This patch implements __cxa_init_primary_exception, an extension to the
Itanium C++ ABI. This extension is already present in both libsupc++ and
libcxxrt. This patch also starts making use of this function in
std::make_exception_ptr: instead of going through a full throw/catch
cycle, we are now able to initialize an exception directly, thus making
std::make_exception_ptr around 30x faster.
In LLVM 17, we switched to numbered RST files for release notes, which
makes it easier to deal with cherry-picks around release points. However,
we stopped publishing `libcxx/docs/ReleaseNotes.html`, which was
referenced by external sites.
This patch ensures that we keep publishing `ReleaseNotes.html` by simply
including the versioned RST file in the unversioned RST file.
Fixes#77955
Currently std::expected can have some padding bytes in its tail due to
[[no_unique_address]]. Those padding bytes can be used by other objects.
For example, in the current implementation:
sizeof(std::expected<std::optional<int>, bool>) ==
sizeof(std::expected<std::expected<std::optional<int>, bool>, bool>)
As a result, the data layout of an
std::expected<std::expected<std::optional<int>, bool>, bool>
can look like this:
+-- optional "has value" flag
| +--padding
/---int---\ | |
00 00 00 00 01 00 00 00
| |
| +- "outer" expected "has value" flag
|
+- expected "has value" flag
This is problematic because `emplace()`ing the "inner" expected can not
only overwrite the "inner" expected "has value" flag (issue #68552) but
also the tail padding where other objects might live.
This patch fixes the problem by ensuring that std::expected has no tail
padding, which is achieved by conditional usage of [[no_unique_address]]
based on the tail padding that this would create.
This is an ABI breaking change because the following property changes:
sizeof(std::expected<std::optional<int>, bool>) <
sizeof(std::expected<std::expected<std::optional<int>, bool>, bool>)
Before the change, this relation didn't hold. After the change, the relation
does hold, which means that the size of std::expected in these cases increases
after this patch. The data layout will change in the following cases where
tail padding can be reused by other objects:
class foo : std::expected<std::optional<int>, bool> {
bool b;
};
or using [[no_unique_address]]:
struct foo {
[[no_unique_address]] std::expected<std::optional<int>, bool> e;
bool b;
};
The vendor communication is handled in #70820.
Fixes: #70494
Co-authored-by: philnik777 <nikolasklauser@berlin.de>
Co-authored-by: Louis Dionne <ldionne.2@gmail.com>
Installs the source files of the experimental libc++ modules. These
source files (.cppm) are used by the Clang to build the std and
std.compat modules.
The design of this patch is based on a discussing in SG-15 on
12.12.2023. (SG-15 is the ISO C++ Tooling study group):
- The modules are installed at a location, that is not known to build
systems and compilers.
- Next to the library there will be a module manifest json file.
This json file contains the information to build the module from the
libraries sources. This information includes the location where the
sources are installed. @ruoso supplied the specification of this json
file.
- If possible, the compiler has an option to give the location of the
module manifest file
(https://github.com/llvm/llvm-project/pull/76451).
Currently there is no build system support, but it expected to be added
in the future.
Fixes: https://github.com/llvm/llvm-project/issues/73089
Revert "Revert #76246 and #76083"
This reverts commit 5c150e7eeba9db13cc65b329b3c3537b613ae61d.
Adds a small fix that should properly disable the tests on Windows.
Unfortunately the original poster has not provided feedback and the
original patch did not fail in the LLVM CI infrastructure.
Modules are known to fail on Windows due to non compliance of the
C library. Currently not having this patch prevents testing on other
platforms.
CMake officially supports binary directory variable of installed
dependency using `FetchContent`. According to the current documentation,
it fetches `std` module and use its binary directory as hardcoded
string, `${CMAKE_BINARY_DIR}/_deps/std-build`, however it can be
replaced with `${std_BINARY_DIR}`.
Reference: https://cmake.org/cmake/help/latest/module/FetchContent.html
In the hardening modes that can be used in production (`fast` and
`extensive`), make a failed assertion invoke a trap instruction rather
than calling verbose abort. In the debug mode, still keep calling
verbose abort to provide a better user experience and to allow us to
keep our existing testing infrastructure for verifying assertion
messages. Since the debug mode by definition enables all assertions, we
can be sure that we still check all the assertion messages in the
library when running the test suite in the debug mode.
The main motivation to use trapping in production is to achieve better
code generation and reduce the binary size penalty. This way, the
assertion handler can compile to a single instruction, whereas the
existing mechanism with verbose abort results in generating a function
call that in general cannot be optimized away (made worse by the fact
that it's a variadic function, imposing an additional penalty). See the
[RFC](https://discourse.llvm.org/t/rfc-hardening-in-libc/73925) for more
details. Note that this mechanism can now be completely [overridden at
CMake configuration
time](https://github.com/llvm/llvm-project/pull/77883).
This patch also significantly refactors `check_assertion.h` and expands
its test coverage. The main changes:
- when overriding `verbose_abort`, don't do matching inside the function
-- just print the error message to `stderr`. This removes the need to
set a global matcher and allows to do matching in the parent process
after the child finishes;
- remove unused logic for matching source locations and for using
wildcards;
- make matchers simple functors;
- introduce `DeathTestResult` that keeps data about the test run,
primarily to make it easier to test.
In addition to the refactoring, `check_assertion.h` can now recognize
when a process exits due to a trap.
These cause test build failures on Windows.
This reverts the following commits:
57ca74843586c9a93c425036c5538aae0a2cfa60
d06ae33ec32122bb526fb35025c1f0cf979f1090
Previously there were two ways to override the verbose abort function
which gets called when a hardening assertion is triggered:
- compile-time: define the `_LIBCPP_VERBOSE_ABORT` macro;
- link-time: provide a definition of `__libcpp_verbose_abort` function.
This patch adds a new configure-time approach: the vendor can provide
a path to a custom header file which will get copied into the build by
CMake and included by the library. The header must provide a definition
of the
`_LIBCPP_ASSERTION_HANDLER` macro which is what will get called should
a hardening assertion fail. As of this patch, overriding
`_LIBCPP_VERBOSE_ABORT` will still work, but the previous mechanisms
will be effectively removed in a follow-up patch, making the
configure-time mechanism the sole way of overriding the default handler.
Note that `_LIBCPP_ASSERTION_HANDLER` only gets invoked when a hardening
assertion fails. It does not affect other cases where
`_LIBCPP_VERBOSE_ABORT` is currently used (e.g. when an exception is
thrown in the `-fno-exceptions` mode).
The library provides a default version of the custom header file that
will get used if it's not overridden by the vendor. That allows us to
always test the override mechanism and reduces the difference in
configuration between the pristine version of the library and
a platform-specific version.
This adds a new module test infrastructure. This requires tagging tests
using modules. The test runner uses this information to determine the
compiler flags needed to build and use the module.
Currently modules are build per test, which allows testing them for
tests with ADDITIONAL_COMPILE_FLAGS. At the moment only 4 tests use
modules. Therefore the performance penalty is not measurable. If in the
future more tests use modules it would be good to measure the overhead
and determine whether it's acceptable.
This removes the entire modules testing infrastructure.
The current infrastructure uses CMake to generate the std and std.compat
module. This requires quite a bit of plumbing and uses CMake. Since
CMake introduced module support in CMake 3.26, modules have a higher
CMake requirement than the rest of the LLVM project. (The LLVM project
requires 3.20.) The main motivation for this approach was how libc++
generated its modules. Every header had its own module partition. This
was changed to improve performance and now only two modules remain. The
code to build these can be manually crafted.
A followup patch will reenable testing modules, using a different
approach.
We discussed the removal of these enable-all macros in the libc++
monthly meeting and we agreed that we should deprecate these macros in
LLVM 18, and then remove them in LLVM 19 since they can silently enable
deprecated features that are implemented after the first release of the
macro.
This patch does the first part of this -- it deprecates the macro.
Note that the file
test/libcxx/depr/enable_removed_cpp20_features.compile.pass.cpp
does not exist so this file is not adapted. Since the feature is
deprecated and slated for removal soon the missing test is not
implemented.
Partly addresses: https://github.com/llvm/llvm-project/issues/75976
---------
Co-authored-by: Louis Dionne <ldionne.2@gmail.com>
The old notes are kept to make it easier to backport changes to the
release branch. There are no LLVM-17 releases expected and this
documentation should not be available in the LLVM-18 release.
Note after branching LLVM-18 both LLVM-18 and LLVM-19 release notes
should be available.
GCC 13 is the latest GCC release and tested in the libc++ CI for several
month. According to our policy we only support the latest version,
update the documentation to the latest version.
As described in #69994, using the escape hatch makes us non-conforming
in C++20 due to incorrect constexpr-ness. It also leads to bad
diagnostics as reported by #63900. We discussed the issue in the libc++
monthly meeting and we agreed that we should deprecate the macro in LLVM
18, and then remove it in LLVM 19 since it causes too many problems.
This patch does the first part of this -- it deprecates the macro.
Fixes#69994Fixes#63900
Partially addresses #75975
I recently came across LIBCXXABI_USE_LLVM_UNWINDER and was surprised to
notice it was disabled by default. Since we build libunwind by default
and ship it in the LLVM toolchain, it would seem to make sense that
libc++ and libc++abi rely on libunwind for unwinding instead of using
the system-provided unwinding library (if any).
Most importantly, using the system unwinder implies that libc++abi is
ABI compatible with that system unwinder, which is not necessarily the
case. Hence, it makes a lot more sense to instead default to using the
known-to-be-compatible LLVM unwinder, and let vendors manually select a
different unwinder if desired.
As a follow-up change, we should probably apply the same default to
compiler-rt.
Differential Revision: https://reviews.llvm.org/D150897Fixes#77662
rdar://120801778
As a new contributor, I found it hard to find the documentation for the
meaning of the names of different tests and how those names translate to
Lit. This patch moves the documentation to the RST documentation we
publish on the website instead of leaving it in the source code only.
The current CI badge is currently in libc++ documentation. This does not
seem the right place:
- The typical location on GitHub is on the main README.
- The documentation is shipped as part of the release:
- This link does not work in off-line mode. Currently our documentation
works in off-line mode.
- The status in the release documentation does not reflect the status of
the shipped library. So users looking at it may see a red status and get
confused.
This moves the badge to the README.
As pointed out by @Zingam the paper was implemented in libc++ as an
extension. This patch does the bookkeeping. The inital release version
is based on historical release dates.
Completes:
- Add a conditional noexcept specification to std::apply
The macros were already updated
- __cpp_lib_string_view in 466df1718e41fe2fca6ce6bd98c01b18f42c05e4
- __cpp_lib_array_constexpr in 77b9abfc8e89ca627e4f9a1cc206bea131db6db1
Based on the dates of the commit and that
P0858 "Constexpr iterator requirements"
was completed in LLVM 12, set this issue as completed in the same
version.
Completes
- LWG3257 Missing feature testing macro update from P0858
fixes#70506
The detailed problem description is in #70506
The original proposed fix was to remove `[[no_unique_address]]` except
when `_Tp` is empty.
Edit:
After the discussion in the comments below, the new fix here is to
remove the `[[no_unique_address]]` from `movable_box` in the cases where
we need to add our own assignment operator, which has contains the
problematic `construct_at`
The status table incorrectly marks P0521R0 as nothing to do. This is not
correct the function should be deprecated.
During our latest monthly meeting we argreed to remove the
_LIBCPP_ENABLE_CXXyy_REMOVED_FEATURES macros, therefore the new macro is
not
added to that global list.
Implements
- P0521R0 Proposed Resolution for CA 14 (shared_ptr use_count/unique)
Implements parts of
- P0619R4 Reviewing Deprecated Facilities of C++17 for C++20
---------
Co-authored-by: Nikolas Klauser <nikolasklauser@berlin.de>
Notable things in this commit:
* refactors `__indirect_binary_left_foldable`, making it slightly
different (but equivalent) to _`indirect-binary-left-foldable`_, which
improves readability (a [patch to the Working Paper][patch] was made)
* omits `__cpo` namespace, since it is not required for implementing
niebloids (a cleanup should happen in 2024)
* puts tests ensuring invocable robustness and dangling correctness
inside the correctness testing to ensure that the algorithms' results
are still correct
[patch]: https://github.com/cplusplus/draft/pull/6734
Finishes implementation of
- P2093R14 Formatted output
- P2539R4 Should the output of std::print to a terminal be synchronized
with the underlying stream?
Differential Revision: https://reviews.llvm.org/D156609
There are a few drive-by fixes:
- Since the combination RTTI disabled and exceptions enabled do not
work, this combination is prohibited.
- A small NFC in any fixing clang-tidy.
The code in the Buildkite configuration is prepared for using the std
module. There are more fixes needed for that configuration which will be
done in a separate commit.