This is the first commit for the cmov-vs-branch optimization pass.
The goal is to develop a new profile-guided and target-independent cost/benefit analysis
for selecting conditional moves over branches when optimizing for performance.
Initially, this new pass is expected to be enabled only for instrumentation-based PGO.
RFC: https://discourse.llvm.org/t/rfc-cmov-vs-branch-optimization/6040
Reviewed By: tejohnson
Differential Revision: https://reviews.llvm.org/D120230
This pass inserts the necessary CFI instructions to compensate for the
inconsistency of the call-frame information caused by linear (non-CGA
aware) nature of the unwind tables.
Unlike the `CFIInstrInserer` pass, this one almost always emits only
`.cfi_remember_state`/`.cfi_restore_state`, which results in smaller
unwind tables and also transparently handles custom unwind info
extensions like CFA offset adjustement and save locations of SVE
registers.
This pass takes advantage of the constraints taht LLVM imposes on the
placement of save/restore points (cf. `ShrinkWrap.cpp`):
* there is a single basic block, containing the function prologue
* possibly multiple epilogue blocks, where each epilogue block is
complete and self-contained, i.e. CSR restore instructions (and the
corresponding CFI instructions are not split across two or more
blocks.
* prologue and epilogue blocks are outside of any loops
Thus, during execution, at the beginning and at the end of each basic
block the function can be in one of two states:
- "has a call frame", if the function has executed the prologue, or
has not executed any epilogue
- "does not have a call frame", if the function has not executed the
prologue, or has executed an epilogue
These properties can be computed for each basic block by a single RPO
traversal.
From the point of view of the unwind tables, the "has/does not have
call frame" state at beginning of each block is determined by the
state at the end of the previous block, in layout order.
Where these states differ, we insert compensating CFI instructions,
which come in two flavours:
- CFI instructions, which reset the unwind table state to the
initial one. This is done by a target specific hook and is
expected to be trivial to implement, for example it could be:
```
.cfi_def_cfa <sp>, 0
.cfi_same_value <rN>
.cfi_same_value <rN-1>
...
```
where `<rN>` are the callee-saved registers.
- CFI instructions, which reset the unwind table state to the one
created by the function prologue. These are the sequence:
```
.cfi_restore_state
.cfi_remember_state
```
In this case we also insert a `.cfi_remember_state` after the
last CFI instruction in the function prologue.
Reviewed By: MaskRay, danielkiss, chill
Differential Revision: https://reviews.llvm.org/D114545
This pass inserts the necessary CFI instructions to compensate for the
inconsistency of the call-frame information caused by linear (non-CFG
aware) nature of the unwind tables.
Unlike the `CFIInstrInserer` pass, this one almost always emits only
`.cfi_remember_state`/`.cfi_restore_state`, which results in smaller
unwind tables and also transparently handles custom unwind info
extensions like CFA offset adjustement and save locations of SVE
registers.
This pass takes advantage of the constraints that LLVM imposes on the
placement of save/restore points (cf. `ShrinkWrap.cpp`):
* there is a single basic block, containing the function prologue
* possibly multiple epilogue blocks, where each epilogue block is
complete and self-contained, i.e. CSR restore instructions (and the
corresponding CFI instructions are not split across two or more
blocks.
* prologue and epilogue blocks are outside of any loops
Thus, during execution, at the beginning and at the end of each basic
block the function can be in one of two states:
- "has a call frame", if the function has executed the prologue, or
has not executed any epilogue
- "does not have a call frame", if the function has not executed the
prologue, or has executed an epilogue
These properties can be computed for each basic block by a single RPO
traversal.
In order to accommodate backends which do not generate unwind info in
epilogues we compute an additional property "strong no call frame on
entry" which is set for the entry point of the function and for every
block reachable from the entry along a path that does not execute the
prologue. If this property holds, it takes precedence over the "has a
call frame" property.
From the point of view of the unwind tables, the "has/does not have
call frame" state at beginning of each block is determined by the
state at the end of the previous block, in layout order.
Where these states differ, we insert compensating CFI instructions,
which come in two flavours:
- CFI instructions, which reset the unwind table state to the
initial one. This is done by a target specific hook and is
expected to be trivial to implement, for example it could be:
```
.cfi_def_cfa <sp>, 0
.cfi_same_value <rN>
.cfi_same_value <rN-1>
...
```
where `<rN>` are the callee-saved registers.
- CFI instructions, which reset the unwind table state to the one
created by the function prologue. These are the sequence:
```
.cfi_restore_state
.cfi_remember_state
```
In this case we also insert a `.cfi_remember_state` after the
last CFI instruction in the function prologue.
Reviewed By: MaskRay, danielkiss, chill
Differential Revision: https://reviews.llvm.org/D114545
For MachO, lower `@llvm.global_dtors` into `@llvm_global_ctors` with
`__cxa_atexit` calls to avoid emitting the deprecated `__mod_term_func`.
Reuse the existing `WebAssemblyLowerGlobalDtors.cpp` to accomplish this.
Enable fallback to the old behavior via Clang driver flag
(`-fregister-global-dtors-with-atexit`) or llc / code generation flag
(`-lower-global-dtors-via-cxa-atexit`). This escape hatch will be
removed in the future.
Differential Revision: https://reviews.llvm.org/D121736
For MachO, lower `@llvm.global_dtors` into `@llvm_global_ctors` with
`__cxa_atexit` calls to avoid emitting the deprecated `__mod_term_func`.
Reuse the existing `WebAssemblyLowerGlobalDtors.cpp` to accomplish this.
Enable fallback to the old behavior via Clang driver flag
(`-fregister-global-dtors-with-atexit`) or llc / code generation flag
(`-lower-global-dtors-via-cxa-atexit`). This escape hatch will be
removed in the future.
Differential Revision: https://reviews.llvm.org/D121736
For MachO, lower `@llvm.global_dtors` into `@llvm_global_ctors` with
`__cxa_atexit` calls to avoid emitting the deprecated `__mod_term_func`.
Reuse the existing `WebAssemblyLowerGlobalDtors.cpp` to accomplish this.
Enable fallback to the old behavior via Clang driver flag
(`-fregister-global-dtors-with-atexit`) or llc / code generation flag
(`-lower-global-dtors-via-cxa-atexit`). This escape hatch will be
removed in the future.
Differential Revision: https://reviews.llvm.org/D121327
This relands commit b380a31de084a540cfa38b72e609b25ea0569bb7.
Restrict the tests to Windows only since the flag symbol hash depends on
system-dependent path normalization.
The introduction and some examples are on this page:
https://devblogs.microsoft.com/cppblog/announcing-jmc-stepping-in-visual-studio/
The `/JMC` flag enables these instrumentations:
- Insert at the beginning of every function immediately after the prologue with
a call to `void __fastcall __CheckForDebuggerJustMyCode(unsigned char *JMC_flag)`.
The argument for `__CheckForDebuggerJustMyCode` is the address of a boolean
global variable (the global variable is initialized to 1) with the name
convention `__<hash>_<filename>`. All such global variables are placed in
the `.msvcjmc` section.
- The `<hash>` part of `__<hash>_<filename>` has a one-to-one mapping
with a directory path. MSVC uses some unknown hashing function. Here I
used DJB.
- Add a dummy/empty COMDAT function `__JustMyCode_Default`.
- Add `/alternatename:__CheckForDebuggerJustMyCode=__JustMyCode_Default` link
option via ".drectve" section. This is to prevent failure in
case `__CheckForDebuggerJustMyCode` is not provided during linking.
Implementation:
All the instrumentations are implemented in an IR codegen pass. The pass is placed immediately before CodeGenPrepare pass. This is to not interfere with mid-end optimizations and make the instrumentation target-independent (I'm still working on an ELF port in a separate patch).
Reviewed By: hans
Differential Revision: https://reviews.llvm.org/D118428
Reverts 02940d6d2202. Fixes breakage in the modules build.
LLVM loops cannot represent irreducible structures in the CFG. This
change introduce the concept of cycles as a generalization of loops,
along with a CycleInfo analysis that discovers a nested
hierarchy of such cycles. This is based on Havlak (1997), Nesting of
Reducible and Irreducible Loops.
The cycle analysis is implemented as a generic template and then
instatiated for LLVM IR and Machine IR. The template relies on a new
GenericSSAContext template which must be specialized when used for
each IR.
This review is a restart of an older review request:
https://reviews.llvm.org/D83094
Original implementation by Nicolai Hähnle <nicolai.haehnle@amd.com>,
with recent refactoring by Sameer Sahasrabuddhe <sameer.sahasrabuddhe@amd.com>
Differential Revision: https://reviews.llvm.org/D112696
LLVM loops cannot represent irreducible structures in the CFG. This
change introduce the concept of cycles as a generalization of loops,
along with a CycleInfo analysis that discovers a nested
hierarchy of such cycles. This is based on Havlak (1997), Nesting of
Reducible and Irreducible Loops.
The cycle analysis is implemented as a generic template and then
instatiated for LLVM IR and Machine IR. The template relies on a new
GenericSSAContext template which must be specialized when used for
each IR.
This review is a restart of an older review request:
https://reviews.llvm.org/D83094
Original implementation by Nicolai Hähnle <nicolai.haehnle@amd.com>,
with recent refactoring by Sameer Sahasrabuddhe <sameer.sahasrabuddhe@amd.com>
Differential Revision: https://reviews.llvm.org/D112696
The MIR sample loader changes the branch probability but not BFI.
Here we force a recompute of BFI if the branch probabilities are
changed.
Also register the MIR FSAFDO passes properly.
Differential Revision: https://reviews.llvm.org/D114400
This new MIR pass removes redundant DBG_VALUEs.
After the register allocator is done, more precisely, after
the Virtual Register Rewriter, we end up having duplicated
DBG_VALUEs, since some virtual registers are being rewritten
into the same physical register as some of existing DBG_VALUEs.
Each DBG_VALUE should indicate (at least before the LiveDebugValues)
variables assignment, but it is being clobbered for function
parameters during the SelectionDAG since it generates new DBG_VALUEs
after COPY instructions, even though the parameter has no assignment.
For example, if we had a DBG_VALUE $regX as an entry debug value
representing the parameter, and a COPY and after the COPY,
DBG_VALUE $virt_reg, and after the virtregrewrite the $virt_reg gets
rewritten into $regX, we'd end up having redundant DBG_VALUE.
This breaks the definition of the DBG_VALUE since some analysis passes
might be built on top of that premise..., and this patch tries to fix
the MIR with the respect to that.
This first patch performs bacward scan, by trying to detect a sequence of
consecutive DBG_VALUEs, and to remove all DBG_VALUEs describing one
variable but the last one:
For example:
(1) DBG_VALUE $edi, !"var1", ...
(2) DBG_VALUE $esi, !"var2", ...
(3) DBG_VALUE $edi, !"var1", ...
...
in this case, we can remove (1).
By combining the forward scan that will be introduced in the next patch
(from this stack), by inspecting the statistics, the RemoveRedundantDebugValues
removes 15032 instructions by using gdb-7.11 as a testbed.
Differential Revision: https://reviews.llvm.org/D105279
This is consistent with the layout of other passes,
and simplifies further refinements regarding DomTree handling.
This is indended to be a NFC commit.
Add mir-check-debug pass to check MIR-level debug info.
For IR-level, currently, LLVM have debugify + check-debugify to generate
and check debug IR. Much like the IR-level pass debugify, mir-debugify
inserts sequentially increasing line locations to each MachineInstr in a
Module, But there is no equivalent MIR-level check-debugify pass, So now
we support it at "mir-check-debug".
Reviewed By: djtodoro
Differential Revision: https://reviews.llvm.org/D91595
Add mir-check-debug pass to check MIR-level debug info.
For IR-level, currently, LLVM have debugify + check-debugify to generate
and check debug IR. Much like the IR-level pass debugify, mir-debugify
inserts sequentially increasing line locations to each MachineInstr in a
Module, But there is no equivalent MIR-level check-debugify pass, So now
we support it at "mir-check-debug".
Reviewed By: djtodoro
Differential Revision: https://reviews.llvm.org/D91595
Add mir-check-debug pass to check MIR-level debug info.
For IR-level, currently, LLVM have debugify + check-debugify to generate
and check debug IR. Much like the IR-level pass debugify, mir-debugify
inserts sequentially increasing line locations to each MachineInstr in a
Module, But there is no equivalent MIR-level check-debugify pass, So now
we support it at "mir-check-debug".
Reviewed By: djtodoro
Differential Revision: https://reviews.llvm.org/D91595
Add mir-check-debug pass to check MIR-level debug info.
For IR-level, currently, LLVM have debugify + check-debugify to generate
and check debug IR. Much like the IR-level pass debugify, mir-debugify
inserts sequentially increasing line locations to each MachineInstr in a
Module, But there is no equivalent MIR-level check-debugify pass, So now
we support it at "mir-check-debug".
Reviewed By: djtodoro
Differential Revision: https://reviews.llvm.org/D95195
ScalarizeMaskedMemIntrinsic is currently a codeGen level pass. The pass
is actually operating on IR level and does not use any code gen specific
passes. It is useful to move it into transforms directory so that it
can be more widely used as a mid-level transform as well (apart from
usage in codegen pipeline).
In particular, we have a usecase downstream where we would like to use
this pass in our mid-level pipeline which operates on IR level.
The next change will be to add support for new PM.
Reviewers: craig.topper, apilipenko, skatkov
Reviewed-By: skatkov
Differential Revision: https://reviews.llvm.org/D92407
The change introduces the usage of physical registers for non-gc deopt values.
This require runtime support to know how to take a value from register.
By default usage is off and can be switched on by option.
The change also introduces additional fix-up patch which forces the spilling
of caller saved registers (clobbered after the call) and re-writes statepoint
to use spill slots instead of caller saved registers.
Reviewers: reames, danstrushin
Reviewed By: dantrushin
Subscribers: mgorny, hiraditya, mgrang, llvm-commits
Differential Revision: https://reviews.llvm.org/D77797
Summary:
Removes:
* All LLVM-IR level debug info using StripDebugInfo()
* All debugify metadata
* 'Debug Info Version' module flag
* All (valid*) DEBUG_VALUE MachineInstrs
* All DebugLocs from MachineInstrs
This is a more complete solution than the previous MIRPrinter
option that just causes it to neglect to print debug-locations.
* The qualifier 'valid' is used here because AArch64 emits
an invalid one and tests depend on it
Reviewers: vsk, aprantl, bogner
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77747
The change introduces the usage of physical registers for non-gc deopt values.
This require runtime support to know how to take a value from register.
By default usage is off and can be switched on by option.
The change also introduces additional fix-up patch which forces the spilling
of caller saved registers (clobbered after the call) and re-writes statepoint
to use spill slots instead of caller saved registers.
Reviewers: reames, dantrushin
Reviewed By: reames, dantrushin
Subscribers: mgorny, hiraditya, mgrang, llvm-commits
Differential Revision: https://reviews.llvm.org/D77371
Summary:
Re-used the IR-level debugify for the most part. The MIR-level code then
adds locations to the MachineInstrs afterwards based on the LLVM-IR debug
info.
It's worth mentioning that the resulting locations make little sense as
the range of line numbers used in a Function at the MIR level exceeds that
of the equivelent IR level function. As such, MachineInstrs can appear to
originate from outside the subprogram scope (and from other subprogram
scopes). However, it doesn't seem worth worrying about as the source is
imaginary anyway.
There's a few high level goals this pass works towards:
* We should be able to debugify our .ll/.mir in the lit tests without
changing the checks and still pass them. I.e. Debug info should not change
codegen. Combining this with a strip-debug pass should enable this. The
main issue I ran into without the strip-debug pass was instructions with MMO's and
checks on both the instruction and the MMO as the debug-location is
between them. I currently have a simple hack in the MIRPrinter to
resolve that but the more general solution is a proper strip-debug pass.
* We should be able to test that GlobalISel does not lose debug info. I
recently found that the legalizer can be unexpectedly lossy in seemingly
simple cases (e.g. expanding one instr into many). I have a verifier
(will be posted separately) that can be integrated with passes that use
the observer interface and will catch location loss (it does not verify
correctness, just that there's zero lossage). It is a little conservative
as the line-0 locations that arise from conflicts do not track the
conflicting locations but it can still catch a fair bit.
Depends on D77439, D77438
Reviewers: aprantl, bogner, vsk
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77446
This is the second patch in a series of patches to enable basic block
sections support.
This patch adds support for:
* Creating direct jumps at the end of basic blocks that have fall
through instructions.
* New pass, bbsections-prepare, that analyzes placement of basic blocks
in sections.
* Actual placing of a basic block in a unique section with special
handling of exception handling blocks.
* Supports placing a subset of basic blocks in a unique section.
* Support for MIR serialization and deserialization with basic block
sections.
Parent patch : D68063
Differential Revision: https://reviews.llvm.org/D73674
Summary:
This patch extends the TargetMachine to let targets specify the integer size
used by the sjljehprepare pass. This is 64bit for the VE target and otherwise
defaults to 32bit for all targets, which was hard-wired before.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D71337
Convert ARMCodeGenPrepare into a generic type promotion pass by:
- Removing the insertion of arm specific intrinsics to handle narrow
types as we weren't using this.
- Removing ARMSubtarget references.
- Now query a generic TLI object to know which types should be
promoted and what they should be promoted to.
- Move all codegen tests into Transforms folder and testing using opt
and not llc, which is how they should have been written in the
first place...
The pass searches up from icmp operands in an attempt to safely
promote types so we can avoid generating unnecessary unsigned extends
during DAG ISel.
Differential Revision: https://reviews.llvm.org/D69556
Summary:
A new function pass (Transforms/CFGuard/CFGuard.cpp) inserts CFGuard checks on
indirect function calls, using either the check mechanism (X86, ARM, AArch64) or
or the dispatch mechanism (X86-64). The check mechanism requires a new calling
convention for the supported targets. The dispatch mechanism adds the target as
an operand bundle, which is processed by SelectionDAG. Another pass
(CodeGen/CFGuardLongjmp.cpp) identifies and emits valid longjmp targets, as
required by /guard:cf. This feature is enabled using the `cfguard` CC1 option.
Reviewers: thakis, rnk, theraven, pcc
Subscribers: ychen, hans, metalcanine, dmajor, tomrittervg, alex, mehdi_amini, mgorny, javed.absar, kristof.beyls, hiraditya, steven_wu, dexonsmith, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D65761
Existing clients are converted to use MachineModuleInfoWrapperPass. The
new interface is for defining a new pass manager API in CodeGen.
Reviewers: fedor.sergeev, philip.pfaffe, chandlerc, arsenm
Reviewed By: arsenm, fedor.sergeev
Differential Revision: https://reviews.llvm.org/D64183
llvm-svn: 373240
This patch reuses the MIR vreg renamer from the MIRCanonicalizerPass to cleanup
names of vregs in a MIR file for MIR test authors. I found it useful when
writing a regression test for a globalisel failure I encountered recently and
thought it might be useful for other folks as well.
Differential Revision: https://reviews.llvm.org/D67209
llvm-svn: 371121
Emitting a schedule is really hard. There are lots of corner cases to take care of; in fact, of the 60+ SWP-specific testcases in the Hexagon backend most of those are testing codegen rather than the schedule creation itself.
One issue is that to test an emission corner case we must craft an input such that the generated schedule uses that corner case; sometimes this is very hard and convolutes testcases. Other times it is impossible but we want to test it anyway.
This patch adds a simple test pass that will consume a module containing a loop and generate pipelined code from it. We use post-instr-symbols as a way to annotate instructions with the stage and cycle that we want to schedule them at.
We also provide a flag that causes the MachinePipeliner to generate these annotations instead of actually emitting code; this allows us to generate an input testcase with:
llc < %s -stop-after=pipeliner -pipeliner-annotate-for-testing -o test.mir
And run the emission in isolation with:
llc < test.mir -run-pass=modulo-schedule-test
llvm-svn: 370705
For targets requiring aggressive scheduling and/or software pipeline we need to
apply predication before preRA scheduling. This adds a pass re-using the early
if-cvt infrastructure but generating predicated instructions instead of
speculatively executing instructions. It allows doing if conversion on blocks
containing instructions with side-effects. The pass re-use the target hook from
postRA if-conversion to let the target decide on the heuristic to apply.
Differential Revision: https://reviews.llvm.org/D66190
llvm-svn: 369395
This allows later passes (in particular InstCombine) to optimize more
cases.
One that's important to us is `memcmp(p, q, constant) < 0` and memcmp(p, q, constant) > 0.
llvm-svn: 364412
This allows targets to make more decisions about reserved registers
after isel. For example, now it should be certain there are calls or
stack objects in the frame or not, which could have been introduced by
legalization.
Patch by Matthias Braun
llvm-svn: 363757
Patch which introduces a target-independent framework for generating
hardware loops at the IR level. Most of the code has been taken from
PowerPC CTRLoops and PowerPC has been ported over to use this generic
pass. The target dependent parts have been moved into
TargetTransformInfo, via isHardwareLoopProfitable, with
HardwareLoopInfo introduced to transfer information from the backend.
Three generic intrinsics have been introduced:
- void @llvm.set_loop_iterations
Takes as a single operand, the number of iterations to be executed.
- i1 @llvm.loop_decrement(anyint)
Takes the maximum number of elements processed in an iteration of
the loop body and subtracts this from the total count. Returns
false when the loop should exit.
- anyint @llvm.loop_decrement_reg(anyint, anyint)
Takes the number of elements remaining to be processed as well as
the maximum numbe of elements processed in an iteration of the loop
body. Returns the updated number of elements remaining.
llvm-svn: 362774
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This patch defines an interleaved-load-combine pass. The pass searches
for ShuffleVector instructions that represent interleaved loads. Matches are
converted such that they will be captured by the InterleavedAccessPass.
The pass extends LLVMs capabilities to use target specific instruction
selection of interleaved load patterns (e.g.: ld4 on Aarch64
architectures).
Differential Revision: https://reviews.llvm.org/D52653
llvm-svn: 347208
- Remove unnecessary anchor function
- Remove unnecessary override of getAnalysisUsage
- Use reference instead of pointers where things cannot be nullptr
- Use ArrayRef instead of std::vector where possible
llvm-svn: 337989