The situation with inline asm/MC error reporting is kind of messy at the
moment. The errors from MC layout are not reliably propagated and users
have to specify an inlineasm handler separately to get inlineasm
diagnose. The latter issue is not a correctness issue but could be improved.
* Kill LLVMContext inlineasm diagnose handler and migrate it to use
DiagnoseInfo/DiagnoseHandler.
* Introduce `DiagnoseInfoSrcMgr` to diagnose SourceMgr backed errors. This
covers use cases like inlineasm, MC, and any clients using SourceMgr.
* Move AsmPrinter::SrcMgrDiagInfo and its instance to MCContext. The next step
is to combine MCContext::SrcMgr and MCContext::InlineSrcMgr because in all
use cases, only one of them is used.
* If LLVMContext is available, let MCContext uses LLVMContext's diagnose
handler; if LLVMContext is not available, MCContext uses its own default
diagnose handler which just prints SMDiagnostic.
* Change a few clients(Clang, llc, lldb) to use the new way of reporting.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D97449
All these potential null pointer dereferences are reported by my static analyzer for null smart pointer dereferences, which has a different implementation from `alpha.cplusplus.SmartPtr`.
The checked pointers in this patch are initialized by Target::createXXX functions. When the creator function pointer is not correctly set, a null pointer will be returned, or the creator function may originally return a null pointer.
Some of them may not make sense as they may be checked before entering the function, but I fixed them all in this patch. I submit this fix because 1) similar checks are found in some other places in the LLVM codebase for the same return value of the function; and, 2) some of the pointers are dereferenced before they are checked, which may definitely trigger a null pointer dereference if the return value is nullptr.
Reviewed By: tejohnson, MaskRay, jpienaar
Differential Revision: https://reviews.llvm.org/D91410
a warning about clobbering reserved registers (NFC).
Also address some minor inefficiencies and style issues.
Differential Revision: https://reviews.llvm.org/D86088
Summary:
It's not necessary to use an 'l'(ell) modifier when referencing a label.
Treat block addresses and MBB references as if the modifier is used
anyway. This prevents us from generating references to ficticious
labels.
Reviewers: jyknight, nickdesaulniers, hfinkel
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71849
Summary:
This is documented as the appropriate template modifier for call operands.
Fixes PR44272, and adds a regression test.
Also adds support for operand modifiers in Intel-style inline assembly.
Reviewers: rnk
Reviewed By: rnk
Subscribers: merge_guards_bot, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71677
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
Summary:
This patch keeps track of MCSymbols created for blocks that were
referenced in inline asm. It prevents creating a new symbol which
doesn't refer to the block.
Inline asm may have a reference to a label. The asm parser however
doesn't recognize it as a label and tries to create a new symbol. The
result being that instead of the original symbol (e.g. ".Ltmp0") the
parser replaces it in the inline asm with the new one (e.g. ".Ltmp00")
without updating it in the symbol table. So the machine basic block
retains the "old" symbol (".Ltmp0"), but the inline asm uses the new one
(".Ltmp00").
Reviewers: nickdesaulniers, craig.topper
Subscribers: nathanchance, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65304
llvm-svn: 368477
Summary:
Inline asm doesn't use labels when compiled as an object file. Therefore, we
shouldn't create one for the (potential) callbr destination. Instead, use the
symbol for the MachineBasicBlock.
Reviewers: nickdesaulniers, craig.topper
Reviewed By: nickdesaulniers
Subscribers: xbolva00, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D64888
llvm-svn: 366523
Summary:
Targets like ARM, MSP430, PPC, and SystemZ have complex behavior when
printing the address of a MachineOperand::MO_GlobalAddress. Move that
handling into a new overriden method in each base class. A virtual
method was added to the base class for handling the generic case.
Refactors a few subclasses to support the target independent %a, %c, and
%n.
The patch also contains small cleanups for AVRAsmPrinter and
SystemZAsmPrinter.
It seems that NVPTXTargetLowering is possibly missing some logic to
transform GlobalAddressSDNodes for
TargetLowering::LowerAsmOperandForConstraint to handle with "i" extended
inline assembly asm constraints.
Fixes:
- https://bugs.llvm.org/show_bug.cgi?id=41402
- https://github.com/ClangBuiltLinux/linux/issues/449
Reviewers: echristo, void
Reviewed By: void
Subscribers: void, craig.topper, jholewinski, dschuff, jyknight, dylanmckay, sdardis, nemanjai, javed.absar, sbc100, jgravelle-google, eraman, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, jrtc27, atanasyan, jsji, llvm-commits, kees, tpimh, nathanchance, peter.smith, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60887
llvm-svn: 359337
Summary:
X86 is quite complicated; so I intend to leave it as is. ARM+Aarch64 do
basically the same thing (Aarch64 did not correctly handle immediates,
ARM has a test llvm/test/CodeGen/ARM/2009-04-06-AsmModifier.ll that uses
%a with an immediate) for a flag that should be target independent
anyways.
Reviewers: echristo, peter.smith
Reviewed By: echristo
Subscribers: javed.absar, eraman, kristof.beyls, hiraditya, llvm-commits, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60841
llvm-svn: 358618
Summary:
None of these derived classes do anything that the base class cannot.
If we remove these case statements, then the base class can handle them
just fine.
Reviewers: peter.smith, echristo
Reviewed By: echristo
Subscribers: nemanjai, javed.absar, eraman, kristof.beyls, hiraditya, kbarton, jsji, llvm-commits, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60803
llvm-svn: 358603
Summary:
The InlineAsm::AsmDialect is only required for X86; no architecture
makes use of it and as such it gets passed around between arch-specific
and general code while being unused for all architectures but X86.
Since the AsmDialect is queried from a MachineInstr, which we also pass
around, remove the additional AsmDialect parameter and query for it deep
in the X86AsmPrinter only when needed/as late as possible.
This refactor should help later planned refactors to AsmPrinter, as this
difference in the X86AsmPrinter makes it harder to make AsmPrinter more
generic.
Reviewers: craig.topper
Subscribers: jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, javed.absar, sbc100, jgravelle-google, eraman, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, llvm-commits, peter.smith, srhines
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60488
llvm-svn: 358101
This patch accompanies the RFC posted here:
http://lists.llvm.org/pipermail/llvm-dev/2018-October/127239.html
This patch adds a new CallBr IR instruction to support asm-goto
inline assembly like gcc as used by the linux kernel. This
instruction is both a call instruction and a terminator
instruction with multiple successors. Only inline assembly
usage is supported today.
This also adds a new INLINEASM_BR opcode to SelectionDAG and
MachineIR to represent an INLINEASM block that is also
considered a terminator instruction.
There will likely be more bug fixes and optimizations to follow
this, but we felt it had reached a point where we would like to
switch to an incremental development model.
Patch by Craig Topper, Alexander Ivchenko, Mikhail Dvoretckii
Differential Revision: https://reviews.llvm.org/D53765
llvm-svn: 353563
This patch removes hidden codegen flag -print-schedule effectively reverting the
logic originally committed as r300311
(https://llvm.org/viewvc/llvm-project?view=revision&revision=300311).
Flag -print-schedule was originally introduced by r300311 to address PR32216
(https://bugs.llvm.org/show_bug.cgi?id=32216). That bug was about adding "Better
testing of schedule model instruction latencies/throughputs".
These days, we can use llvm-mca to test scheduling models. So there is no longer
a need for flag -print-schedule in LLVM. The main use case for PR32216 is
now addressed by llvm-mca.
Flag -print-schedule is mainly used for debugging purposes, and it is only
actually used by x86 specific tests. We already have extensive (latency and
throughput) tests under "test/tools/llvm-mca" for X86 processor models. That
means, most (if not all) existing -print-schedule tests for X86 are redundant.
When flag -print-schedule was first added to LLVM, several files had to be
modified; a few APIs gained new arguments (see for example method
MCAsmStreamer::EmitInstruction), and MCSubtargetInfo/TargetSubtargetInfo gained
a couple of getSchedInfoStr() methods.
Method getSchedInfoStr() had to originally work for both MCInst and
MachineInstr. The original implmentation of getSchedInfoStr() introduced a
subtle layering violation (reported as PR37160 and then fixed/worked-around by
r330615).
In retrospect, that new API could have been designed more optimally. We can
always query MCSchedModel to get the latency and throughput. More importantly,
the "sched-info" string should not have been generated by the subtarget.
Note, r317782 fixed an issue where "print-schedule" didn't work very well in the
presence of inline assembly. That commit is also reverted by this change.
Differential Revision: https://reviews.llvm.org/D57244
llvm-svn: 353043
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Summary:
This renames the IsParsingMSInlineAsm member variable of AsmLexer to
LexMasmIntegers and moves it up to MCAsmLexer. This is the only behavior
controlled by that variable. I added a public setter, so that it can be
set from outside or from the llvm-mc command line. We may need to
arrange things so that users can get this behavior from clang, but
that's future work.
I also put additional hex literal lexing functionality under this flag
to fix PR32973. It appears that this hex literal parsing wasn't intended
to be enabled in non-masm-style blocks.
Now, masm integers (0b1101 and 0ABCh) work in __asm blocks from clang,
but 0b label references work when using .intel_syntax in standalone .s
files.
However, 0b label references will *not* work from __asm blocks in clang.
They will work from GCC inline asm blocks, which it sounds like is
important for Crypto++ as mentioned in PR36144.
Essentially, we only lex masm literals for inline asm blobs that use
intel syntax. If the .intel_syntax directive is used inside a gnu-style
inline asm statement, masm literals will not be lexed, which is
compatible with gas and llvm-mc standalone .s assembly.
This fixes PR36144 and PR32973.
Reviewers: Gerolf, avt77
Subscribers: eraman, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D53535
llvm-svn: 345189
Summary:
This is a continuation of https://reviews.llvm.org/D49727
Below the original text, current changes in the comments:
Currently, in line with GCC, when specifying reserved registers like sp or pc on an inline asm() clobber list, we don't always preserve the original value across the statement. And in general, overwriting reserved registers can have surprising results.
For example:
extern int bar(int[]);
int foo(int i) {
int a[i]; // VLA
asm volatile(
"mov r7, #1"
:
:
: "r7"
);
return 1 + bar(a);
}
Compiled for thumb, this gives:
$ clang --target=arm-arm-none-eabi -march=armv7a -c test.c -o - -S -O1 -mthumb
...
foo:
.fnstart
@ %bb.0: @ %entry
.save {r4, r5, r6, r7, lr}
push {r4, r5, r6, r7, lr}
.setfp r7, sp, #12
add r7, sp, #12
.pad #4
sub sp, #4
movs r1, #7
add.w r0, r1, r0, lsl #2
bic r0, r0, #7
sub.w r0, sp, r0
mov sp, r0
@APP
mov.w r7, #1
@NO_APP
bl bar
adds r0, #1
sub.w r4, r7, #12
mov sp, r4
pop {r4, r5, r6, r7, pc}
...
r7 is used as the frame pointer for thumb targets, and this function needs to restore the SP from the FP because of the variable-length stack allocation a. r7 is clobbered by the inline assembly (and r7 is included in the clobber list), but LLVM does not preserve the value of the frame pointer across the assembly block.
This type of behavior is similar to GCC's and has been discussed on the bugtracker: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=11807 . No consensus seemed to have been reached on the way forward. Clang behavior has briefly been discussed on the CFE mailing (starting here: http://lists.llvm.org/pipermail/cfe-dev/2018-July/058392.html). I've opted for following Eli Friedman's advice to print warnings when there are reserved registers on the clobber list so as not to diverge from GCC behavior for now.
The patch uses MachineRegisterInfo's target-specific knowledge of reserved registers, just before we convert the inline asm string in the AsmPrinter.
If we find a reserved register, we print a warning:
repro.c:6:7: warning: inline asm clobber list contains reserved registers: R7 [-Winline-asm]
"mov r7, #1"
^
Reviewers: efriedma, olista01, javed.absar
Reviewed By: efriedma
Subscribers: eraman, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D51165
llvm-svn: 341062
Summary:
Currently, in line with GCC, when specifying reserved registers like sp or pc on an inline asm() clobber list, we don't always preserve the original value across the statement. And in general, overwriting reserved registers can have surprising results.
For example:
```
extern int bar(int[]);
int foo(int i) {
int a[i]; // VLA
asm volatile(
"mov r7, #1"
:
:
: "r7"
);
return 1 + bar(a);
}
```
Compiled for thumb, this gives:
```
$ clang --target=arm-arm-none-eabi -march=armv7a -c test.c -o - -S -O1 -mthumb
...
foo:
.fnstart
@ %bb.0: @ %entry
.save {r4, r5, r6, r7, lr}
push {r4, r5, r6, r7, lr}
.setfp r7, sp, #12
add r7, sp, #12
.pad #4
sub sp, #4
movs r1, #7
add.w r0, r1, r0, lsl #2
bic r0, r0, #7
sub.w r0, sp, r0
mov sp, r0
@APP
mov.w r7, #1
@NO_APP
bl bar
adds r0, #1
sub.w r4, r7, #12
mov sp, r4
pop {r4, r5, r6, r7, pc}
...
```
r7 is used as the frame pointer for thumb targets, and this function needs to restore the SP from the FP because of the variable-length stack allocation a. r7 is clobbered by the inline assembly (and r7 is included in the clobber list), but LLVM does not preserve the value of the frame pointer across the assembly block.
This type of behavior is similar to GCC's and has been discussed on the bugtracker: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=11807 . No consensus seemed to have been reached on the way forward. Clang behavior has briefly been discussed on the CFE mailing (starting here: http://lists.llvm.org/pipermail/cfe-dev/2018-July/058392.html). I've opted for following Eli Friedman's advice to print warnings when there are reserved registers on the clobber list so as not to diverge from GCC behavior for now.
The patch uses MachineRegisterInfo's target-specific knowledge of reserved registers, just before we convert the inline asm string in the AsmPrinter.
If we find a reserved register, we print a warning:
```
repro.c:6:7: warning: inline asm clobber list contains reserved registers: R7 [-Winline-asm]
"mov r7, #1"
^
```
Reviewers: eli.friedman, olista01, javed.absar, efriedma
Reviewed By: efriedma
Subscribers: efriedma, eraman, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D49727
llvm-svn: 339257
Teach AsmParser to check with Assembler for when evaluating constant
expressions. This improves the handing of preprocessor expressions
that must be resolved at parse time. This idiom can be found as
assembling-time assertion checks in source-level assemblers. Note that
this relies on the MCStreamer to keep sufficient tabs on Section /
Fragment information which the MCAsmStreamer does not. As a result the
textual output may fail where the equivalent object generation would
pass. This can most easily be resolved by folding the MCAsmStreamer
and MCObjectStreamer together which is planned for in a separate
patch.
Currently, this feature is only enabled for assembly input, keeping IR
compilation consistent between assembly and object generation.
Reviewers: echristo, rnk, probinson, espindola, peter.smith
Reviewed By: peter.smith
Subscribers: eraman, peter.smith, arichardson, jyknight, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D45164
llvm-svn: 331218
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.
I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.
This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.
Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).
llvm-svn: 304787
Summary:
Keep a vector of LocInfos around; one for each call to EmitInlineAsm.
Since each call to EmitInlineAsm creates a new buffer in the inline asm
SourceMgr, we can use the buffer number to map to the right LocInfo.
Reviewers: rengolin, grosbach, rnk, echristo
Reviewed By: rnk
Subscribers: mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D29769
llvm-svn: 294947
Fixed test.
Summary:
Enables source location in diagnostic messages from the backend. This
is after parsing, during finalization. This requires the SourceMgr, the
inline assembly string buffer, and DiagInfo to still be alive after
EmitInlineAsm returns.
This patch creates a single SourceMgr for inline assembly inside the
AsmPrinter. MCContext gets a pointer to this SourceMgr. Using one
SourceMgr per call to EmitInlineAsm would make it difficult for
MCContext to figure out in which SourceMgr the SMLoc is located, while a
single SourceMgr can figure it out if it has multiple buffers.
The Str argument to EmitInlineAsm is copied into a buffer and owned by
the inline asm SourceMgr. This ensures that DiagHandlers won't print
garbage. (Clang emits a "note: instantiated into assembly here", which
refers to this string.)
The AsmParser gets destroyed before finalization, which means that the
DiagHandlers the AsmParser installs into the SourceMgr will be stale.
Restore the saved DiagHandlers.
Since now we're using just one SourceMgr for multiple inline asm
strings, we need to tell the AsmParser which buffer it needs to parse
currently. Hand a buffer id -- returned from SourceMgr::
AddNewSourceBuffer -- to the AsmParser.
Reviewers: rnk, grosbach, compnerd, rengolin, rovka, anemet
Reviewed By: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29441
llvm-svn: 294458
Summary:
Enables source location in diagnostic messages from the backend. This
is after parsing, during finalization. This requires the SourceMgr, the
inline assembly string buffer, and DiagInfo to still be alive after
EmitInlineAsm returns.
This patch creates a single SourceMgr for inline assembly inside the
AsmPrinter. MCContext gets a pointer to this SourceMgr. Using one
SourceMgr per call to EmitInlineAsm would make it difficult for
MCContext to figure out in which SourceMgr the SMLoc is located, while a
single SourceMgr can figure it out if it has multiple buffers.
The Str argument to EmitInlineAsm is copied into a buffer and owned by
the inline asm SourceMgr. This ensures that DiagHandlers won't print
garbage. (Clang emits a "note: instantiated into assembly here", which
refers to this string.)
The AsmParser gets destroyed before finalization, which means that the
DiagHandlers the AsmParser installs into the SourceMgr will be stale.
Restore the saved DiagHandlers.
Since now we're using just one SourceMgr for multiple inline asm
strings, we need to tell the AsmParser which buffer it needs to parse
currently. Hand a buffer id -- returned from SourceMgr::
AddNewSourceBuffer -- to the AsmParser.
Reviewers: rnk, grosbach, compnerd, rengolin, rovka, anemet
Reviewed By: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29441
llvm-svn: 294433
It looks like this logic was duplicated long ago and the GCC side of
things has grown additional functionality. We need ${:uid} at least to
generate unique MS inline asm labels (PR23715), so expose these.
llvm-svn: 288092
This patch corresponds to review:
http://reviews.llvm.org/D16847
There are some files in glibc that use the output operand modifier even though
it was deprecated in GCC. This patch just adds support for it to prevent issues
with such files.
llvm-svn: 259798
MCRelaxableFragment previously kept a copy of MCSubtargetInfo and
MCInst to enable re-encoding the MCInst later during relaxation. A copy
of MCSubtargetInfo (instead of a reference or pointer) was needed
because the feature bits could be modified by the parser.
This commit replaces the MCSubtargetInfo copy in MCRelaxableFragment
with a constant reference to MCSubtargetInfo. The copies of
MCSubtargetInfo are kept in MCContext, and the target parsers are now
responsible for asking MCContext to provide a copy whenever the feature
bits of MCSubtargetInfo have to be toggled.
With this patch, I saw a 4% reduction in peak memory usage when I
compiled verify-uselistorder.lto.bc using llc.
rdar://problem/21736951
Differential Revision: http://reviews.llvm.org/D14346
llvm-svn: 253127
Summary:
This change is part of a series of commits dedicated to have a single
DataLayout during compilation by using always the one owned by the
module.
This patch is quite boring overall, except for some uglyness in
ASMPrinter which has a getDataLayout function but has some clients
that use it without a Module (llmv-dsymutil, llvm-dwarfdump), so
some methods are taking a DataLayout as parameter.
Reviewers: echristo
Subscribers: yaron.keren, rafael, llvm-commits, jholewinski
Differential Revision: http://reviews.llvm.org/D11090
From: Mehdi Amini <mehdi.amini@apple.com>
llvm-svn: 242386
Instead of doing that, create a temporary copy of MCTargetOptions and reset its
SanitizeAddress field based on the function's attribute every time an InlineAsm
instruction is emitted in AsmPrinter::EmitInlineAsm.
This is part of the work to remove TargetMachine::resetTargetOptions (the FIXME
added to TargetMachine.cpp in r236009 explains why this function has to be
removed).
Differential Revision: http://reviews.llvm.org/D9570
llvm-svn: 237412
are not at the file level.
Previously, the default subtarget created from the target triple was used to
emit inline asm instructions. Compilation would fail in cases where the feature
bits necessary to assemble an inline asm instruction in a function weren't set.
llvm-svn: 232392
asm parsing since it's not subtarget dependent and we can't depend
upon the one hanging off the MachineFunction's subtarget still
being around.
llvm-svn: 230135