to make a target, set a source regex breakpoint, run to
the breakpoint and find the thread that hit the breakpoint.
Start the process of replacing the boiler plate with this
routine.
llvm-svn: 307234
This test started being flaky since r303848 (RunThreadPlan: Fix halting
logic in IgnoreBreakpoints = false). I am not reverting that, as I am
confident that actually fixed a problem. A more likely explanation is
that there is still one corner case that is not handled correctly there.
Marking the test as flaky until I get a chance to investigate. I also
mark the test as no-debug-info-dependend -- it stresses expression
evaluation, as far as debug info goes, the test if extremely simple.
llvm-svn: 305286
This is a resubmit of r303732, which was reverted due to a regression.
The original patch caused a regression in TestLoadUnload, which has only showed
up when running the remote test suite. The problem there was that we interrupted
the target just as it has hit the rendezvous breakpoint in the dlopen call. This
meant that the stop reason was set to "breakpoint" even though the event would
not have been broadcast if we had not stopped the process. I fix this by
checking StopInfo->ShouldNotify() before stopping.
I also add a new test for the handling of conditional breakpoints in
expressions, which I noticed to be broken (pr33164)
Differential Revision: https://reviews.llvm.org/D33283
llvm-svn: 303848
Summary:
The function had logic to handle the case when the expression terminated
while we were trying to halt the process, but it failed to take into
account the possibility that the expression stopped because it hit a
breakpoint. This was caused by the fact that the handling of the stopped
events was duplicated for the "halting" and regular cases (the regular
case handled this situation correctly). I've tried to merge these two
cases into one to make sure they stay in sync.
I should call out that the two cases were checking whether the thread
plan has completed in slightly different ways. I am not sure what is the
difference between them, but I think the check should be the same in
both cases, whatever it is, so I just took the one from the regular
case, as that is probably more tested.
For the test, I modified TestUnwindExpression to run the expression with
a smaller timeout (this is how I found this bug originally). With a 1ms
one thread timeout, the test failed consistently without this patch.
Reviewers: jingham
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D33283
llvm-svn: 303732
Summary:
I have found a way to segfault lldb in 7 keystrokes! Steps to reproduce:
1) Launch lldb
2) Type `print` and hit enter. lldb will now prompt you to type a list of
expressions, followed by an empty line.
3) Hit enter, indicating the end of your input.
4) Segfault!
After some investigation, I've found the issue in Host/common/Editline.cpp.
Editline::MoveCursor() relies on m_input_lines not being empty when the `to`
argument is CursorPosition::BlockEnd. This scenario, as far as I can tell,
occurs in one specific instance: In Editline::EndOrAddLineCommand() when the
list of lines being processed contains exactly one string (""). Meeting this
condition is fairly simple, I have posted steps to reproduce above.
Reviewers: krytarowski, zturner, labath
Reviewed By: labath
Subscribers: scott.smith, lldb-commits
Differential Revision: https://reviews.llvm.org/D32421
Patch by Alex Langford.
llvm-svn: 302225
This allows debugging of the JIT and other analyses of the internals of the
expression parser. I've also added a testcase that verifies that the setting
works correctly when off and on.
llvm-svn: 282434
*** to conform to clang-format’s LLVM style. This kind of mass change has
*** two obvious implications:
Firstly, merging this particular commit into a downstream fork may be a huge
effort. Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit. The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):
find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;
The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.
Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit. There are alternatives available that will attempt
to look through this change and find the appropriate prior commit. YMMV.
llvm-svn: 280751
This change adds the capability of building test inferiors
with the -gmodules flag to enable module debug info support.
Windows is excluded per @zturner.
Reviewers: granata.enrico, aprantl, zturner, labath
Subscribers: zturner, labath, lldb-commits
Differential Revision: http://reviews.llvm.org/D19998
llvm-svn: 270848
TestCallUserAnonTypedef.py and TestIRInterpreter.py fail to limitation of JIT expressions in handling hard float ABI targets.
TestBSDArchives.py fails due to python unicode error.
TestBuiltinTrap.py fails due to wrong line information generated by some gcc versions.
llvm-svn: 270745
There is flakiness somewhere in the core infrastructure on Windows,
so to get the buildbot reliably green we need to mark all tests
as flaky.
llvm-svn: 270460
TestTopLevelExprs fails on arm and aarch64 linux similar to behaviour on android.
A bug exists here: llvm.org/pr27787.
This patch marks xfail on arm and aarch64.
llvm-svn: 269980
Remove XFAIL from some tests that now pass.
Add XFAIL to some tests that now fail.
Fix a crasher where a null pointer check isn't guarded.
Properly handle all types of errors in SymbolFilePDB.
llvm-svn: 269454
This allows expressions such as 'i == 1 || i == 2` to be executed using the IR interpreter, instead of relying on JIT code injection (which may not be available on some platforms).
Patch by cameron314
Differential Revision: http://reviews.llvm.org/D19124
llvm-svn: 269340
There's an open bug with calling functions in the inferior. And Windows doesn't have the POSIX function getpid().
Differential Revision: http://reviews.llvm.org/D19626
llvm-svn: 267800
This fixes several test case failure on s390x caused by the fact that
on this platform, the default "char" type is unsigned.
- In ClangASTContext::GetBuiltinTypeForEncodingAndBitSize we should return
an explicit *signed* char type for encoding eEncodingSint and bit size 8,
instead of the default platform char type (which may be unsigned).
This fix matches existing code in ClangASTContext::GetIntTypeFromBitSize,
and fixes the TestClangASTContext.TestBuiltinTypeForEncodingAndBitSize
unit test case.
- The test/expression_command/char/TestExprsChar.py test case is known to
fail on platforms defaulting to unsigned char (pr23069), and just needs
to be xfailed on s390x like on arm.
- The test/functionalities/watchpoint/watchpoint_on_vectors/main.c test
case defines a vector of "char" and implicitly assumes to be signed.
Use an explicit "signed char" instead.
Differential Revision: http://reviews.llvm.org/D18979
llvm-svn: 266309
quietly apply fixits for those who really trust clang's fixits.
Also, moved the retry into ClangUserExpression::Evaluate, where I can make a whole new ClangUserExpression
to do the work. Reusing any of the parts of a UserExpression in situ isn't supported at present.
<rdar://problem/25351938>
llvm-svn: 264793
Top-level Clang expressions are expressions that act as new translation units,
and define their own symbols. They do not have function wrappers like regular
expressions do, and declarations are persistent regardless of use of the dollar
sign in identifiers. Names defined by these are given priority over all other
symbol lookups.
This patch adds a new expression option, '-p' or '--top-level,' which controls
whether the expression is treated this way. It also adds a flag controlling
this to SBExpressionOptions so that this API is usable externally. It also adds
a test that validates that this works. (The test requires a fix to the Clang
AST importer which I will be committing shortly.)
<rdar://problem/22864976>
llvm-svn: 264662
This feature is controlled by an expression command option, a target property and the
SBExpressionOptions setting. FixIt's are only applied to UserExpressions, not UtilityFunctions,
those you have to get right when you make them.
This is just a first stage. At present the fixits are applied silently. The next step
is to tell the user about the applied fixit.
<rdar://problem/25351938>
llvm-svn: 264379
This removes the following decorators:
* skipIfI386
* expectedFailureI386
* expectedFailurex86_64
* skipIfArch
* skipUnlessArch
* skipUnlessI386
And other related decorators. All code using those decorators
is updated to use expectedFailureAll and skipIf
llvm-svn: 260178
expectedFailureWindows is equivalent to using the general
expectedFailureAll decorator with oslist="windows". Additionally,
by moving towards these common decorators we can solve the issue
of having to support decorators that can be called with or without
arguments. Once all decorators are always called with arguments,
and this is enforced by design (because you can't specify the condition
you're decorating for without passing an argument) the implementation
of the decorators can become much simpler
Differential Revision: http://reviews.llvm.org/D16936
llvm-svn: 260134
This doesn't attempt to move every decorator. The reason for
this is that it requires touching every single test file to import
decorators.py. I would like to do this in a followup patch, but
in the interest of keeping the patches as bite-sized as possible,
I've only attempted to move the underlying common decorators first.
A few tests call these directly, so those tests are updated as part
of this patch.
llvm-svn: 259807