Fortran::runtime::Descriptor::BytesFor() only works for Fortran
intrinsic types for which a C++ type counterpart exists, so it crashes
on some types that are legitimate Fortran types like REAL(2). Move some
logic from Evaluate into a new header in flang/Common, then use it to
avoid this needless dependence on C++.
Flang uses `fir.call <llvm intrinsic>` in a few places. This means
consumers of the IR need to strcmp every fir.call if they want to find a
particular LLVM intrinsic.
Emit LLVM memcpy intrinsics instead.
This patch updates Flang lowering and kernel flags identification in
MLIR so that loop bounds on `target teams loop` constructs are evaluated
on the host, making the trip count available to the corresponding
`__tgt_target_kernel` call emitted for the target region.
This is necessary in order to properly execute these constructs as
`target teams distribute parallel do`.
Co-authored-by: Kareem Ergawy <kareem.ergawy@amd.com>
Like other target statements, the statement associated with the label in
a legacy ASSIGN statement could be inside a construct. Constructs
containing such a target must therefore be marked as unstructured,
fairly similar to how targets are processed in `markBranchTarget`.
Hi,
This patch implements support for the following directives :
- `!DIR$ NOUNROLL_AND_JAM` to disable unrolling and jamming on a DO
LOOP.
- `!DIR$ NOUNROLL` to disable unrolling on a DO LOOP.
- `!DIR$ NOVECTOR` to disable vectorization on a DO LOOP.
The OpenMP standard says that all dependencies in the same set of
inter-dependent tasks must be non-overlapping. This simplification means
that the OpenMP only needs to keep track of the base addresses of
dependency variables. This can be seen in kmp_taskdeps.cpp, which stores
task dependency information in a hash table, using the base address as a
key.
This patch generates a rebox operation to slice boxed arrays, but only
the box data address is used for the task dependency. The extra box is
optimized away by LLVM at O3.
Vector subscripts are TODO (I will address in my next patch).
This also fixes a bug for ordinary subscripts when the symbol was mapped
to a box:
Fixes#132647
Issue: Cray Pointer is not associated to Cray Pointee, leading to
Segmentation fault
Fix: GetUltimate, retrieves the base symbol in the current scope, which
gets passed all the references and returns the original symbol
---------
Co-authored-by: Michael Klemm <michael.klemm@amd.com>
flang/include/flang/Runtime/io-api.h was changed into io-api-consts.h,
then wrapped into a new io-api.h that includes io-api-consts.h, does
some redundant includes and declarations, and then declares the
prototype of one function, InquiryKeywordHashDecode.
Make that function static in io-stmt.cpp prior to its sole call site,
then undo the renaming, to reduce confusion and redundancy.
Using LoopNest's indices with ShapeShifts that have non-default
lower bounds results in accesses to incorrect array elements.
To avoid having to adjust each index, a ShapeShift with default
lower bounds can be used instead.
Fixes#131751
This patch makes the `map_type` and `map_capture_type` arguments of the
`omp.map.info` operation required, which was already an invariant being
verified by its users via `verifyMapClause()`. This makes it clearer, as
getters no longer return misleading `std::optional` values.
Checks for the `mapper_id` argument are moved to a verifier for the
operation, rather than being checked by users.
Functionally NFC, but not marked as such due to a reordering of
arguments in the assembly format of `omp.map.info`.
TARGET dummy arrays can be accessed indirectly, so it is unsafe
to repack them.
INTENT(OUT) dummy arrays that require finalization on entry
to their subroutine must be copied-in by `fir.pack_arrays`.
In addition, based on my testing results, I think it will be useful
to document that `LOC` and `IS_CONTIGUOUS` will have different values
for the repacked arrays. I still need to decide where to document
this, so just added a note in the design doc for the time being.
This patch adds the `OpWithBodyGenInfo::blockArgs` field and updates
`createBodyOfOp()` to prevent the need for `BlockArgOpenMPOpInterface`
operations to pass the same callback, minimizing chances of introducing
inconsistent behavior.
The `OmpDirectiveSpecification` contains directive name, the list of
arguments, and the list of clauses. It was introduced to store the
directive specification in METADIRECTIVE, and could be reused everywhere
a directive representation is needed.
In the long term this would unify the handling of common directive
properties, as well as creating actual constructs from METADIRECTIVE by
linking the contained directive specification with any associated user
code.
Adds Parser and Semantic Support for the below construct and clauses:
- Interop Construct
- Init Clause
- Use Clause
Note:
The other clauses supported by Interop Construct such as Destroy, Use,
Depend and Device are added already.
Fixes#112538
The problem was that the host associated symbol for the threadprivate
variable doesn't have all of the symbol attributes (e.g. POINTER). This
caused the lowering code to generate the wrong type, eventually hitting
an assertion.
Implement handling of `NULL()` RHS, polymorphic pointers, as well as
lower bounds or bounds remapping in pointer assignment inside FORALL.
These cases eventually do not require updating hlfir.region_assign,
lowering can simply prepare the new descriptor for the LHS inside the
RHS region.
Looking more closely at the polymorphic cases, there is not need to call
the runtime, fir.rebox and fir.embox do handle the dynamic type setting
correctly.
After this patch, the last remaining TODO is the allocatable assignment
inside FORALL, which like some cases here, is more likely an accidental
feature given FORALL was deprecated in F2003 at the same time than
allocatable components where added.
Improve the check for whether a type can be passed by copy. Currently,
passing by copy is done via the OMP_MAP_LITERAL mapping, which can only
transfer as much data as can be contained in a pointer representation.
This patch simplifies the definition of
`ClauseProcessor::processMapObjects` by hoisting the creation of the
MLIR symbol associated to an existing `omp.declare_mapper` operation
outside of the loop processing all mapped objects.
That change removes some inter-iteration dependencies that made the
implementation more difficult to follow.
Currently, all derived types are initialized through `_FortranAInitialize`, which is functionally correct, but bears poor runtime performance. This patch falls back on global initialization for "simpler" derived types to speed up the initialization.
Note: this relands #114002 with the fix for the LLVM timeout regressions that have been seen. The fix is to use the added fir.copy to avoid aggregate load/store.
Co-authored-by: NimishMishra <42909663+NimishMishra@users.noreply.github.com>
These previously crashed the compiler because !fir.ptr (not wrapped
inside of a box) was not supported.
Real POINTER variables are supported as !fir.box<!fir.ptr<>>. The
version for EQUIVALENCE doesn't need to do anything different to
!fir.ref<>.
The HAS_DEVICE_ADDR indicates that the object(s) listed exists at an
address that is a valid device address. Specifically,
`has_device_addr(x)` means that (in C/C++ terms) `&x` is a device
address.
When entering a target region, `x` does not need to be allocated on the
device, or have its contents copied over (in the absence of additional
mapping clauses). Passing its address verbatim to the region for use is
sufficient, and is the intended goal of the clause.
Some Fortran objects use descriptors in their in-memory representation.
If `x` had a descriptor, both the descriptor and the contents of `x`
would be located in the device memory. However, the descriptors are
managed by the compiler, and can be regenerated at various points as
needed. The address of the effective descriptor may change, hence it's
not safe to pass the address of the descriptor to the target region.
Instead, the descriptor itself is always copied, but for objects like
`x`, no further mapping takes place (as this keeps the storage pointer
in the descriptor unchanged).
---------
Co-authored-by: Sergio Afonso <safonsof@amd.com>
This PR adds an initial implementation for the map modifiers close,
present and ompx_hold, primarily just required adding the appropriate
map type flags to the map type bits. In the case of ompx_hold it
required adding the map type to the OpenMP dialect. Close has a bit of a
problem when utilised with the ALWAYS map type on descriptors, so it is
likely we'll have to make sure close and always are not applied to the
descriptor simultaneously in the future when we apply always to the
descriptors to facilitate movement of descriptor information to device
for consistency, however, we may find an alternative to this with
further investigation. For the moment, it is a TODO/Note to keep track
of it.
Very similar to object pointer assignment, the difference is the SSA
types of the LHS (!fir.ref<!fir.boxproc<()->()>> and RHS
(!fir.boxproc<()->()).
The RHS must be saved as simple address, not descriptors (it is not
possible to make CFI descriptor out of procedure entity).
This PR tries to fix `lastprivate` update issues in composite
constructs. In particular, pre-determined `lastprivate` symbols are
attached to the wrong leaf of the composite construct (the outermost
one). When using delayed privatization (should be the default mode in
the future), this results in trying to update the `lastprivate` symbol
in the wrong construct (outside the `omp.loop_nest` op).
For example, given the following input:
```fortran
!$omp target teams distribute parallel do simd collapse(2) private(y_max)
do i=x_min,x_max
do j=y_min,y_max
enddo
enddo
```
Without the fixes introduced in this PR, the `DataSharingProcessor`
tries to generate the `lastprivate` update ops in the `parallel` op
since this is the op for which the DSP instance is created.
The fix consists of 2 main parts:
1. Instead of creating a single DSP instance, one instance is created
for the leaf constructs that might need privatization (whether for
explicit, implicit, or pre-determined symbols).
2. When generating the `lastprivate` comparison ops, we don't directly
use the SSA values of the UBs and steps. Instead, we regenerated these
SSA values from the original loop bounds' expressions. We have to do
this to avoid using `host_eval` values in the `lastprivate` comparison
logic which is illegal.
Use hlfir dereferencing for pointers and allocatables and use hlfir
assign. Also, change the code updating IV in lastprivate.
Note: This is a small change. Modifications in existing tests are
changes from fir.store to hlfir.assign.
Fixes#121290
Then use this in the Flang compiler for parsing the OpenMP declare
reduction.
This has no real functional change to the existing code, it's only
moving the declaration itself around.
A few tests has been updated, to reflect the new type names.
Currently, all derived types are initialized through `_FortranAInitialize`, which is functionally correct, but bears poor runtime performance. This patch falls back on global initialization for "simpler" derived types to speed up the initialization.
The semantic of pointer assignments inside FORALL requires evaluating
the targets (RHS) and pointer variables (LHS) of all iterations before
evaluating the assignments.
In practice, if the compiler can prove that the RHS and LHS evaluations
are not impacted by the assignments, the evaluation of the FORALL
assignment statement can be done in a single loop. However, if the
compiler cannot prove this, it needs to "save" the addresses of the
targets and/or the pointer descriptors of each iterations before doing
the assignments.
This patch implements the most common cases where there is no lower bound
spec, no bounds remapping, the LHS is not polymorphic, and the RHS is
not NULL.
The HLFIR operation used to represent assignments inside FORALL can be
used for pointer assignments to (the only difference being that the LHS
is a descriptor address).
The analysis for intrinsic assignment can be reused, with the
distinction that the RHS data is not read during the assignment.
The logic that is used to save LHS in intrinsic assignments inside
FORALL is extracted to be used for the RHS of pointer assignments when
needed (saving a descriptor value).
Pointer assignment LHS are just descriptor addresses and are saved as
int_ptr values.
Refine handling of NULL(...) in semantics to properly distinguish
NULL(), NULL(objectPointer), NULL(procPointer), and NULL(allocatable)
from each other in relevant contexts.
Add IsNullAllocatable() and IsNullPointerOrAllocatable() utility
functions. IsNullAllocatable() is true only for NULL(allocatable); it is
false for a bare NULL(), which can be detected independently with
IsBareNullPointer().
IsNullPointer() now returns false for NULL(allocatable).
ALLOCATED(NULL(allocatable)) now works, and folds to .FALSE.
These utilities were modified to accept const pointer arguments rather
than const references; I usually prefer this style when the result
should clearly be false for a null argument (in the C sense), and it
helped me find all of their use sites in the code.
Since evaluate::Expr can show up in the parse tree in the semantic
analysis step, make it possible to dump its structure in the Semantics
module.
The Lower module depends on Semantics, so the code is still accessible
in it.
The syntax with the object list following the memory-order clause has
been removed in OpenMP 5.2. Still, accept that syntax with versions >=
5.2, but treat it as deprecated (and emit a warning).