nested-name-specifiers. Also includes fixes to the generation of
nested-name-specifier result in the non-cached case; we were producing
lame results for namespaces and namespace aliases, which (1) didn't
always have nested-name-specifiers when we want them, and (2) did not
have the necessary "::" as part of the completion.
llvm-svn: 111203
type class, so that we can adjust priorities appropriately when the
preferred type for the context and the actual type of the completion
are similar.
This gets us one step closer to parity of the cached completion
results with the non-cached completion results.
llvm-svn: 111139
declarations (in addition to macros). Each kind of declaration maps to
a certain set of completion contexts, and the ASTUnit completion logic
introduces the completion strings for those declarations if the actual
code-completion occurs in one of the contexts where it matters.
There are a few new code-completion-context kinds. Without these,
certain completions (e.g., after "using namespace") would need to
suppress all global completions, which would be unfortunate.
Note that we don't get the priorities right for global completions,
because we don't have enough type information. We'll need a way to
compare types in an ASTContext-agnostic way before this can be
implemented.
llvm-svn: 111093
when the CXTranslationUnit_CacheCompletionResults option is given to
clang_parseTranslationUnit(). Essentially, we compute code-completion
results for macro definitions after we have parsed the file, then
store an ASTContext-agnostic version of those results (completion
string, cursor kind, priority, and active contexts) in the
ASTUnit. When performing code completion in that ASTUnit, we splice
the macro definition results into the results provided by the actual
code-completion (which has had macros turned off) before libclang gets
those results. We use completion context information to only splice in
those results that make sense for that context.
With a completion involving all of the macros from Cocoa.h and a few other
system libraries (totally ~8500 macro definitions) living in a
precompiled header, we get about a 9% performance improvement from
code completion, since we no longer have to deserialize all of the
macro definitions from the precompiled header.
Note that macro definitions are merely the canary; the cache is
designed to also support other top-level declarations, which should be
a bigger performance win. That optimization will be next.
Note also that there is no mechanism for determining when to throw
away the cache and recompute its contents.
llvm-svn: 111051
and create separate decl nodes for forward declarations and the
definition," which appears to be causing significant Objective-C
breakage.
llvm-svn: 110803
- Eagerly create ObjCInterfaceTypes for declarations.
- The two above changes lead to a 0.5% increase in memory use and no speed regression when parsing Cocoa.h. On the other hand, now chained PCH works when there's a forward declaration in one PCH and the interface definition in another.
- Add HandleInterestingDecl to ASTConsumer. PCHReader passes the "interesting" decls it finds to this function instead of HandleTopLevelDecl. The default implementation forwards to HandleTopLevelDecl, but ASTUnit's handler for example ignores them. This fixes a potential crash when lazy loading of PCH data would cause ASTUnit's "top level" declaration collection to change while being iterated.
llvm-svn: 110610
completion within the translation unit using the same command-line
arguments for parsing the translation unit. Eventually, we'll reuse
the precompiled preamble to improve code-completion performance, and
this also gives us a place to cache results.
Expose this function via the new libclang function
clang_codeCompleteAt(), which performs the code completion within a
CXTranslationUnit. The completion occurs in-process
(clang_codeCompletion() runs code completion out-of-process).
llvm-svn: 110210
strip cv-qualifiers from the expression's type when the language calls
for it: in C, that's all the time, while C++ only does it for
non-class types.
Centralized the computation of the call expression type in
QualType::getCallResultType() and some helper functions in other nodes
(FunctionDecl, ObjCMethodDecl, FunctionType), and updated all relevant
callers of getResultType() to getCallResultType().
Fixes PR7598 and PR7463, along with a bunch of getResultType() call
sites that weren't stripping references off the result type (nothing
stripped cv-qualifiers properly before this change).
llvm-svn: 108234
selector of an Objective-C method declaration, e.g., given
- (int)first:(int)x second:(int)y;
this code completion point triggers at the location of "second". It
will provide completions that fill out the method declaration for any
known method, anywhere in the translation unit.
llvm-svn: 107929
bring in the entire lookup table at once.
Also, give ExternalSemaSource's vtable a home. This is important because otherwise
any reference to it will cause RTTI to be emitted, and since clang is compiled
with -fno-rtti, that RTTI will contain unresolved references (to ExternalASTSource's
RTTI). So this change makes it possible to subclass ExternalSemaSource from projects
compiled with RTTI, as long as the subclass's home is compiled with -fno-rtti.
llvm-svn: 105268
type that we expect to see at a given point in the grammar, e.g., when
initializing a variable, returning a result, or calling a function. We
don't prune the candidate set at all, just adjust priorities to favor
things that should type-check, using an ultra-simplified type system.
llvm-svn: 105128
1) Suppress diagnostics as soon as we form the code-completion
token, so we don't get any error/warning spew from the early
end-of-file.
2) If we consume a code-completion token when we weren't expecting
one, go into a code-completion recovery path that produces the best
results it can based on the context that the parser is in.
llvm-svn: 104585
ObjCObjectType, which is basically just a pair of
one of {primitive-id, primitive-Class, user-defined @class}
with
a list of protocols.
An ObjCObjectPointerType is therefore just a pointer which always points to
one of these types (possibly sugared). ObjCInterfaceType is now just a kind
of ObjCObjectType which happens to not carry any protocols.
Alter a rather large number of use sites to use ObjCObjectType instead of
ObjCInterfaceType. Store an ObjCInterfaceType as a pointer on the decl rather
than hashing them in a FoldingSet. Remove some number of methods that are no
longer used, at least after this patch.
By simplifying ObjCObjectPointerType, we are now able to easily remove and apply
pointers to Objective-C types, which is crucial for a certain kind of ObjC++
metaprogramming common in WebKit.
llvm-svn: 103870
way that C does. Among other differences, elaborated type specifiers
are defined to skip "non-types", which, as you might imagine, does not
include typedefs. Rework our use of IDNS masks to capture the semantics
of different kinds of declarations better, and remove most current lookup
filters. Removing the last remaining filter is more complicated and will
happen in a separate patch.
Fixes PR 6885 as well some spectrum of unfiled bugs.
llvm-svn: 102164
sends. Major changes include:
- Expanded the interface from two actions (ActOnInstanceMessage,
ActOnClassMessage), where ActOnClassMessage also handled sends to
"super" by checking whether the identifier was "super", to three
actions (ActOnInstanceMessage, ActOnClassMessage,
ActOnSuperMessage). Code completion has the same changes.
- The parser now resolves the type to which we are sending a class
message, so ActOnClassMessage now accepts a TypeTy* (rather than
an IdentifierInfo *). This opens the door to more interesting
types (for Objective-C++ support).
- Split ActOnInstanceMessage and ActOnClassMessage into parser
action functions (with their original names) and semantic
functions (BuildInstanceMessage and BuildClassMessage,
respectively). At present, this split is onyl used by
ActOnSuperMessage, which decides which kind of super message it
has and forwards to the appropriate Build*Message. In the future,
Build*Message will be used by template instantiation.
- Use getObjCMessageKind() within the disambiguation of Objective-C
message sends vs. array designators.
Two notes about substandard bits in this patch:
- There is some redundancy in the code in ParseObjCMessageExpr and
ParseInitializerWithPotentialDesignator; this will be addressed
shortly by centralizing the mapping from identifiers to type names
for the message receiver.
- There is some #if 0'd code that won't likely ever be used---it
handles the use of 'super' in methods whose class does not have a
superclass---but could be used to model GCC's behavior more
closely. This code will die in my next check-in, but I want it in
Subversion.
llvm-svn: 102021
expressions, to improve source-location information, clarify the
actual receiver of the message, and pave the way for proper C++
support. The ObjCMessageExpr node represents four different kinds of
message sends in a single AST node:
1) Send to a object instance described by an expression (e.g., [x method:5])
2) Send to a class described by the class name (e.g., [NSString method:5])
3) Send to a superclass class (e.g, [super method:5] in class method)
4) Send to a superclass instance (e.g., [super method:5] in instance method)
Previously these four cases where tangled together. Now, they have
more distinct representations. Specific changes:
1) Unchanged; the object instance is represented by an Expr*.
2) Previously stored the ObjCInterfaceDecl* referring to the class
receiving the message. Now stores a TypeSourceInfo* so that we know
how the class was spelled. This both maintains typedef information
and opens the door for more complicated C++ types (e.g., dependent
types). There was an alternative, unused representation of these
sends by naming the class via an IdentifierInfo *. In practice, we
either had an ObjCInterfaceDecl *, from which we would get the
IdentifierInfo *, or we fell into the case below...
3) Previously represented by a class message whose IdentifierInfo *
referred to "super". Sema and CodeGen would use isStr("super") to
determine if they had a send to super. Now represented as a
"class super" send, where we have both the location of the "super"
keyword and the ObjCInterfaceDecl* of the superclass we're
targetting (statically).
4) Previously represented by an instance message whose receiver is a
an ObjCSuperExpr, which Sema and CodeGen would check for via
isa<ObjCSuperExpr>(). Now represented as an "instance super" send,
where we have both the location of the "super" keyword and the
ObjCInterfaceDecl* of the superclass we're targetting
(statically). Note that ObjCSuperExpr only has one remaining use in
the AST, which is for "super.prop" references.
The new representation of ObjCMessageExpr is 2 pointers smaller than
the old one, since it combines more storage. It also eliminates a leak
when we loaded message-send expressions from a precompiled header. The
representation also feels much cleaner to me; comments welcome!
This patch attempts to maintain the same semantics we previously had
with Objective-C message sends. In several places, there are massive
changes that boil down to simply replacing a nested-if structure such
as:
if (message has a receiver expression) {
// instance message
if (isa<ObjCSuperExpr>(...)) {
// send to super
} else {
// send to an object
}
} else {
// class message
if (name->isStr("super")) {
// class send to super
} else {
// send to class
}
}
with a switch
switch (E->getReceiverKind()) {
case ObjCMessageExpr::SuperInstance: ...
case ObjCMessageExpr::Instance: ...
case ObjCMessageExpr::SuperClass: ...
case ObjCMessageExpr::Class:...
}
There are quite a few places (particularly in the checkers) where
send-to-super is effectively ignored. I've placed FIXMEs in most of
them, and attempted to address send-to-super in a reasonable way. This
could use some review.
llvm-svn: 101972
in case it ends up doing something that might trigger diagnostics
(template instantiation, ambiguity reporting, access
reporting). Noticed while working on PR6831.
llvm-svn: 101412
definitions, e.g., after
-
or
- (id)
we'll find all of the "likely" instance methods that one would want to
declare or define at this point. In the latter case, we only produce
results whose return types match "id".
llvm-svn: 100587
while we're completing in the middle of a function call), also produce
"ordinary" name results that show what can be typed at that point.
llvm-svn: 100558
presence of precompiled headers by forcibly loading all of the
methods we know about from the PCH file before constructing our
code-completion list.
llvm-svn: 100535