In getMemcpyLoadsAndStores(), a memcpy where the source is a zero constant is expanded to a MemOp::Set instead of a MemOp::Copy, even when the memcpy is volatile.
This is incorrect.
The fix is to add a check for volatile, and expand to MemOp::Copy in the volatile case.
Reviewed By: chill
Differential Revision: https://reviews.llvm.org/D87134
I have fixed up some more ElementCount/TypeSize related warnings in
the following tests:
CodeGen/AArch64/sve-split-extract-elt.ll
CodeGen/AArch64/sve-split-insert-elt.ll
In SelectionDAG::CreateStackTemporary we were relying upon the implicit
cast from TypeSize -> uint64_t when calling MachineFrameInfo::CreateStackObject.
I've fixed this by passing in the known minimum size instead, which I
believe is fine because the associated stack id indicates whether this
is a scalable object or not.
I've also fixed up a case in TargetLowering::SimplifyDemandedBits when
extracting a vector element from a scalable vector. The result is a scalar,
hence it wasn't caught at the start of the function. If the vector is
scalable we just bail out for now.
Differential Revision: https://reviews.llvm.org/D86431
Use forward declarations and move the include down to dependent files that actually use it.
This also exposes a number of implicit dependencies on KnownBits.h
I have fixed up a number of warnings resulting from TypeSize -> uint64_t
casts and calling getVectorNumElements() on scalable vector types. I
think most of the changes are fairly trivial except for those in
DAGTypeLegalizer::SplitVecRes_MLOAD I've tried to ensure we create
the MachineMemoryOperands in a sensible way for scalable vectors.
I have added a CHECK line to the following test:
CodeGen/AArch64/sve-split-load.ll
that ensures no new warnings are added.
Differential Revision: https://reviews.llvm.org/D86697
Also updates isConstOrConstSplatFP to allow the mul(A,-1) -> neg(A)
transformation when -1 is expressed as an ISD::SPLAT_VECTOR.
Differential Revision: https://reviews.llvm.org/D86415
In this patch I have fixed two issues:
1. Our SVE tuple get/set intrinsics were using the wrong constant type
for the index passed to EXTRACT_SUBVECTOR. I have fixed this by using the
function SelectionDAG::getVectorIdxConstant to create the value. Also, I
have updated the documentation for EXTRACT_SUBVECTOR describing what type
the constant index should be and we now enforce this when creating the
node.
2. The AArch64 backend was missing the appropriate patterns for
extracting certain subvectors (nxv4f16 and nxv2f32) from legal SVE types.
I have added them as part of this patch.
The only way that I could find to test the new patterns was to use the
SVE tuple get intrinsics, although I realise it looks a bit unusual.
Tests added here:
test/CodeGen/AArch64/sve-extract-subvector.ll
Differential Revision: https://reviews.llvm.org/D85516
When the result type of insertelement needs to be split,
SplitVecRes_INSERT_VECTOR_ELT will try to store the vector to a
stack temporary, store the element at the location of the stack
temporary plus the index, and reload the Lo/Hi parts.
This patch does the following to ensure this works for scalable vectors:
- Sets the StackID with getStackIDForScalableVectors() in CreateStackTemporary
- Adds an IsScalable flag to getMemBasePlusOffset() and scales the
offset by VScale when this is true
- Ensures the immediate is clamped correctly by clampDynamicVectorIndex
so that we don't try to use an out of range index
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D84874
Changes the Offset arguments to both functions from int64_t to TypeSize
& updates all uses of the functions to create the offset using TypeSize::Fixed()
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D85220
As mentioned on D85463, we should be using SimplifyMultipleUseDemandedBits (which is the default fallback).
The minor regression in illegal-bitfield-loadstore.ll will be addressed properly by D77804.
This allows us to remove extra patterns from AArch64SVEInstrInfo.td
because we can reuse those required for fixed length vectors.
Differential Revision: https://reviews.llvm.org/D85328
ComputeNumSignBits and computeKnownBits both trigger "Scalable flag
may be dropped" warnings when a fixed length vector is extracted
from a scalable vector. This patch assumes nothing about the
demanded elements thus matching the behaviour when extracting a
scalable vector from a scalable vector.
Differential Revision: https://reviews.llvm.org/D83642
This patch replaces some invalid calls to getVectorNumElements() with calls
to getVectorMinNumElements() instead, since the code paths changed in this
patch work for both fixed and scalable vector types.
Fixes warnings in this test:
sve-sext-zext.ll
Differential Revision: https://reviews.llvm.org/D83203
Summary:
When legalizing a biscast operation from an fp16 operand to an i16 on a
target that requires both input and output types to be promoted to
32-bits, an assertion can fail when building the new node due to a
mismatch between the the operation's result size and the type specified to
the node.
This patches fix the issue by making sure the bit width of the types
match for the FP_TO_FP16 node, covering the difference with an extra
ANYEXTEND operation.
Reviewers: ostannard, efriedma, pirama, jmolloy, plotfi
Reviewed By: efriedma
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82552
Summary:
When splitting a load of a scalable type, the new address is
calculated in SplitVecRes_LOAD using a vscale and an add instruction.
This patch also adds a DAG combiner fold to visitADD for vscale:
- Fold (add (vscale(C0)), (vscale(C1))) to (add (vscale(C0 + C1)))
Reviewers: sdesmalen, efriedma, david-arm
Reviewed By: david-arm
Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D82792
Currently matchBinOpReduction only handles shufflevector reduction patterns, but in many cases these only occur in the final stages of a reduction, once we're down to legal vector widths.
Before this its likely that we are performing reductions using subvector extractions to repeatedly split the source vector in half and perform the binop on the halves.
Assuming we've found a non-partial reduction, this patch continues looking for subvector reductions as far as it can beyond the last shufflevector.
Fixes PR37890
Fix a warning in getNode() when extracting a subvector from a
concat vector. We can simply replace the call to getVectorNumElements
with getVectorMinNumElements as this follows the defined behaviour
for EXTRACT_SUBVECTOR.
Differential Revision: https://reviews.llvm.org/D82746
Summary:
- AssertAlign node records the guaranteed alignment on its source node,
where these alignments are retrieved from alignment attributes in LLVM
IR. These tracked alignments could help DAG combining and lowering
generating efficient code.
- In this patch, the basic support of AssertAlign node is added. So far,
we only generate AssertAlign nodes on return values from intrinsic
calls.
- Addressing selection in AMDGPU is revised accordingly to capture the
new (base + offset) patterns.
Reviewers: arsenm, bogner
Subscribers: jvesely, wdng, nhaehnle, tpr, hiraditya, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D81711
When trying to calculate the number of sign bits for scalable vectors
we should just bail out for now and pretend we know nothing.
Differential Revision: https://reviews.llvm.org/D81093
Instead of asserting the number of elements is the same, we should be
comparing the element counts instead. In addition, when looking at
concats of extract_subvectors it's fine to use getVectorMinNumElements()
for scalable vectors.
I discovered these warnings when compiling the structured loads tests in
this file:
test/CodeGen/AArch64/sve-intrinsics-loads.ll
Differential Revision: https://reviews.llvm.org/D81936
Until we have a real need for computing known bits for scalable
vectors I have simply changed the code to bail out for now and
pretend we know nothing. I've also fixed up some simple callers of
computeKnownBits too.
Differential Revision: https://reviews.llvm.org/D80437
In two instances of CreateStackTemporary we are sometimes promoting
alignments beyond the stack alignment. I have introduced a new function
called getReducedAlign that will return the alignment for the broken
down parts of illegal vector types. For example, on NEON a <32 x i8>
type is made up of two <16 x i8> types - in this case the sensible
alignment is 16 bytes, not 32.
In the legalization code wherever we create stack temporaries I have
started using the reduced alignments instead for illegal vector types.
I added a test to
CodeGen/AArch64/build-one-lane.ll
that tries to insert an element into an illegal fixed vector type
that involves creating a temporary stack object.
Differential Revision: https://reviews.llvm.org/D80370
This wasn't getting much value from the DAG or depth arguments, since
it's only called on the frame index root nodes. FrameIndexes can also
only return a scalar value, so it also didn't need DemandedElts.
The AMDGPU non-strict fdiv lowering needs to introduce an FP mode
switch in some cases, and has custom nodes to provide chain/glue for
the intermediate FP operations. We need to propagate nofpexcept here,
but getNode was dropping the flags.
Adding nofpexcept in the AMDGPU custom lowering is left to a future
patch.
Also fix a second case where flags were dropped, but in this case it
seems it just didn't handle this number of operands.
Test will be included in future AMDGPU patch.
We are calling getValidShiftAmountConstant first followed by getValidMinimumShiftAmountConstant/getValidMaximumShiftAmountConstant if that failed. But both are used in the same way in ComputeNumSignBits and the Min/Max variants call getValidShiftAmountConstant internally anyhow.
Summary:
The description of EXTACT_SUBVECTOR and INSERT_SUBVECTOR has been
changed to accommodate scalable vectors (see ISDOpcodes.h). This
patch updates the asserts used to verify these requirements when
using SelectionDAG's getNode interface.
This patch introduces the MVT function getVectorMinNumElements
that can be used against fixed-length and scalable vectors when
only the known minimum vector length is required.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D80709
We should be using getVectorElementCount() to assert that two types
have the same numbers of elements. I encountered the warnings while
compiling this test:
CodeGen/AArch64/sve-intrinsics-ld1.ll
Differential Revision: https://reviews.llvm.org/D80616
I have tried to ensure that SelectionDAG and DAGCombiner do
sensible things for scalable vectors, and added support for a
limited number of simple folds. Codegen support for the vector
extract patterns have also been added to the AArch64 backend.
New vector extract tests have been added here:
CodeGen/AArch64/sve-extract-element.ll
and I have also added new folds using inserts and extracts here:
CodeGen/AArch64/sve-insert-element.ll
Differential Revision: https://reviews.llvm.org/D80208
This intrinsic implements IEEE-754 operation roundToIntegralTiesToEven,
and performs rounding to the nearest integer value, rounding halfway
cases to even. The intrinsic represents the missed case of IEEE-754
rounding operations and now llvm provides full support of the rounding
operations defined by the standard.
Differential Revision: https://reviews.llvm.org/D75670
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Reverted due to unexpectedly passing tests, added REQUIRES: asserts for reland.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689
See https://reviews.llvm.org/D74651 for the preallocated IR constructs
and LangRef changes.
In X86TargetLowering::LowerCall(), if a call is preallocated, record
each argument's offset from the stack pointer and the total stack
adjustment. Associate the call Value with an integer index. Store the
info in X86MachineFunctionInfo with the integer index as the key.
This adds two new target independent ISDOpcodes and two new target
dependent Opcodes corresponding to @llvm.call.preallocated.{setup,arg}.
The setup ISelDAG node takes in a chain and outputs a chain and a
SrcValue of the preallocated call Value. It is lowered to a target
dependent node with the SrcValue replaced with the integer index key by
looking in X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to an
%esp adjustment, the exact amount determined by looking in
X86MachineFunctionInfo with the integer index key.
The arg ISelDAG node takes in a chain, a SrcValue of the preallocated
call Value, and the arg index int constant. It produces a chain and the
pointer fo the arg. It is lowered to a target dependent node with the
SrcValue replaced with the integer index key by looking in
X86MachineFunctionInfo. In
X86TargetLowering::EmitInstrWithCustomInserter() this is lowered to a
lea of the stack pointer plus an offset determined by looking in
X86MachineFunctionInfo with the integer index key.
Force any function containing a preallocated call to use the frame
pointer.
Does not yet handle a setup without a call, or a conditional call.
Does not yet handle musttail. That requires a LangRef change first.
Tried to look at all references to inalloca and see if they apply to
preallocated. I've made preallocated versions of tests testing inalloca
whenever possible and when they make sense (e.g. not alloca related,
inalloca edge cases).
Aside from the tests added here, I checked that this codegen produces
correct code for something like
```
struct A {
A();
A(A&&);
~A();
};
void bar() {
foo(foo(foo(foo(foo(A(), 4), 5), 6), 7), 8);
}
```
by replacing the inalloca version of the .ll file with the appropriate
preallocated code. Running the executable produces the same results as
using the current inalloca implementation.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D77689
For now I have changed FoldConstantVectorArithmetic to return early
if we encounter a scalable vector, since the subsequent code assumes
you can perform lane-wise constant folds. However, in future work we
should be able to extend this to look at splats of a constant value
and fold those if possible. I have also added the same code to
FoldConstantArithmetic, since that deals with vectors too.
The warnings I fixed in this patch were being generated by this
existing test:
CodeGen/AArch64/sve-int-arith.ll
Differential Revision: https://reviews.llvm.org/D79421
I've created a new variant of CreateStackTemporary that takes
TypeSize and Align arguments, and made the older instances of
CreateStackTemporary call this new function. This refactoring is
in preparation for more patches in this area related to scalable
vectors and improving the alignment calculations.
Differential Revision: https://reviews.llvm.org/D79933
It sounds like an interesting idea in theory, but nothing is actually
taking advantage of it, and specifying/implementing the edge cases is
painful. So just forbid it.
Differential Revision: https://reviews.llvm.org/D79814
I have fixed up some places in SelectionDAG::getNode() where we
used to assert that the number of vector elements for two types
are the same. I have changed such cases to assert that the
element counts are the same instead. I've added new tests that
exercise the code paths for all the truncations. All the extend
operations are covered by this existing test:
CodeGen/AArch64/sve-sext-zext.ll
For the ISD::SETCC case I fixed this code path is exercised by
these existing tests:
CodeGen/AArch64/sve-fcmp.ll
CodeGen/AArch64/sve-intrinsics-int-compares-with-imm.ll
Differential Revision: https://reviews.llvm.org/D79399