Summary:
NFC = [[ https://llvm.org/docs/Lexicon.html#nfc | Non functional change ]]
This commit is the result of modernizing the LLDB codebase by using
`nullptr` instread of `0` or `NULL`. See
https://clang.llvm.org/extra/clang-tidy/checks/modernize-use-nullptr.html
for more information.
This is the command I ran and I to fix and format the code base:
```
run-clang-tidy.py \
-header-filter='.*' \
-checks='-*,modernize-use-nullptr' \
-fix ~/dev/llvm-project/lldb/.* \
-format \
-style LLVM \
-p ~/llvm-builds/debug-ninja-gcc
```
NOTE: There were also changes to `llvm/utils/unittest` but I did not
include them because I felt that maybe this library shall be updated in
isolation somehow.
NOTE: I know this is a rather large commit but it is a nobrainer in most
parts.
Reviewers: martong, espindola, shafik, #lldb, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: arsenm, jvesely, nhaehnle, hiraditya, JDevlieghere, teemperor, rnkovacs, emaste, kubamracek, nemanjai, ki.stfu, javed.absar, arichardson, kbarton, jrtc27, MaskRay, atanasyan, dexonsmith, arphaman, jfb, jsji, jdoerfert, lldb-commits, llvm-commits
Tags: #lldb, #llvm
Differential Revision: https://reviews.llvm.org/D61847
llvm-svn: 361484
Summary:
This is the final phase of the refactoring towards using llvm::Expected
and llvm::Error in the ASTImporter API.
This involves the following:
- remove old Import functions which returned with a pointer,
- use the Import_New functions (which return with Err or Expected) everywhere
and handle their return value
- rename Import_New functions to Import
This affects both Clang and LLDB.
Reviewers: shafik, teemperor, aprantl, a_sidorin, balazske, a.sidorin
Subscribers: rnkovacs, dkrupp, Szelethus, gamesh411, cfe-commits, lldb-commits
Tags: #clang, #lldb
Differential Revision: https://reviews.llvm.org/D61438
llvm-svn: 360760
My apologies for the large patch. With the exception of ConstString.h
itself it was entirely produced by sed.
ConstString has exactly one const char * data member, so passing a
ConstString by reference is not any more efficient than copying it by
value. In both cases a single pointer is passed. But passing it by
value makes it harder to accidentally return the address of a local
object.
(This fixes rdar://problem/48640859 for the Apple folks)
Differential Revision: https://reviews.llvm.org/D59030
llvm-svn: 355553
Summary:
This patch adds support of expression evaluation in a context of some object.
Consider the following example:
```
struct S {
int a = 11;
int b = 12;
};
int main() {
S s;
int a = 1;
int b = 2;
// We have stopped here
return 0;
}
```
This patch allows to do something like that:
```
lldb.frame.FindVariable("s").EvaluateExpression("a + b")
```
and the result will be `33` (not `3`) because fields `a` and `b` of `s` will be
used (not locals `a` and `b`).
This is achieved by replacing of `this` type and object for the expression. This
has some limitations: an expression can be evaluated only for values located in
the debuggee process memory (they must have an address of `eAddressTypeLoad`
type).
Reviewers: teemperor, clayborg, jingham, zturner, labath, davide, spyffe, serge-sans-paille
Reviewed By: jingham
Subscribers: abidh, lldb-commits, leonid.mashinskiy
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D55318
llvm-svn: 353149
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
These three classes have no external dependencies, but they are used
from various low-level APIs. Moving them down to Utility improves
overall code layering (although it still does not break any particular
dependency completely).
The XCode project will need to be updated after this change.
Differential Revision: https://reviews.llvm.org/D49740
llvm-svn: 339127
Summary:
As discussed in https://bugs.llvm.org/show_bug.cgi?id=37317,
FindGlobalVariables does not properly handle the case where
append=false. As this doesn't seem to be used in the tree, this patch
removes the parameter entirely.
Reviewers: clayborg, jingham, labath
Reviewed By: clayborg
Subscribers: aprantl, lldb-commits, kubamracek, JDevlieghere
Differential Revision: https://reviews.llvm.org/D46885
Patch by Tom Tromey <ttromey@mozilla.com>.
llvm-svn: 333639
This is intended as a clean up after the big clang-format commit
(r280751), which unfortunately resulted in many of the comment
paragraphs in LLDB being very hard to read.
FYI, the script I used was:
import textwrap
import commands
import os
import sys
import re
tmp = "%s.tmp"%sys.argv[1]
out = open(tmp, "w+")
with open(sys.argv[1], "r") as f:
header = ""
text = ""
comment = re.compile(r'^( *//) ([^ ].*)$')
special = re.compile(r'^((([A-Z]+[: ])|([0-9]+ )).*)|(.*;)$')
for line in f:
match = comment.match(line)
if match and not special.match(match.group(2)):
# skip intentionally short comments.
if not text and len(match.group(2)) < 40:
out.write(line)
continue
if text:
text += " " + match.group(2)
else:
header = match.group(1)
text = match.group(2)
continue
if text:
filled = textwrap.wrap(text, width=(78-len(header)),
break_long_words=False)
for l in filled:
out.write(header+" "+l+'\n')
text = ""
out.write(line)
os.rename(tmp, sys.argv[1])
Differential Revision: https://reviews.llvm.org/D46144
llvm-svn: 331197
When importing C++ methods into clang AST nodes from the DWARF symbol
table, preserve the DW_AT_linkage_name and use it as the linker
("asm") name for the symbol.
Concretely, this enables `expression` to call into names that use the
GNU `abi_tag` extension, and enables lldb to call into code using
std::string or std::list from recent versions of libstdc++. See
https://bugs.llvm.org/show_bug.cgi?id=35310 . It also seems broadly
more robust than relying on the DWARF->clang->codegen pipeline to
roundtrip properly, but I'm not immediately aware of any other cases
in which it makes a difference.
Patch by Nelson Elhage!
Differential Revision: https://reviews.llvm.org/D40283
llvm-svn: 328658
The issue was that the ASTDumper was being passed a null pointer
(because we did not create any declaration for the operator==). The
crash was in logging code, so it only manifested it self if you ran the
tests with logging enabled (like our bots do).
Given that this is logging code and the rest of the debugger is fine
with the declaration being null, I just make sure the logging code can
handle it as well. Right now I just do the null check in
ClangExpressionDeclMap, but if the ASTDumper class is meant to be a
debugging/logging aid, then it might be a good idea move the check
inside the class itself.
llvm-svn: 328088
Instead of applying the sledgehammer of refusing to insert any
C++ symbol in the ASTContext, try to validate the decl if what
we have is an operator. There was other code in lldb which was
responsible for this, just not really exposed (or used) in this
codepath. Also, add a better/more comprehensive test.
<rdar://problem/35645893>
llvm-svn: 328025
Typical example, illformed comparisons (operator== where LHS and
RHS are not compatible). If a symbol matched `operator==` in any
of the object files lldb inserted a generic function declaration
in the ASTContext on which Sema operates. Maintaining the AST
context invariants is fairly tricky and sometimes resulted in
crashes inside clang (or assertions hit).
The real reason why this feature exists in the first place is
that of allowing users to do something like:
(lldb) call printf("patatino")
even if the debug informations for printf() is not available.
Eventually, we might reconsider this feature in its
entirety, but for now we can't remove it as it would break
a bunch of users. Instead, try to limit it to non-C++ symbols,
where getting the invariants right is hopefully easier.
Now you can't do in lldb anymore
(lldb) call _Zsomethingsomething(1,2,3)
but that doesn't seem to be such a big loss.
<rdar://problem/35645893>
llvm-svn: 327356
This setting can be enabled like this at the target level:
(lldb) settings set target.experimental.use-modern-type-lookup true
This causes several new behaviors in the Clang expression parser:
- It completely disables use of ClangASTImporter. None are created
at all, and all users of it are now conditionalized on its
presence.
- It instead constructs a per-expression ExternalASTMerger, which
exists inside Clang and contains much of the type completion
logic that hitherto lived in ExternalASTSource,
ClangExpressionDeclMap, and ClangASTImporter.
- The expression parser uses this Merger as a backend for copying
and completing types.
- It also constructs a persistent ExternalASTMerger which is
connected to the Target's persistent AST context.
This is a major chunk of LLDB functionality moved into Clang. It
can be tested in two ways:
1. For an individual debug session, enable the setting before
running a target.
2. For the testsuite, change the option to be default-true. This
is done in Target.cpp's g_experimental_properties. The
testsuite is not yet clean with this, so I have not committed
that switch.
I have filed a Bugzilla for extending the testsuite to allow
custom settings for all tests:
https://bugs.llvm.org/show_bug.cgi?id=34771
I have also filed a Bugzilla for fixing the remaining testsuite
failures with this setting enabled:
https://bugs.llvm.org/show_bug.cgi?id=34772
llvm-svn: 314458
The IR dynamic checks are self-contained functions whose job is to
- verify that pointers referenced in an expression are valid at runtime; and
- verify that selectors sent to Objective-C objects by an expression are
actually supported by that object.
These dynamic checks forward-declare all the functions they use and should not
require any external debug information. The way they ensure this is by marking
all the names they use with a dollar sign ($). The expression parser recognizes
such symbols and perform no lookups for them.
This patch fixes three issues surrounding the use of the dollar sign:
- to fix a MIPS issue, the name of the pointer checker was changed from
starting with $ to starting with _$, but this was not properly ignored; and
- the Objective-C object checker used a temporary variable that did not start
with $.
- the Objective-C object checker used an externally-defined struct (struct
objc_selector) but didn't need to.
The patch also implements some cleanup in the area:
- it reformats the string containing the Objective-C object checker,
which was mangled horribly when the code was transformed to a uniform width
of 80 columns, and
- it factors out the logic for ignoring global $-symbols into common code
shared between ClangASTSource and ClangExpressionDeclMap.
Differential Revision: https://reviews.llvm.org/D38153
llvm-svn: 314225
When it resolves symbol-only variables, the expression parser
currently looks only in the global module list. It should prefer
the current module.
I've fixed that behavior by making it search the current module
first, and only search globally if it finds nothing. I've also
added a test case.
After review, I moved the core of the lookup algorithm into
SymbolContext for use by other code that needs it.
Thanks to Greg Clayton and Pavel Labath for their help.
Differential Revision: https://reviews.llvm.org/D33083
llvm-svn: 303223
This renames the LLDB error class to Status, as discussed
on the lldb-dev mailing list.
A change of this magnitude cannot easily be done without
find and replace, but that has potential to catch unwanted
occurrences of common strings such as "Error". Every effort
was made to find all the obvious things such as the word "Error"
appearing in a string, etc, but it's possible there are still
some lingering occurences left around. Hopefully nothing too
serious.
llvm-svn: 302872
Templates can end in parameter packs, like this
template <class T...> struct MyStruct
{ /*...*/ };
LLDB does not currently support these parameter packs;
it does not emit them into the template argument list
at all. This causes problems when you specialize, e.g.:
template <> struct MyStruct<int>
{ /*...*/ };
template <> struct MyStruct<int, int> : MyStruct<int>
{ /*...*/ };
LLDB generates two template specializations, each with
no template arguments, and then when they are imported
by the ASTImporter into a parser's AST context we get a
single specialization that inherits from itself,
causing Clang's record layout mechanism to smash its
stack.
This patch fixes the problem for classes and adds
tests. The tests for functions fail because Clang's
ASTImporter can't import them at the moment, so I've
xfailed that test.
Differential Revision: https://reviews.llvm.org/D33025
llvm-svn: 302833
Many times a user wants to access a type when there's a variable of
the same name, or a variable when there's a type of the same name.
Depending on the precise context, currently the expression parser
can fail to resolve one or the other.
This is because ClangExpressionDeclMap has logic to limit the
amount of information it searches, and that logic sometimes cuts
down the search prematurely. This patch removes some of those early
exits.
In that sense, this patch trades performance (early exit is faster)
for correctness.
I've also included two new test cases showing examples of this
behavior – as well as modifying an existing test case that gets it
wrong.
llvm-svn: 301273
All references to Host and Core have been removed, so this
class can now safely be lowered into Utility.
Differential Revision: https://reviews.llvm.org/D30559
llvm-svn: 296909
With this patch, the only dependency left is from Utility
to Host. After this is broken, Utility will finally be
standalone.
Differential Revision: https://reviews.llvm.org/D29909
llvm-svn: 295088
This moves the following classes from Core -> Utility.
ConstString
Error
RegularExpression
Stream
StreamString
The goal here is to get lldbUtility into a state where it has
no dependendencies except on itself and LLVM, so it can be the
starting point at which to start untangling LLDB's dependencies.
These are all low level and very widely used classes, and
previously lldbUtility had dependencies up to lldbCore in order
to use these classes. So moving then down to lldbUtility makes
sense from both the short term and long term perspective in
solving this problem.
Differential Revision: https://reviews.llvm.org/D29427
llvm-svn: 293941
This is a redux of [Ewan's patch](https://reviews.llvm.org/D17957) , refactored
to properly substitute primitive types using a hook in the itanium demangler,
and updated after the previous patch went stale
The new `SubsPrimitiveParmItanium` function takes a symbol name and replacement
primitive type parameter as before but parses it using the FastDemangler, which
has been modified to be able to notify clients of parse events (primitive types
at this point).
Additionally, we now use a `set` of `ConstStrings` instead of a `vector` so
that we don't try and resolve the same invalid candidate multiple times.
Differential Revision: https://reviews.llvm.org/D27223
Subscribers: lldb-commits
llvm-svn: 290117
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
Summary:
referencing a user-defined operator new was triggering an assert in clang because we were
registering the function name as string "operator new", instead of using the special operator
enum, which clang has for this purpose. Method operators already had code to handle this, and now
I extend this to cover free standing operator functions as well. Test included.
Reviewers: spyffe
Subscribers: sivachandra, paulherman, lldb-commits
Differential Revision: http://reviews.llvm.org/D17856
llvm-svn: 278670
m_decl_objects is problematic because it assumes that each VarDecl has a unique
variable associated with it. This is not the case in inline contexts.
Also the information in this map can be reconstructed very easily without
maintaining the map. The rest of the testsuite passes with this cange, and I've
added a testcase covering the inline contexts affected by this.
<rdar://problem/26278502>
llvm-svn: 270474
In templated const functions, trying to run an expression would produce the
error
error: out-of-line definition of '$__lldb_expr' does not match any declaration
in 'foo' member declaration does not match because it is const qualified
error: 1 error parsing expression
which is no good. It turned out we don't actually need to worry about "const,"
we just need to be consistent about the declaration of the expression and the
FunctionDecl we inject into the class for "this."
Also added a test case.
<rdar://problem/24985958>
llvm-svn: 268083
This reverts commit r267833 as it breaks the build. It looks like some work in progress got
committed together with the actual fix, but I'm not sure which one is which, so I'll revert the
whole patch and let author resumbit it after fixing the build error.
llvm-svn: 267861
The code in ClangExpressionDeclMap::FindExternalVisibleDecls figures out what the token
means, and adds the namespace to the lookup context, but since it doesn't mark it as
special in the search context, we go on to pass the name $__lldb_local_vars to the ASTSource
for further lookup. Unless we've done our job wrong, those lookups will always fail, but
the can be costly.
So I added a bit to m_found & use that to short-circuit the lookup.
<rdar://problem/25613384>
llvm-svn: 267842
In templated const functions, trying to run an expression would produce the
error
error: out-of-line definition of '$__lldb_expr' does not match any declaration in 'foo'
member declaration does not match because it is const qualified
error: 1 error parsing expression
which is no good. It turned out we don't actually need to worry about "const,"
we just need to be consistent about the declaration of the expression and the
FunctionDecl we inject into the class for "this."
Also added a test case.
<rdar://problem/24985958>
llvm-svn: 267833
Persistent decls have traditionally only been types. However, we want to
be able to persist more things, like functions and global variables. This
changes some of the nomenclature and the lookup rules to make this possible.
<rdar://problem/22864976>
llvm-svn: 263864
Since IRExecutionUnit is now capable of looking up symbols, and the JIT is up to
the task of generating the appropriate relocations, we don't need to do all the
work that IRForTarget used to do to fixup symbols at the IR level.
We also don't need to allocate data manually (with its attendant bugs) because
the JIT is capable of doing so without crashing.
We also don't need the awkward lldb.call.realName metadata to determine what
calls are objc_msgSend, because they now just reference objc_msgSend.
To make this work, we ensure that we recognize which symbols are extern "C" and
report them to the compiler as such. We also report the full Decl of functions
rather than just making up top-level functions with the appropriate types.
This should not break any testcases, but let me know if you run into any issues.
<rdar://problem/22864926>
llvm-svn: 260768
Summary:
This reverts commit 8af14b5f9af68c31ac80945e5b5d56f0a14b38e4.
Reverting as it breaks a few tests on Mac.
Reviewers: spyffe
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D16895
llvm-svn: 259823
Summary:
While evaluating expressions when stopped in a class method, there was a
problem of member variables hiding local variables. This was happening
because, in the context of a method, clang already knew about member
variables with their name and assumed that they were the only variables
with those names in scope. Consequently, clang never checks with LLDB
about the possibility of local variables with the same name and goes
wrong. This change addresses the problem by using an artificial
namespace "$__lldb_local_vars". All local variables in scope are
declared in the "$__lldb_expr" method as follows:
using $__lldb_local_vars::<local var 1>;
using $__lldb_local_vars::<local var 2>;
...
This hides the member variables with the same name and forces clang to
enquire about the variables which it thinks are declared in
$__lldb_local_vars. When LLDB notices that clang is enquiring about
variables in $__lldb_local_vars, it looks up local vars and conveys
their information if found. This way, member variables do not hide local
variables, leading to correct evaluation of expressions.
A point to keep in mind is that the above solution does not solve the
problem for one specific case:
namespace N
{
int a;
}
class A
{
public:
void Method();
int a;
};
void
A::Method()
{
using N::a;
...
// Since the above solution only touches locals, it does not
// force clang to enquire about "a" coming from namespace N.
}
Reviewers: clayborg, spyffe
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D16746
llvm-svn: 259810
Summary:
This change is relevant for inferiors compiled with GCC. GCC does not
emit complete debug info for std::basic_string<...>, and consequently, Clang
(the LLDB compiler) does not generate correct mangled names for certain
functions.
This change removes the hard-coded alternate names in
ItaniumABILanguageRuntime.cpp.
Before the hard-coded names were put in ItaniumABILanguageRuntime.cpp, one could
not evaluate std::string methods (ex. std::string::length). After putting in
the hard-coded names, one could evaluate them. However, it did not still
enable one to call methods on, say for example, std::vector<string>.
This change makes that possible.
There is some amount of incompleteness in this change. Consider the
following example:
std::string hello("hello"), world("world");
std::map<std::string, std::string> m;
m[hello] = world;
One can still not evaluate the expression "m[hello]" in LLDB. Will
address this issue in another pass.
Reviewers: jingham, vharron, evgeny777, spyffe, dawn
Subscribers: clayborg, dawn, lldb-commits
Differential Revision: http://reviews.llvm.org/D12809
llvm-svn: 257113
When multiple functions are found by name, lldb removes duplicate entries of
functions with the same type, so the first function in the symbol context list
is chosen, even if it isn't in scope. This patch uses the declaration context
of the execution context to select the function which is in scope.
This fixes cases like the following:
int func();
namespace ns {
int func();
void here() {
// Run to BP here and eval 'p func()';
// lldb used to find ::func(), now finds ns::func().
}
}
Reviewed by: clayborg
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D15312
llvm-svn: 255439
It used to be a unique pointer, and there could be a case where ClangASTSource
held onto a copy of the pointer but Target::Destroy destroyed the unique pointer
in the mean time.
I also ensured that there is a validity check on the target (which confirms that
a ClangASTImporter can be generated) before the target's shared pointer is
copied into ClangASTSource.
This race condition caused a crash if Target::Destroy was called and then later
the target objecct was deleted.
llvm-svn: 252665
in DWARF as a member of a class, but it has a "this" parameter. Specifically,
*this needs to have the LLDB expression added as a method.
This fixes TestWithLimitDebugInfo.
llvm-svn: 251151
The concept here is that languages may have different ways of communicating
results. In particular, languages may have different names for their result
variables and in fact may have multiple types of result variables (e.g.,
error results). Materializer was tied to one specific model of result handling.
Instead, now UserExpressions can register their own handlers for the result
variables they inject. This allows language-specific code in Materializer to
be moved into the expression parser plug-in, and it simplifies Materializer.
These delegates are subclasses of PersistentVariableDelegate.
PersistentVariableDelegate can provide the name of the result variable, and is
notified when the result variable is populated. It can also be used to touch
persistent variables if need be, updating language-specific state. The
UserExpression owns the delegate and can decide on its result based on
consulting all of its (potentially multiple) delegates.
The user expression itself now makes the determination of what the final result
of the expression is, rather than relying on the Materializer, and I've added a
virtual function to UserExpression to allow this.
llvm-svn: 249233
The ClangExpressionVariable::CreateVariableInList functions looked cute, but
caused more confusion than they solved. I removed them, and instead made sure
that there are adequate facilities for easily adding newly-constructed
ExpressionVariables to lists.
I also made some of the constructors that are common be generic, so that it's
possible to construct expression variables from generic places (like the ABI and
ValueObject) without having to know the specifics about the class.
llvm-svn: 249095
Also added some target-level search functions so that persistent variables and
symbols can be searched for without hand-iterating across the map of
TypeSystems.
llvm-svn: 249027
the corresponding TypeSystem. This makes sense because what kind of data there
is -- and how it can be looked up -- depends on the language.
Functionality that is common to all type systems is factored out into
PersistentExpressionState.
llvm-svn: 248934