Summary:
Declaring a function as inline after it has been defined is in violation
of [dcl.fct.spec]p4. The program would get a strong definition instead
of getting a function with linkonce_odr linkage.
Reviewers: rsmith
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D3220
llvm-svn: 205129
that implicitly converts to 'bool' (such as pointers, and the first operand of
?:). Clean up issues found by this. Patch by Stephan Tolksdorf!
llvm-svn: 203735
This is a reapplication of r203236 with modifications to the definition of attrs() and following the new style guidelines on auto usage.
llvm-svn: 203362
or virtual functions, but permit that error to be downgraded to
a warning (with -Wno-error=incompatible-ms-struct), and officially
support this kind of dual, ABI-mixing layout.
The basic problem here is that projects which use ms_struct are often
not very circumspect about what types they annotate; for example,
some projects enable the pragma in a prefix header and then only
selectively disable it around system header inclusions. They may
only care about binary compatibility with MSVC for a subset of
those structs, but that doesn't mean they have no binary
compatibility concerns at all for the rest; thus we are essentially
forced into supporting this hybrid ABI. But it's reasonable for
us to at least point out the places where we're not making
any guarantees.
The original diagnostic was for dynamic classes, i.e. those with
virtual functions or virtual bases; I've extended it to include
all classes with bases, because we are not actually making any
attempt to duplicate MSVC's base subobject layout in ms_struct
(and it is indeed quite different from Itanium, even for
non-virtual bases).
rdar://16178895
llvm-svn: 202427
We were previously checking at every destructor declaration, but that was a bit
excessive. Since the deleting destructor is emitted with the vtable, do the
check when the vtable is marked used.
Differential Revision: http://llvm-reviews.chandlerc.com/D2851
llvm-svn: 202046
The following attributes have been (silently) deprecated, with their replacements listed:
lockable => capability
exclusive_locks_required => requires_capability
shared_locks_required => requires_shared_capability
locks_excluded => requires_capability
There are no functional changes intended.
llvm-svn: 201585
using-declaration, and they declare the same function (either because
the using-declaration is in the same namespace as the declaration it
imports, or because they're both extern "C"), they do not conflict.
llvm-svn: 200897
redeclaration, not just when looking them up for a use -- we need the implicit
declaration to appropriately check various properties of them (notably, whether
they're deleted).
llvm-svn: 200729
A return type is the declared or deduced part of the function type specified in
the declaration.
A result type is the (potentially adjusted) type of the value of an expression
that calls the function.
Rule of thumb:
* Declarations have return types and parameters.
* Expressions have result types and arguments.
llvm-svn: 200082
Lift the getFunctionDecl() utility out of the parser into a general
Decl::getAsFunction() and use it to simplify other parts of the implementation.
Reduce isFunctionOrFunctionTemplate() to a simple type check that works the
same was as the other is* functions and move unwrapping of shadowed decls to
callers so it doesn't get run twice.
Shuffle around canSkipFunctionBody() to reduce virtual dispatch on ASTConsumer.
There's no need to query when we already know the body can't be skipped.
llvm-svn: 199794
the program, in C++. (We allow the latter as an extension, since we've always
permitted it, and GCC does the same, and our supported C++ ABIs don't do
anything special in main.)
llvm-svn: 199782
Fix a perennial source of confusion in the clang type system: Declarations and
function prototypes have parameters to which arguments are supplied, so calling
these 'arguments' was a stretch even in C mode, let alone C++ where default
arguments, templates and overloading make the distinction important to get
right.
Readability win across the board, especially in the casting, ADL and
overloading implementations which make a lot more sense at a glance now.
Will keep an eye on the builders and update dependent projects shortly.
No functional change.
llvm-svn: 199686
handling C++11 default initializers. Without this, other parts of Sema (such as
lambda capture) would think the default initializer is part of the surrounding
function scope.
llvm-svn: 199453
Additionally, remove the optional nature of the spelling list index when creating attributes. This is supported by table generating a Spelling enumeration when the spellings for an attribute are distinct enough to warrant it.
llvm-svn: 199378
There's been long-standing confusion over the role of these two options. This
commit makes the necessary changes to differentiate them clearly, following up
from r198936.
MicrosoftExt (aka. fms-extensions):
Enable largely unobjectionable Microsoft language extensions to ease
portability. This mode, also supported by gcc, is used for building software
like FreeBSD and Linux kernel extensions that share code with Windows drivers.
MSVCCompat (aka. -fms-compatibility, formerly MicrosoftMode):
Turn on a special mode supporting 'heinous' extensions for drop-in
compatibility with the Microsoft Visual C++ product. Standards-compilant C and
C++ code isn't guaranteed to work in this mode. Implies MicrosoftExt.
Note that full -fms-compatibility mode is currently enabled by default on the
Windows target, which may need tuning to serve as a reasonable default.
See cfe-commits for the full discourse, thread 'r198497 - Move MS predefined
type_info out of InitializePredefinedMacros'
No change in behaviour.
llvm-svn: 199209
type-specifier in C++. Some checks will assert in this case otherwise (in
particular, the access specifier may be missing if this happens inside a class
definition, due to a violation of an AST invariant).
llvm-svn: 198721
We would previously emit redundant diagnostics for the following code:
struct S {
virtual ~S() = delete;
void operator delete(void*, int);
void operator delete(void*, double);
} s;
First we would check on ~S() and error about the ambigous delete functions,
and then we would error about using the deleted destructor.
If the destructor is deleted, there's no need to check it.
Also, move the check from Sema::ActOnFields to CheckCompleteCXXClass. These
are run at almost the same time, called from ActOnFinishCXXMemberSpecification.
However, CHeckCompleteCXXClass may mark a defaulted destructor as deleted, and
if that's the case we don't want to check it.
Differential Revision: http://llvm-reviews.chandlerc.com/D2421
llvm-svn: 197509