This patch proposes to handle in an uniform fashion
the parsing of strings that are never evaluated,
in asm statement, static assert, attrributes, extern,
etc.
Unevaluated strings are UTF-8 internally and so currently
behave as narrow strings, but these things will diverge with
D93031.
The big question both for this patch and the P2361 paper
is whether we risk breaking code by disallowing
encoding prefixes in this context.
I hope this patch may allow to gather some data on that.
Future work:
Improve the rendering of unicode characters, line break
and so forth in static-assert messages
Reviewed By: aaron.ballman, shafik
Differential Revision: https://reviews.llvm.org/D105759
When expanding template arguments for pretty function printing,
such as for __PRETTY_FUNCTION__, make TypePrinter apply
macro-prefix-map remapping to anonymous tags such as lambdas.
Fixes https://github.com/llvm/llvm-project/issues/63219
Reviewed By: MaskRay, aaron.ballman
Differential Revision: https://reviews.llvm.org/D152570
_Generic accepts an expression operand whose type is matched against a
list of associations. The expression operand is unevaluated, but the
type matched is the type after lvalue conversion. This conversion loses
type information, which makes it more difficult to match against
qualified or incomplete types.
This extension allows _Generic to accept a type operand instead of an
expression operand. The type operand form does not undergo any
conversions and is matched directly against the association list.
This extension is also supported in C++ as we already supported
_Generic selection expressions there.
The RFC for this extension can be found at:
https://discourse.llvm.org/t/rfc-generic-selection-expression-with-a-type-operand/70388
Differential Revision: https://reviews.llvm.org/D149904
The rest of the fetch/op intrinsics were added in e13246a2ec3 but sub
was conspicuous by its absence.
Reviewed By: yaxunl
Differential Revision: https://reviews.llvm.org/D151701
The relevant language rule from C11 is 6.5.16.1p1: "the left operand is
an atomic, qualified, or unqualified pointer, and the right is a null
pointer constant; or". We correctly handled qualified or unqualified
pointer types, but failed to handle atomic-qualified pointer types. Now
we look through the atomic qualification before testing the constraint
requirements.
Fixes https://github.com/llvm/llvm-project/issues/49563
Differential Revision: https://reviews.llvm.org/D148730
The "getField" method is a bit confusing considering we also have a
"getFieldName" method. Instead, use "getFieldDecl" rather than
"getField".
Differential Revision: https://reviews.llvm.org/D147743
This makes the two interfaces for designators more similar so that it's
easier to merge them together in a future refactoring.
Differential Revision: https://reviews.llvm.org/D147580
* Fix an issue where temporaries initialized via parenthesized aggregate
initialization don't get destroyed.
* Fix an issue where aggregate initialization omits calls to class
members' move constructors after a TreeTransform. This occurs because
the CXXConstructExpr wrapping the call to the move constructor gets
unboxed during a TreeTransform of the wrapping FunctionalCastExpr (as with a
InitListExpr), but unlike InitListExpr, we dont reperform the
InitializationSequence for the list's expressions to regenerate the
CXXConstructExpr. This patch fixes this bug by treating
CXXParenListInitExpr identically to InitListExpr in this regard.
Fixes#61145
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D146465
Add '__builtin_FILE_NAME()', which expands to the filename because the
full path is not always needed. It corresponds to the '__FILE_NAME__'
predefined macro and is consistent with the other '__builin' functions
added for predefined macros.
Differential Revision: https://reviews.llvm.org/D144878
The interfaces for designators (i.e. C99 designated initializers) was
done in two slightly different ways. This was rather wasteful as the
differences could be combined into one.
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D140584
This commit relands the patches for implementing P0960R3 and P1975R0,
which describe initializing aggregates via a parenthesized list.
The relanded commits are:
* 40c52159d3ee - P0960R3 and P1975R0: Allow initializing aggregates from
a parenthesized list of values
* c77a91bb7ba7 - Remove overly restrictive aggregate paren init logic
* 32d7aae04fdb - Fix a clang crash on invalid code in C++20 mode
This patch also fixes a crash in the original implementation.
Previously, if the input tried to call an implicitly deleted copy or
move constructor of a union, we would then try to initialize the union
by initializing it's first element with a reference to a union. This
behavior is incorrect (we should fail to initialize) and if the type of
the first element has a constructor with a single template typename
parameter, then Clang will explode. This patch fixes that issue by
checking that constructor overload resolution did not result in a
deleted function before attempting parenthesized aggregate
initialization.
Additionally, this patch also includes D140159, which contains some
minor fixes made in response to code review comments in the original
implementation that were made after that patch was submitted.
Co-authored-by: Sheng <ox59616e@gmail.com>
Fixes#54040, Fixes#59675
Reviewed By: ilya-biryukov
Differential Revision: https://reviews.llvm.org/D141546
This feature causes clang to crash when compiling Chrome - see
https://crbug.com/1405031 and
https://github.com/llvm/llvm-project/issues/59675
Revert "[clang] Fix a clang crash on invalid code in C++20 mode."
This reverts commit 32d7aae04fdb58e65a952f281ff2f2c3f396d98f.
Revert "[clang] Remove overly restrictive aggregate paren init logic"
This reverts commit c77a91bb7ba793ec3a6a5da3743ed55056291658.
Revert "[clang][C++20] P0960R3 and P1975R0: Allow initializing aggregates from a parenthesized list of values"
This reverts commit 40c52159d3ee337dbed14e4c73b5616ea354c337.
This patch implements P0960R3, which allows initialization of aggregates
via parentheses.
As an example:
```
struct S { int i, j; };
S s1(1, 1);
int arr1[2](1, 2);
```
This patch also implements P1975R0, which fixes the wording of P0960R3
for single-argument parenthesized lists so that statements like the
following are allowed:
```
S s2(1);
S s3 = static_cast<S>(1);
S s4 = (S)1;
int (&&arr2)[] = static_cast<int[]>(1);
int (&&arr3)[2] = static_cast<int[2]>(1);
```
This patch was originally authored by @0x59616e and completed by
@ayzhao.
Fixes#54040, Fixes#54041
Co-authored-by: Sheng <ox59616e@gmail.com>
Full write up : https://discourse.llvm.org/t/c-20-rfc-suggestion-desired-regarding-the-implementation-of-p0960r3/63744
Reviewed By: ilya-biryukov
Differential Revision: https://reviews.llvm.org/D129531
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
The -fstrict-flex-arrays=3 is the most restrictive type of flex arrays.
No number, including 0, is allowed in the FAM. In the cases where a "0"
is used, the resulting size is the same as if a zero-sized object were
substituted.
This is needed for proper _FORTIFY_SOURCE coverage in the Linux kernel,
among other reasons. So while the only reason for specifying a
zero-length array at the end of a structure is for specify a FAM,
treating it as such will cause _FORTIFY_SOURCE not to work correctly;
__builtin_object_size will report -1 instead of 0 for a destination
buffer size to keep any kernel internals from using the deprecated
members as fake FAMs.
For example:
struct broken {
int foo;
int fake_fam[0];
struct something oops;
};
There have been bugs where the above struct was created because "oops"
was added after "fake_fam" by someone not realizing. Under
__FORTIFY_SOURCE, doing:
memcpy(p->fake_fam, src, len);
raises no warnings when __builtin_object_size(p->fake_fam, 1) returns -1
and may stomp on "oops."
Omitting a warning when using the (invalid) zero-length array is how GCC
treats -fstrict-flex-arrays=3. A warning in that situation is likely an
irritant, because requesting this option level is explicitly requesting
this behavior.
Link: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101836
Differential Revision: https://reviews.llvm.org/D134902
Clang doesn't have the same behavior as GCC does with union flexible
array members. (Technically, union FAMs are probably not acceptable in
C99 and are an extension of GCC and Clang.)
Both Clang and GCC treat *all* arrays at the end of a structure as FAMs.
GCC does the same with unions. Clang does it for some arrays in unions
(incomplete, '0', and '1'), but not for all. Instead of having this
half-supported feature, sync Clang's behavior with GCC's.
Reviewed By: kees
Differential Revision: https://reviews.llvm.org/D135727
This introduces support for nullptr and nullptr_t in C2x mode. The
proposal accepted by WG14 is:
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3042.htm
Note, there are quite a few incompatibilities with the C++ feature in
some of the edge cases of this feature. Therefore, there are some FIXME
comments in tests for testing behavior that might change after WG14 has
resolved national body comments (a process we've not yet started). So
this implementation might change slightly depending on the resolution
of comments. This is called out explicitly in the release notes as
well.
Differential Revision: https://reviews.llvm.org/D135099
Turn it into a single Expr::isFlexibleArrayMemberLike method, as discussed in
https://discourse.llvm.org/t/rfc-harmonize-flexible-array-members-handling
Keep different behavior with respect to macro / template substitution, and
harmonize sharp edges: ObjC interface now behave as C struct wrt. FAM and
-fstrict-flex-arrays.
This does not impact __builtin_object_size interactions with FAM.
Differential Revision: https://reviews.llvm.org/D134791
"Ascii" StringLiteral instances are actually narrow strings
that are UTF-8 encoded and do not have an encoding prefix.
(UTF8 StringLiteral are also UTF-8 encoded strings, but with
the u8 prefix.
To avoid possible confusion both with actuall ASCII strings,
and with future works extending the set of literal encodings
supported by clang, this rename StringLiteral::isAscii() to
isOrdinary(), matching C++ standard terminology.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D128762
This reverts D126864 and related fixes.
This reverts commit 572b08790a69f955ae0cbb1b4a7d4a215f15dad9.
This reverts commit 886715af962de2c92fac4bd37104450345711e4a.
Some code [0] consider that trailing arrays are flexible, whatever their size.
Support for these legacy code has been introduced in
f8f632498307d22e10fab0704548b270b15f1e1e but it prevents evaluation of
__builtin_object_size and __builtin_dynamic_object_size in some legit cases.
Introduce -fstrict-flex-arrays=<n> to have stricter conformance when it is
desirable.
n = 0: current behavior, any trailing array member is a flexible array. The default.
n = 1: any trailing array member of undefined, 0 or 1 size is a flexible array member
n = 2: any trailing array member of undefined or 0 size is a flexible array member
n = 3: any trailing array member of undefined size is a flexible array member (strict c99 conformance)
Similar patch for gcc discuss here: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101836
[0] https://docs.freebsd.org/en/books/developers-handbook/sockets/#sockets-essential-functions
While it's not as robust as using the attribute on enums/classes (the
type information may be lost through a function pointer, a declaration
or use of the underlying type without using the typedef, etc) but I
think there's still value in being able to attribute a typedef and have
all return types written with that typedef pick up the
warn_unused_result behavior.
Specifically I'd like to be able to annotate LLVMErrorRef (a wrapper for
llvm::Error used in the C API - the underlying type is a raw pointer, so
it can't be attributed itself) to reduce the chance of unhandled errors.
Differential Revision: https://reviews.llvm.org/D102122
When Clang generates the path prefix (i.e. the path of the directory
where the file is) when generating FILE, __builtin_FILE(), and
std::source_location, Clang uses the platform-specific path separator
character of the build environment where Clang _itself_ is built. This
leads to inconsistencies in Chrome builds where Clang running on
non-Windows environments uses the forward slash (/) path separator
while Clang running on Windows builds uses the backslash (\) path
separator. To fix this, we add a flag -ffile-reproducible (and its
inverse, -fno-file-reproducible) to have Clang use the target's
platform-specific file separator character.
Additionally, the existing flags -fmacro-prefix-map and
-ffile-prefix-map now both imply -ffile-reproducible. This can be
overriden by setting -fno-file-reproducible.
[0]: https://crbug.com/1310767
Differential revision: https://reviews.llvm.org/D122766
PseudoObjectExpr is only used for ObjC properties and subscripts.
For now, these assumptions are generally correct, but that's not part of
the design of PseudoObjectExpr. No functionality change intended.
This builtin returns the address of a global instance of the
`std::source_location::__impl` type, which must be defined (with an
appropriate shape) before calling the builtin.
It will be used to implement std::source_location in libc++ in a
future change. The builtin is compatible with GCC's implementation,
and libstdc++'s usage. An intentional divergence is that GCC declares
the builtin's return type to be `const void*` (for
ease-of-implementation reasons), while Clang uses the actual type,
`const std::source_location::__impl*`.
In order to support this new functionality, I've also added a new
'UnnamedGlobalConstantDecl'. This artificial Decl is modeled after
MSGuidDecl, and is used to represent a generic concept of an lvalue
constant with global scope, deduplicated by its value. It's possible
that MSGuidDecl itself, or some of the other similar sorts of things
in Clang might be able to be refactored onto this more-generic
concept, but there's enough special-case weirdness in MSGuidDecl that
I gave up attempting to share code there, at least for now.
Finally, for compatibility with libstdc++'s <source_location> header,
I've added a second exception to the "cannot cast from void* to T* in
constant evaluation" rule. This seems a bit distasteful, but feels
like the best available option.
Reviewers: aaron.ballman, erichkeane
Differential Revision: https://reviews.llvm.org/D120159
Full-expressions are Sema-generated implicit nodes that cover
constant-expressions and expressions-with-cleanup for temporaries.
Ignore those as part of implicit-ignore, and also remove too-aggressive
IgnoreImplicit (which includes nested ImplicitCastExprs, for example)
on unpacked sub-expressions.
Add some unittests to demonstrate that RecursiveASTVisitor sees through
ConstantExpr nodes correctly.
Adjust cxx2a-consteval test to cover diagnostics for nested consteval
expressions that were previously missed.
Fixes bug #53044.
CastExpr::getSubExprAsWritten and getConversionFunction used to have
disparate implementations to traverse the sub-expression chain and skip
so-called "implicit temporaries" (which are really implicit nodes added
by Sema to represent semantic details in the AST).
There's some friction in these algorithms that makes it hard to extend
and change them:
* skipImplicitTemporary is order-dependent; it can skip a
CXXBindTemporaryExpr nested inside a MaterializeTemporaryExpr, but not
vice versa
* skipImplicitTemporary only runs one pass, it does not traverse
multiple nested sequences of MTE/CBTE/MTE/CBTE, for example
Both of these weaknesses are void at this point, because this kind of
out-of-order multi-level nesting does not exist in the current AST.
Adding a new implicit expression to skip exacerbates the problem,
however, since a node X might show up in any and all locations between
the existing.
Thus;
* Harmonize the form of getSubExprAsWritten and getConversionFunction
so they both use a for loop
* Use the IgnoreExprNodes machinery to skip multiple nodes
* Rename skipImplicitTemporary to ignoreImplicitSemaNodes to generalize
* Update ignoreImplicitSemaNodes so it only skips one level per call,
to mirror existing Ignore functions and work better with
IgnoreExprNodes
This is a functional change, but one without visible effect.
C++20 non-type template parameter prints `MyType<{{116, 104, 105, 115}}>` when the code is as simple as `MyType<"this">`. This patch prints `MyType<{"this"}>`, with one layer of braces preserved for the intermediate structural type to trigger CTAD.
`StringLiteral` handles this case, but `StringLiteral` inside `APValue` code looks like a circular dependency. The proposed patch implements a cheap strategy to emit string literals in diagnostic messages only when they are readable and fall back to integer sequences.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D115031
Control-Flow Integrity (CFI) replaces references to address-taken
functions with pointers to the CFI jump table. This is a problem
for low-level code, such as operating system kernels, which may
need the address of an actual function body without the jump table
indirection.
This change adds the __builtin_function_start() builtin, which
accepts an argument that can be constant-evaluated to a function,
and returns the address of the function body.
Link: https://github.com/ClangBuiltLinux/linux/issues/1353
Depends on D108478
Reviewed By: pcc, rjmccall
Differential Revision: https://reviews.llvm.org/D108479
Add an AtomicScopeModel for HIP and support for OpenCL builtins
that are missing in HIP.
Patch by: Michael Liao
Revised by: Anshil Ghandi
Reviewed by: Yaxun Liu
Differential Revision: https://reviews.llvm.org/D113925
There's a nuanced check about when to use suffixes on these integer
non-type-template-parameters, but when rebuilding names for
-gsimple-template-names there isn't enough data in the DWARF to
determine when to use suffixes or not. So turn on suffixes always to
make it easy to match up names in llvm-dwarfdump --verify.
I /think/ if we correctly modelled auto non-type-template parameters
maybe we could put suffixes only on those. But there's also some logic
in Clang that puts the suffixes on overloaded functions - at least
that's what the parameter says (see D77598 and printTemplateArguments
"TemplOverloaded" parameter) - but I think maybe it's for anything that
/can/ be overloaded, not necessarily only the things that are overloaded
(the argument value is hardcoded at the various callsites, doesn't seem
to depend on overload resolution/searching for overloaded functions). So
maybe with "auto" modeled more accurately, and differentiating between
function templates (always using type suffixes there) and class/variable
templates (only using the suffix for "auto" types) we could correctly
use integer type suffixes only in the minimal set of cases.
But that seems all too much fuss, so let's just put integer type
suffixes everywhere always in the debug info of integer non-type
template parameters in template names.
(more context:
* https://reviews.llvm.org/D77598#inline-1057607
* https://groups.google.com/g/llvm-dev/c/ekLMllbLIZg/m/-dhJ0hO1AAAJ )
Differential Revision: https://reviews.llvm.org/D111477
Add `__c11_atomic_fetch_nand` builtin to language extensions and support `__atomic_fetch_nand` libcall in compiler-rt.
Reviewed By: theraven
Differential Revision: https://reviews.llvm.org/D112400