This patch tries to remove all the direct use of DeclID except the real
low level reading and writing. All the use of DeclID is converted to
the use of LocalDeclID or GlobalDeclID. This is helpful to increase the
readability and type safety.
This patch tries to remove all the direct use of DeclID except the real
low level reading and writing. All the use of DeclID is converted to
the use of LocalDeclID or GlobalDeclID. This is helpful to increase the
readability and type safety.
Previously, the DeclID is defined in serialization/ASTBitCodes.h under
clang::serialization namespace. However, actually the DeclID is not
purely used in serialization part. The DeclID is already widely used in
AST and all around the clang project via classes like `LazyPtrDecl` or
calling `ExternalASTSource::getExernalDecl()`. All such uses are via the
raw underlying type of `DeclID` as `uint32_t`. This is not pretty good.
This patch moves the DeclID class family to a new header `AST/DeclID.h`
so that the whole project can use the wrapped class `DeclID`,
`GlobalDeclID` and `LocalDeclID` instead of the raw underlying type.
This can improve the readability and the type safety.
Previously we use 'unsigned' as the type of ID in 'CreateDeserialized'.
And the type of `DeclID` in serialization is 'uint32_t', so there is
minor inconsistency.
Also more importantly, if we want to extend the type of DeclID from
uint32_t to uint64_t, we may be in trouble due to we forgot updating the
a lot of 'CreateDeserialized'.
So this patch tries to use semantical type 'DeclID' for
'*Decl::CreateDeserialized' to make sure it is tightly consistent.
This patch converts `ImplicitParamDecl::ImplicitParamKind` into a scoped enum at namespace scope, making it eligible for forward declaring. This is useful for `preferred_type` annotations on bit-fields.
This patch moves `ObjCMethodDecl::ImplementationControl` to a DeclBase.h so that it's complete at the point where corresponsing bit-field is declared. This patch also converts it to a scoped enum `clang::ObjCImplementationControl`.
While working on #68377 inspecting `Allocate()` calls, I found out that
there are couple of places where we forget to use placement-new to
create objects in the allocated memory.
Instead of emitting a redefinition error, check that definitions are
equivalent and allow such scenario.
A few non-obvious implementation details:
* to avoid multiple definitions in the redeclaration chain we just drop
the new definition after checking for equivalence;
* for checking definition equivalence use ODR hash instead of
ASTStructuralEquivalence because it avoids excessive recursive
deserialization. Though after detecting a mismatch we do deserialize
multiple entities to provide a better error message.
rdar://82908223
Differential Revision: https://reviews.llvm.org/D124286
When two modules contain interfaces with the same name, check the
definitions are equivalent and diagnose if they are not.
Differential Revision: https://reviews.llvm.org/D140073
This patch mechanically replaces None with std::nullopt where the
compiler would warn if None were deprecated. The intent is to reduce
the amount of manual work required in migrating from Optional to
std::optional.
This is part of an effort to migrate from llvm::Optional to
std::optional:
https://discourse.llvm.org/t/deprecating-llvm-optional-x-hasvalue-getvalue-getvalueor/63716
When during parsing we encountered a duplicate `ObjCProtocolDecl`, we
were always emitting an error. With this change we accept
* when a previous `ObjCProtocolDecl` is in a hidden [sub]module;
* parsed `ObjCProtocolDecl` is the same as the previous one.
And in case of mismatches we provide more detailed error messages.
rdar://93069080
Differential Revision: https://reviews.llvm.org/D130327
In the context of caching clang invocations it is important to emit diagnostics in deterministic order;
the same clang invocation should result in the same diagnostic output.
rdar://100336989
Differential Revision: https://reviews.llvm.org/D135118
Emitting metadata for the same ivar multiple times can lead to
miscompilations. Objective-C runtime adds offsets to calculate ivar
position in memory and presence of duplicate offsets causes wrong final
position thus overwriting unrelated memory.
Such a situation is impossible with modules disabled as clang diagnoses
ivar redeclarations during sema checks after parsing
(`Sema::ActOnFields`). Fix the case with modules enabled by checking
during deserialization if ivar is already declared. We also support
a use case where the same category ends up in multiple modules. We
don't want to treat this case as ivar redeclaration and instead merge
corresponding ivars.
rdar://83468070
Differential Revision: https://reviews.llvm.org/D121177
If a class declares an instance property, and an inheritor class declares a class property with the same name, Clang Sema currently treats the latter as an overridden property, and compares the attributes of the two properties to check for a mismatch. The resulting diagnostics might be misleading, since neither of the properties actually overrides the another one.
rdar://86018435
Differential Revision: https://reviews.llvm.org/D116412
With the old approach we were updating `ObjCInterfaceType.Decl` to the
last encountered definition. But during loading modules
`ASTDeclReader::VisitObjCInterfaceDecl` keeps the *first* encountered
definition. So with multiple definitions imported there would be a
disagreement between expected definition in `ObjCInterfaceType.Decl` and
actual definition `ObjCInterfaceDecl::getDefinition` which can lead to
incorrect diagnostic.
Fix by not tracking definition in `ObjCInterfaceType` explicitly but by
getting it from redeclaration chain.
Partially reverted 919fc50034b44c48aae8b80283f253ec2ee17f45 keeping the
modified test case as the correct behavior is achieved in a different
way.
Differential Revision: https://reviews.llvm.org/D110452
non-Darwin ObjC runtimes:
- Use the same logic the Darwin runtime does for inferring that a
receiver is non-null and therefore doesn't require null checks.
Previously we weren't skipping these for non-super dispatch.
- Emit a null check when there's a consumed parameter so that we can
destroy the argument if the call doesn't happen. This mostly
involves extracting some common logic from the Darwin-runtime code.
- Generate a zero aggregate by zeroing the same memory that was used
in the method call instead of zeroing separate memory and then
merging them with a phi. This uses less memory and avoids unnecessary
copies.
- Emit zero initialization, and generate zero values in phis, using
the proper zero-value routines instead of assuming that the zero
value of the result type has a bitwise-zero representation.
Programmers would like to be able to test direct methods by calling them from a
different linkage unit or mocking them, both of which are impossible. This
patch adds a flag that effectively disables the attribute, which will fix this
when enabled in testable builds. rdar://71190891
Differential revision: https://reviews.llvm.org/D95845
This code currently uses a union object to increase the
alignment of the type ObjCTypeParamList. The original intent of this
trick was to be able to use the expression `this + 1` to access the
beginning of a tail-allocated array of `ObjCTypeParamDecl *` pointers.
The code has since been refactored and uses `llvm::TrailingObjects` to
manage the tail-allocated array. This template takes care of
alignment, so the hack is no longer necessary.
This patch removes the union so that the `SourceRange` class can be
used directly instead of being re-implemented with raw representations
of source locations.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D94224
ObjCContainerDecl.getMethod returns a nullptr by default when the
container is a hidden prototype. Callsites where the method is being
looked up on the redeclaration's own container should skip this check
since they (rightly) expect a valid method to be found.
Resolves rdar://69444243
Reviewed By: akyrtzi
Differential Revision: https://reviews.llvm.org/D89024
Summary:
Motivated by the new objc_direct attribute, this change adds a new
attribute that remotes metadata from Protocols that the programmer knows
isn't going to be used at runtime. We simply have the frontend skip
generating any protocol metadata entries (e.g. OBJC_CLASS_NAME,
_OBJC_$_PROTOCOL_INSTANCE_METHDOS, _OBJC_PROTOCOL, etc) for a protocol
marked with `__attribute__((objc_non_runtime_protocol))`.
There are a few APIs used to retrieve a protocol at runtime.
`@protocol(SomeProtocol)` will now error out of the requested protocol
is marked with attribute. `objc_getProtocol` will return `NULL` which
is consistent with the behavior of a non-existing protocol.
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D75574
- Fix a memory leak accidentally introduced yesterday by using CodeGen's
existing mangling context instead of creating a new context afresh.
- Move GNU-runtime ObjC method mangling into the AST mangler; this will
eventually be necessary to support direct methods there, but is also
just the right architecture.
- Make the Apple-runtime method mangling work properly when given an
interface declaration, fixing a bug (which had solidified into a test)
where mangling a category method from the interface could cause it to
be mangled as if the category name was a class name. (Category names
are namespaced within their class and have no global meaning.)
- Fix a code cross-reference in dsymutil.
Based on a patch by Ellis Hoag.
Also invert the sense of the return value.
As pointed out by the FIXME that this change resolves, isHidden() wasn't
a very accurate name for this function.
I haven't yet changed any of the strings that are output in
ASTDumper.cpp / JSONNodeDumper.cpp / TextNodeDumper.cpp in response to
whether isHidden() is set because
a) I'm not sure whether it's actually desired to change these strings
(would appreciate feedback on this), and
b) In any case, I'd like to get this pure rename out of the way first,
without any changes to tests. Changing the strings that are output in
the various ...Dumper.cpp files will require changes to quite a few
tests, and I'd like to make those in a separate change.
Differential Revision: https://reviews.llvm.org/D81392
Reviewed By: rsmith
This is a code clean up of the PropertyAttributeKind and
ObjCPropertyAttributeKind enums in ObjCPropertyDecl and ObjCDeclSpec that are
exactly identical. This non-functional change consolidates these enums
into one. The changes are to many files across clang (and comments in LLVM) so
that everything refers to the new consolidated enum in DeclObjCCommon.h.
2nd Landing Attempt...
Differential Revision: https://reviews.llvm.org/D77233
This is a code clean up of the PropertyAttributeKind and
ObjCPropertyAttributeKind enums in ObjCPropertyDecl and ObjCDeclSpec that are
exactly identical. This non-functional change consolidates these enums
into one. The changes are to many files across clang (and comments in LLVM) so
that everything refers to the new consolidated enum in DeclObjCCommon.h.
Differential Revision: https://reviews.llvm.org/D77233
Because the name of a direct method must be agreed upon by the caller
and the implementation, certain bad practices that one can get away with
when using dynamism are fatal with direct methods.
To avoid really weird and unscruttable linker error, tighten the
front-end error reporting.
Rule 1:
Direct methods can only have at most one declaration in an @interface
container. Any redeclaration is strictly forbidden.
Today some amount of redeclaration is tolerated between the main
interface and categories for dynamic methods, but we can't have that.
Rule 2:
Direct method implementations can only be declared in a matching
@interface container: when implemented in the primary @implementation
then the declaration must be in the primary @interface or an
extension, and when implemented in a category, the declaration must be
in the @interface for the same category.
Also fix another issue with ObjCMethod::getCanonicalDecl(): when an
implementation lives in the primary @interface, then its canonical
declaration can be in any extension, even when it's not an accessor.
Add Sema tests to cover the new errors, and CG tests to beef up testing
around function names for categories and extensions.
Radar-Id: <rdar://problem/58054563>
Differential Revision: https://reviews.llvm.org/D71694
ObjCMethodDecl::getCanonicalDecl() for re-declared readwrite properties,
only looks in the ObjCInterface for the declaration of the setter
method, which it won't find.
When the method is a property accessor, we must look in extensions for a
possible redeclaration.
Radar-Id: rdar://problem/57991337
Differential Revision: https://reviews.llvm.org/D71588
__attribute__((objc_direct)) is an attribute on methods declaration, and
__attribute__((objc_direct_members)) on implementation, categories or
extensions.
A `direct` property specifier is added (@property(direct) type name)
These attributes / specifiers cause the method to have no associated
Objective-C metadata (for the property or the method itself), and the
calling convention to be a direct C function call.
The symbol for the method has enforced hidden visibility and such direct
calls are hence unreachable cross image. An explicit C function must be
made if so desired to wrap them.
The implicit `self` and `_cmd` arguments are preserved, however to
maintain compatibility with the usual `objc_msgSend` semantics,
3 fundamental precautions are taken:
1) for instance methods, `self` is nil-checked. On arm64 backends this
typically adds a single instruction (cbz x0, <closest-ret>) to the
codegen, for the vast majority of the cases when the return type is a
scalar.
2) for class methods, because the class may not be realized/initialized
yet, a call to `[self self]` is emitted. When the proper deployment
target is used, this is optimized to `objc_opt_self(self)`.
However, long term we might want to emit something better that the
optimizer can reason about. When inlining kicks in, these calls
aren't optimized away as the optimizer has no idea that a single call
is really necessary.
3) the calling convention for the `_cmd` argument is changed: the caller
leaves the second argument to the call undefined, and the selector is
loaded inside the body when it's referenced only.
As far as error reporting goes, the compiler refuses:
- making any overloads direct,
- making an overload of a direct method,
- implementations marked as direct when the declaration in the
interface isn't (the other way around is allowed, as the direct
attribute is inherited from the declaration),
- marking methods required for protocol conformance as direct,
- messaging an unqualified `id` with a direct method,
- forming any @selector() expression with only direct selectors.
As warnings:
- any inconsistency of direct-related calling convention when
@selector() or messaging is used,
- forming any @selector() expression with a possibly direct selector.
Lastly an `objc_direct_members` attribute is added that can decorate
`@implementation` blocks and causes methods only declared there (and in
no `@interface`) to be automatically direct. When decorating an
`@interface` then all methods and properties declared in this block are
marked direct.
Radar-ID: rdar://problem/2684889
Differential Revision: https://reviews.llvm.org/D69991
Reviewed-By: John McCall
This patch is motivated by (and factored out from)
https://reviews.llvm.org/D66121 which is a debug info bugfix. Starting
with DWARF 5 all Objective-C methods are nested inside their
containing type, and that patch implements this for synthesized
Objective-C properties.
1. SemaObjCProperty populates a list of synthesized accessors that may
need to inserted into an ObjCImplDecl.
2. SemaDeclObjC::ActOnEnd inserts forward-declarations for all
accessors for which no override was provided into their
ObjCImplDecl. This patch does *not* synthesize AST function
*bodies*. Moving that code from the static analyzer into Sema may
be a good idea though.
3. Places that expect all methods to have bodies have been updated.
I did not update the static analyzer's inliner for synthesized
properties to point back to the property declaration (see
test/Analysis/Inputs/expected-plists/nullability-notes.m.plist), which
I believed to be more bug than a feature.
Differential Revision: https://reviews.llvm.org/D68108
rdar://problem/53782400
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
When defined in NSObject, +new will call -init. If -init has been marked
unavailable, diagnose uses of +new.
rdar://18335828
Differential revision: https://reviews.llvm.org/D51189
llvm-svn: 341874
Summary:
This check was introduced by r338641
but this broke some builds. For now remove it.
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D50163
llvm-svn: 338648
This is similar to the LLVM change https://reviews.llvm.org/D46290.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46320
llvm-svn: 331834
Found via codespell -q 3 -I ../clang-whitelist.txt
Where whitelist consists of:
archtype
cas
classs
checkk
compres
definit
frome
iff
inteval
ith
lod
methode
nd
optin
ot
pres
statics
te
thru
Patch by luzpaz! (This is a subset of D44188 that applies cleanly with a few
files that have dubious fixes reverted.)
Differential revision: https://reviews.llvm.org/D44188
llvm-svn: 329399