At some point PlatformInfo's Target changed types to a type that also
has minimum deployment target info. This caused ambiguity if you tried
to get the target triple from the Target, as the actual minimum version
info was being stored separately. This bulk of this change is changing
the parsing of these values to support this.
Differential Revision: https://reviews.llvm.org/D145263
Allow controlling the CodeGenOpt::Level independent of the LTO
optimization level in LLD via new options for the COFF, ELF, MachO, and
wasm frontends to lld. Most are spelled as --lto-CGO[0-3], but COFF is
spelled as -opt:lldltocgo=[0-3].
See D57422 for discussion surrounding the issue of how to set the CG opt
level. The ultimate goal is to let each function control its CG opt
level, but until then the current default means it is impossible to
specify a CG opt level lower than 2 while using LTO. This option gives
the user a means to control it for as long as it is not handled on a
per-function basis.
Reviewed By: MaskRay, #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D141970
The forwarding header is left in place because of its use in
`polly/lib/External/isl/interface/extract_interface.cc`, but I have
added a GCC warning about the fact it is deprecated, because it is used
in `isl` from where it is included by Polly.
Adds support for the following flags:
* --thinlto-index-only, --thinlto-index-only=
* --thinlto-emit-imports-files
* --thinlto-emit-index-files
* --thinlto-object-suffix-replace=
* --thinlto-prefix-replace=
See https://blog.llvm.org/2016/06/thinlto-scalable-and-incremental-lto.html
for some words on --thinlto-index-only.
I don't really need the other flags, but they were in the vicinity
and _someone_ might need them, so I figured I'd add them too.
`-object_path_lto` now sets `c.AlwaysEmitRegularLTOObj` as in the other ports,
which means it can now only point to a filename for non-thin LTO.
I think that was the intent of D129705 anyways, so update
test/MachO/lto-object-path.ll to use a non-thin bitcode file for that test.
Differential Revision: https://reviews.llvm.org/D138451
By default ld64 ignores invalid LC_LINKER_OPTIONS unless the link fails,
in which case it prints a warning. Originally lld chose to be strict
about these, but it has uncovered that many of these exist in open
source projects today, since before developers never would have noticed
this issue. In order to make adoption of lld easier, this mirrors ld64's
behavior, while also adding a `--strict-auto-link-options` flag if
projects want to audit their libraries for these invalid options.
More discussion on https://reviews.llvm.org/D140225
Fixes https://github.com/llvm/llvm-project/issues/59627
Differential Revision: https://reviews.llvm.org/D140491
Previously by default, when not using `--ifc=`, lld would not
deduplicate string literals. This reveals reliance on undefined behavior
where string literal addresses are compared instead of using string
equality checks. While ideally you would be able to easily identify and
eliminate the reliance on this UB, this can be difficult, especially for
third party code, and increases the friction and risk of users migrating
to lld. This flips the default to deduplicate strings unless
`--no-deduplicate-strings` is passed, matching ld64's behavior.
Differential Revision: https://reviews.llvm.org/D140517
With newer versions of ld64 it generates an adhoc signature by default
for all arm64 simulator targets. This default is especially important
for unit test targets that rarely have custom codesigning requirements
but otherwise won't run on arm64 macs.
Differential Revision: https://reviews.llvm.org/D139672
I tried `-undefined suppress` without `-flat_namespace`.
lld printed `'-undefined suppress' only valid with '-flat_namespace'`
followed by many many screenfuls of error messages about undefined
symbols, making the original diag hard to see.
This is probably the common case when using `-undefined`, so let's
just abort the link immediately when there's an invalid `-undefined`
arg.
Differential Revision: https://reviews.llvm.org/D139559
ld64 rejects `-no_pie` when targeting arm64, this mirrors that behavior.
Newer versions of ld64 also reject it based on minimum OS versions, but
that logic isn't in an open source dump yet so it isn't implemented
here.
Fixes https://github.com/llvm/llvm-project/issues/59115
Differential Revision: https://reviews.llvm.org/D138884
Like D134013, but for COFF and Mach-O.
Also expand the ELF test a bit. I at first didn't realize that `getValue()` for
`-mllvm -foo=bar` would return `-foo=bar` instead of just `bar`, and so
I wrote the test to check if we indeed get this wrong. We don't, but
having the test for it seems nice, so I'm including it.
Differential Revision: https://reviews.llvm.org/D137971
We never noticed this before because the only time the size gets emitted is via
the linker map...
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D135884
This provides a workaround for a small difference in ld64 behavior where
ld64 ignores invalid LC_LINKER_OPTIONS unless the link fails. Instead of
fully adopting that behavior, this provides an escape hatch by allowing
users to specify `--ignore-auto-link-option` passing the invalid library
or framework name
Fixes https://github.com/llvm/llvm-project/issues/56939
Differential Revision: https://reviews.llvm.org/D135530
Previously unless ZERO_AR_DATE was set to any value, ld64.lld would
embed non-hermetic timestamps into the final binary. This flips that
default to zero those values unless ZERO_AR_DATE is set explicitly to 0.
As far as I know there isn't a downside to this, except that it differs
from ld64.
Differential Revision: https://reviews.llvm.org/D135529
This commit adds support for chained fixups, which were introduced in
Apple's late 2020 OS releases. This format replaces the dyld opcodes
used for supplying rebase and binding information, and encodes most of
that data directly in the memory location that will have the fixup
applied.
This reduces binary size and is a requirement for page-in linking, which
will be available starting with macOS 13.
A high-level overview of the format and my implementation can be found
in SyntheticSections.h.
This feature is currently gated behind the `-fixup_chains` flag, and
will be enabled by default for supported targets in a later commit.
Like in ld64, lazy binding is disabled when chained fixups are in use,
and the `-init_offsets` transformation is performed by default.
Differential Revision: https://reviews.llvm.org/D132560
Builds that error out on duplicate symbols can still succeed if the symbols
will be dead stripped. Currently, this is the current behavior in ld64.
https://github.com/apple-oss-distributions/ld64/blob/main/src/ld/Resolver.cpp#L2018.
In order to provide an easier to path for adoption, introduce a new flag that will
retain compatibility with ld64's behavior (similar to `--deduplicate-literals`). This is
turned off by default since we do not encourage this behavior in the linker.
Reviewed By: #lld-macho, thakis, int3
Differential Revision: https://reviews.llvm.org/D134794
This arg is undocumented but from looking at the code + experiment, it's used to add additional DYLD_ENVIRONMENT load commands to the output.
Differential Revision: https://reviews.llvm.org/D134058
This is similar to the `-alias` CLI option, but it gives finer-grained
control in that it allows the aliased symbols to be treated as private
externs.
While working on this, I realized that our `-alias` handling did not
cover the cases where the aliased symbol is a common or dylib symbol,
nor the case where we have an undefined that gets treated specially and
converted to a defined later on. My N_INDR handling neglects this too
for now; I've added checks and TODO messages for these.
`N_INDR` symbols cropped up as part of our attempt to link swift-stdlib.
Reviewed By: #lld-macho, thakis, thevinster
Differential Revision: https://reviews.llvm.org/D133825
This is similar to the `-alias` CLI option, but it gives finer-grained
control in that it allows the aliased symbols to be treated as private
externs.
While working on this, I realized that our `-alias` handling did not
cover the cases where the aliased symbol is a common or dylib symbol,
nor the case where we have an undefined that gets treated specially and
converted to a defined later on. My N_INDR handling neglects this too
for now; I've added checks and TODO messages for these.
`N_INDR` symbols cropped up as part of our attempt to link swift-stdlib.
Reviewed By: #lld-macho, thakis, thevinster
Differential Revision: https://reviews.llvm.org/D133825
This section stores 32-bit `__TEXT` segment offsets of initializer
functions, and is used instead of `__mod_init_func` when chained fixups
are enabled.
Storing the offsets lets us avoid emitting fixups for the initializers.
Differential Revision: https://reviews.llvm.org/D132947
Apple Clang in Xcode 14 introduced a new feature for reducing the
overhead of objc_msgSend calls by deduplicating the setup calls for each
individual selector. This works by clang adding undefined symbols for
each selector called in a translation unit, such as `_objc_msgSend$foo`
for calling the `foo` method on any `NSObject`. There are 2
different modes for this behavior, the default directly does the setup
for `_objc_msgSend` and calls it, and the smaller option does the
selector setup, and then calls the standard `_objc_msgSend` stub
function.
The general overview of how this works is:
- Undefined symbols with the given prefix are collected
- The suffix of each matching undefined symbol is added as a string to
`__objc_methname`
- A pointer is added for every method name in the `__objc_selrefs`
section
- A `got` entry is emitted for `_objc_msgSend`
- Stubs are emitting pointing to the synthesized locations
Notes:
- Both `__objc_methname` and `__objc_selrefs` can also exist from object
files, so their contents are merged with our synthesized contents
- The compiler emits method names for defined methods, but not for
undefined symbols you call, but stubs are used for both
- This only implements the default "fast" mode currently just to reduce
the diff, I also doubt many folks will care to swap modes
- This only implements this for arm64 and x86_64, we don't need to
implement this for 32 bit iOS archs, but we should implement it for
watchOS archs in a later diff
Differential Revision: https://reviews.llvm.org/D128108
Linking fails when targeting `x86_64-apple-darwin` for runtimes. The issue
is that LLD strictly assumes the target architecture be present in the tbd
files (which isn't always true). For example, when targeting `x86_64h`, it should
work with `x86_64` because they are ABI compatible. This is also inline with what
ld64 does.
An environment variable (which ld64 also supports) is also added to preserve the
existing behavior of strict architecture matching.
Reviewed By: #lld-macho, int3
Differential Revision: https://reviews.llvm.org/D130683
We were previously doing it after LTO, which did have the desired effect
of having the un-exported symbols marked as private extern in the final
output binary, but doing it before LTO creates more optimization
opportunities.
One observable difference is that LTO can now elide un-exported symbols
entirely, so they may not even be present as private externs in the
output.
This is also what ld64 implements.
Reviewed By: #lld-macho, thevinster
Differential Revision: https://reviews.llvm.org/D130429
Similarly to -load_hidden, this flag instructs the linker to not export
symbols from the specified archive. While that flag takes a path,
-hidden-l looks for the specified library name in the search path.
The test changes are needed because -hidden-lfoo resolves to libfoo.a,
not foo.a.
Differential Revision: https://reviews.llvm.org/D130529
This flag was introduced in ld64-609. It instructs the linker to link to
a static library while treating its symbols as if they had hidden
visibility. This is useful when building a dylib that links to static
libraries but we don't want the symbols from those to be exported.
Closes#51505
This reland adds bitcode file handling, so we won't get any compile
errors due to BitcodeFile::forceHidden being unused.
Differential Revision: https://reviews.llvm.org/D130473
This flag was introduced in ld64-609. It instructs the linker to link to
a static library while treating its symbols as if they had hidden
visibility. This is useful when building a dylib that links to static
libraries but we don't want the symbols from those to be exported.
Closes#51505
Differential Revision: https://reviews.llvm.org/D130473
Previously, we treated it as a regular ConcatInputSection. However, ld64
actually parses its contents and uses that to synthesize a single image
info struct, generating one 8-byte section instead of `8 * number of
object files with ObjC code`.
I'm not entirely sure what impact this section has on the runtime, so I
just tried to follow ld64's semantics as closely as possible in this
diff. My main motivation though was to reduce binary size.
No significant perf change on chromium_framework on my 16-core Mac Pro:
base diff difference (95% CI)
sys_time 1.764 ± 0.062 1.748 ± 0.032 [ -2.4% .. +0.5%]
user_time 5.112 ± 0.104 5.106 ± 0.046 [ -0.9% .. +0.7%]
wall_time 6.111 ± 0.184 6.085 ± 0.076 [ -1.6% .. +0.8%]
samples 30 32
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D130125
Similar to cstrings ld64 always deduplicates cfstrings. This was already
being done when enabling ICF, but for debug builds you may want to flip
this on if you cannot eliminate your instances of this, so this change
makes --deduplicate-literals also apply to cfstrings.
Differential Revision: https://reviews.llvm.org/D130134
This is a follow-on to {D129556}. I've refactored the code such that
`addFile()` no longer needs to take an extra parameter. Additionally,
the "do we force-load or not" policy logic is now fully contained within
addFile, instead of being split between `addFile` and
`parseLCLinkerOptions`. This also allows us to move the `ForceLoad` (now
`LoadType`) enum out of the header file.
Additionally, we can now correctly report loads induced by
`LC_LINKER_OPTION` in our `-why_load` output.
I've also added another test to check that CLI library non-force-loads
take precedence over `LC_LINKER_OPTION` + `-force_load_swift_libs`. (The
existing logic is correct, just untested.)
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D130137
This fixes https://github.com/llvm/llvm-project/issues/56059 and
https://github.com/llvm/llvm-project/issues/56440. This is inspired by
tapthaker's patch (https://reviews.llvm.org/D127941), and has reused his
test cases. This patch adds an bool "isCommandLineLoad" to indicate
where archives are from. If lld tries to load the same library loaded
previously by LC_LINKER_OPTION from CLI, it will use this
isCommandLineLoad to determine if it should be affected by -all_load &
-ObjC flags. This also prevents -force_load from affecting archives
loaded previously from CLI without such flag, whereas tapthaker's patch
will fail such test case (introduced by
https://reviews.llvm.org/D128025).
Reviewed By: int3, #lld-macho
Differential Revision: https://reviews.llvm.org/D129556
This creates a symbol alias similar to --defsym in the elf linker. This
is used by swiftpm for all executables, so it's useful to support. This
doesn't implement -alias_list but that could be done pretty easily as
needed.
Differential Revision: https://reviews.llvm.org/D129938
This just removes the code that gates the logic. The main issue here is
perf impact: without {D122258}, LLD takes a significant perf hit because
it now has to do a lot more work in the input parsing phase. But with
that change to eliminate unnecessary EH frames from input object files,
the perf overhead here is minimal. Concretely, here are the numbers for
some builds as measured on my 16-core Mac Pro:
**chromium_framework**
This is without the use of `-femit-dwarf-unwind=no-compact-unwind`:
base diff difference (95% CI)
sys_time 1.826 ± 0.019 1.962 ± 0.034 [ +6.5% .. +8.4%]
user_time 9.306 ± 0.054 9.926 ± 0.082 [ +6.2% .. +7.1%]
wall_time 8.225 ± 0.068 8.947 ± 0.128 [ +8.0% .. +9.6%]
samples 15 22
With that flag enabled, the regression mostly disappears, as hoped:
base diff difference (95% CI)
sys_time 1.839 ± 0.062 1.866 ± 0.068 [ -0.9% .. +3.8%]
user_time 9.452 ± 0.068 9.490 ± 0.067 [ -0.1% .. +0.9%]
wall_time 8.383 ± 0.127 8.452 ± 0.114 [ -0.1% .. +1.8%]
samples 17 21
**Unnamed internal app**
Without `-femit-dwarf-unwind`, this is the perf hit:
base diff difference (95% CI)
sys_time 1.372 ± 0.029 1.317 ± 0.024 [ -4.6% .. -3.5%]
user_time 2.835 ± 0.028 2.980 ± 0.027 [ +4.8% .. +5.4%]
wall_time 3.205 ± 0.079 3.383 ± 0.066 [ +4.9% .. +6.2%]
samples 102 83
With `-femit-dwarf-unwind`, the perf hit almost disappears:
base diff difference (95% CI)
sys_time 1.274 ± 0.026 1.270 ± 0.025 [ -0.9% .. +0.3%]
user_time 2.812 ± 0.023 2.822 ± 0.035 [ +0.1% .. +0.7%]
wall_time 3.166 ± 0.047 3.174 ± 0.059 [ -0.2% .. +0.7%]
samples 95 97
Just for fun, I measured the impact of `-femit-dwarf-unwind` on ld64
(`base` has the extra DWARF unwind info in the input object files,
`diff` doesn't):
base diff difference (95% CI)
sys_time 1.128 ± 0.010 1.124 ± 0.023 [ -1.3% .. +0.6%]
user_time 7.176 ± 0.030 7.106 ± 0.094 [ -1.5% .. -0.4%]
wall_time 7.874 ± 0.041 7.795 ± 0.121 [ -1.7% .. -0.3%]
samples 16 25
And for LLD:
base diff difference (95% CI)
sys_time 1.315 ± 0.019 1.280 ± 0.019 [ -3.2% .. -2.0%]
user_time 2.980 ± 0.022 2.822 ± 0.016 [ -5.5% .. -5.0%]
wall_time 3.369 ± 0.038 3.175 ± 0.033 [ -6.2% .. -5.3%]
samples 47 47
So parsing the extra EH frames is a lot more expensive for us than for
ld64. But given that we are quite a lot faster than ld64 to begin with,
I guess this isn't entirely unexpected...
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D129540
Linker optimization hints mark a sequence of instructions used for
synthesizing an address, like ADRP+ADD. If the referenced symbol ends up
close enough, it can be replaced by a faster sequence of instructions
like ADR+NOP.
This commit adds support for 2 of the 7 defined ARM64 optimization
hints:
- LOH_ARM64_ADRP_ADD, which transforms a pair of ADRP+ADD into ADR+NOP
if the referenced address is within +/- 1 MiB
- LOH_ARM64_ADRP_ADRP, which transforms two ADRP instructions into
ADR+NOP if they reference the same page
These two kinds already cover more than 50% of all LOHs in
chromium_framework.
Differential Review: https://reviews.llvm.org/D128093
`--time-trace=foo` has the same behavior as `--time-trace --time-trace-file=<file>`
had previously.
Also, for mac, make --time-trace-granularity *not* imply --time-trace, to match
behavior of the ELF port.
Differential Revision: https://reviews.llvm.org/D128451
Identical literal folding takes ~1.4% of the time, and was missing
from the trace.
Signature computation still needs ~2.2% of the time, so probably worth
explicitly marking its contribution to "Write output file" (9.1%)
Differential Revision: https://reviews.llvm.org/D128343
As an optimization for ld64 sometimes it can be useful to not export any
symbols for top level binaries that don't need any exports, to do this
you can pass `-exported_symbols_list /dev/null`, or new with Xcode 14
(ld64 816) there is a `-no_exported_symbols` flag for the same behavior.
This reproduces this behavior where previously an empty exported symbols
list file would have been ignored.
Differential Revision: https://reviews.llvm.org/D127562
This reverts commit 942f4e3a7cc9a9f8b2654817cff12907d1276031.
The additional change required to avoid the assertion errors seen
previously is:
--- a/lld/MachO/ICF.cpp
+++ b/lld/MachO/ICF.cpp
@@ -443,7 +443,9 @@ void macho::foldIdenticalSections() {
/*relocVA=*/0);
isec->data = copy;
}
- } else {
+ } else if (!isEhFrameSection(isec)) {
+ // EH frames are gathered as hashables from unwindEntry above; give a
+ // unique ID to everything else.
isec->icfEqClass[0] = ++icfUniqueID;
}
}
Differential Revision: https://reviews.llvm.org/D123435