only need to spill that SGPR
into the temporary VGPR, which needs spilling into its emergency slot.
- The target-specific hook is revised to take additional restore block,
where the restoring code is filled. After that, the relaxation will
place that restore block directly before the destination block and
insert an unconditional branch in any fall-through block into the
destination block.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D106449
This change enables the generic implicit null transformation for the AArch64 target. As background for those unfamiliar with our implicit null check support:
An implicit null check is the use of a signal handler to catch and redirect to a handler a null pointer. Specifically, it's replacing an explicit conditional branch with such a redirect. This is only done for very cold branches under frontend control w/appropriate metadata.
FAULTING_OP is used to wrap the faulting instruction. It is modelled as being a conditional branch to reflect the fact it can transfer control in the CFG.
FAULTING_OP does not need to be an analyzable branch to achieve it's purpose. (Or at least, that's the x86 model. I find this slightly questionable.)
When lowering to MC, we convert the FAULTING_OP back into the actual instruction, record the labels, and lower the original instruction.
As can be seen in the test changes, currently the AArch64 backend does not eliminate the unconditional branch to the fallthrough block. I've tried two approaches, neither of which worked. I plan to return to this in a separate change set once I've wrapped my head around the interactions a bit better. (X86 handles this via AllowModify on analyzeBranch, but adding the obvious code causing BranchFolding to crash. I haven't yet figured out if it's a latent bug in BranchFolding, or something I'm doing wrong.)
Differential Revision: https://reviews.llvm.org/D87851
Previously, it tried to infer the correct destination block from the
successor list, but this is a rather tricky propspect, given the
existence of successors that occur mid-block, such as invoke, and
potentially in the future, callbr/INLINEASM_BR. (INLINEASM_BR, in
particular would be problematic, because its successor blocks are not
distinct from "normal" successors, as EHPads are.)
Instead, require the caller to pass in the expected fallthrough
successor explicitly. In most callers, the correct block is
immediately clear. But, in MachineBlockPlacement, we do need to record
the original ordering, before starting to reorder blocks.
Unfortunately, the goal of decoupling the behavior of end-of-block
jumps from the successor list has not been fully accomplished in this
patch, as there is currently no other way to determine whether a block
is intended to fall-through, or end as unreachable. Further work is
needed there.
Differential Revision: https://reviews.llvm.org/D79605
This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet, JDevlieghere, alexshap, rupprecht, jhenderson
Subscribers: sdardis, nemanjai, hiraditya, kbarton, jakehehrlich, jrtc27, MaskRay, atanasyan, jsji, seiya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D67499
llvm-svn: 371742
Summary:
This catches malformed mir files which specify alignment as log2 instead of pow2.
See https://reviews.llvm.org/D65945 for reference,
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: MatzeB, qcolombet, dschuff, arsenm, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, s.egerton, pzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67433
llvm-svn: 371608
Summary:
This patch renames functions that takes or returns alignment as log2, this patch will help with the transition to llvm::Align.
The renaming makes it explicit that we deal with log(alignment) instead of a power of two alignment.
A few renames uncovered dubious assignments:
- `MirParser`/`MirPrinter` was expecting powers of two but `MachineFunction` and `MachineBasicBlock` were using deal with log2(align). This patch fixes it and updates the documentation.
- `MachineBlockPlacement` exposes two flags (`align-all-blocks` and `align-all-nofallthru-blocks`) supposedly interpreted as power of two alignments, internally these values are interpreted as log2(align). This patch updates the documentation,
- `MachineFunctionexposes` exposes `align-all-functions` also interpreted as power of two alignment, internally this value is interpreted as log2(align). This patch updates the documentation,
Reviewers: lattner, thegameg, courbet
Subscribers: dschuff, arsenm, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, javed.absar, hiraditya, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, Jim, s.egerton, llvm-commits, courbet
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65945
llvm-svn: 371045
This reverts r358910 (git commit 2b744665308fc8d30a3baecb4947f2bd81aa7d30)
While this patch *seems* trivial and safe and correct, it is not. The
copies are actually load bearing copies. You can observe this with MSan
or other ways of checking for use-after-destroy, but otherwise this may
result in ... difficult to debug inexplicable behavior.
I suspect the issue is that the debug location is used after the
original reference to it is removed. The metadata backing it gets
destroyed as its last references goes away, and then we reference it
later through these const references.
llvm-svn: 358940
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
See r331124 for how I made a list of files missing the include.
I then ran this Python script:
for f in open('filelist.txt'):
f = f.strip()
fl = open(f).readlines()
found = False
for i in xrange(len(fl)):
p = '#include "llvm/'
if not fl[i].startswith(p):
continue
if fl[i][len(p):] > 'Config':
fl.insert(i, '#include "llvm/Config/llvm-config.h"\n')
found = True
break
if not found:
print 'not found', f
else:
open(f, 'w').write(''.join(fl))
and then looked through everything with `svn diff | diffstat -l | xargs -n 1000 gvim -p`
and tried to fix include ordering and whatnot.
No intended behavior change.
llvm-svn: 331184
The existing version worked incorrectly when inversion of a branch condintion is impossible.
Changed the "fixupConditionalBranch()" function - a new BB (a trampoline) is created to keep the original branch condition.
Differential Revision: https://reviews.llvm.org/D41634
llvm-svn: 321785
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647
Summary:
Add LLVM_FORCE_ENABLE_DUMP cmake option, and use it along with
LLVM_ENABLE_ASSERTIONS to set LLVM_ENABLE_DUMP.
Remove NDEBUG and only use LLVM_ENABLE_DUMP to enable dump methods.
Move definition of LLVM_ENABLE_DUMP from config.h to llvm-config.h so
it'll be picked up by public headers.
Differential Revision: https://reviews.llvm.org/D38406
llvm-svn: 315590
Tail merging can convert an undef use into a normal one when creating a
common tail. Doing so can make the register live out from a block which
previously contained the undef use. To keep the liveness up-to-date,
insert IMPLICIT_DEFs in such blocks when necessary.
To enable this patch the computeLiveIns() function which used to
compute live-ins for a block and set them immediately is split into new
functions:
- computeLiveIns() just computes the live-ins in a LivePhysRegs set.
- addLiveIns() applies the live-ins to a block live-in list.
- computeAndAddLiveIns() is a convenience function combining the other
two functions and behaving like computeLiveIns() before this patch.
Based on a patch by Krzysztof Parzyszek <kparzysz@codeaurora.org>
Differential Revision: https://reviews.llvm.org/D37034
llvm-svn: 312668
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
One case in BranchRelaxation did not compute liveins after creating a
new block. This is catched by existing tests with an upcoming commit
that will improve MachineVerifier checking of livein lists.
llvm-svn: 304049
Re-commit r303937 + r303949 as they were not the cause for the build
failures.
We do not track liveness of reserved registers so adding them to the
liveins list in computeLiveIns() was completely unnecessary.
llvm-svn: 303970
We had various variants of defining dump() functions in LLVM. Normalize
them (this should just consistently implement the things discussed in
http://lists.llvm.org/pipermail/cfe-dev/2014-January/034323.html
For reference:
- Public headers should just declare the dump() method but not use
LLVM_DUMP_METHOD or #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- The definition of a dump method should look like this:
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
LLVM_DUMP_METHOD void MyClass::dump() {
// print stuff to dbgs()...
}
#endif
llvm-svn: 293359