There functions are analyzing and collecting resource bindings and the
name should reflect that. The rename will make it clearer when we start
adding more functions to process resources.
``` - add clang builtin to Builtins.td
- link builtin in hlsl_intrinsics
- add codegen for spirv intrinsic and two directx intrinsics to retain
signedness information of the operands in CGBuiltin.cpp
- add semantic analysis in SemaHLSL.cpp
- add lowering of spirv intrinsic to spirv backend in
SPIRVInstructionSelector.cpp
- add lowering of directx intrinsics to WaveActiveOp dxil op in
DXIL.td
- add test cases to illustrate passespendent pr merges.
```
Resolves#99170
Introduces a new address space `hlsl_constant(2)` for constant buffer
declarations.
This address space is applied to declarations inside `cbuffer` block.
Later on, it will also be applied to `ConstantBuffer<T>` syntax and the
default `$Globals` constant buffer.
Clang codegen translates constant buffer declarations to global
variables and loads from `hlsl_constant(2)` address space. More work
coming soon will include addition of metadata that will map these
globals to individual constant buffers and enable their transformation
to appropriate constant buffer load intrinsics later on in an LLVM pass.
Fixes#123406
Creates layout struct for `cbuffer` in Sema which will contains only
declarations contributing to the constant buffer layout. Anything else
will be filtered out, such as static variables decls, struct and
function definitions, resources, or empty struct and zero-sized arrays.
If the constant buffer includes a struct that contains any of the above
undesirable declarations, a new version of this struct should be created
with these declarations filtered out as well.
The definition of buffer layout struct will be added to the
HLSLBufferDecl AST node as the last node. Any layout structs for
embedded structures will be added there as well.
Fixes#122553
``` - add clang builtin to Builtins.td
- link builtin in hlsl_intrinsics
- add codegen for spirv intrinsic and two directx intrinsics to retain
signedness information of the operands in CGBuiltin.cpp
- add semantic analysis in SemaHLSL.cpp
- add lowering of spirv intrinsic to spirv backend in
SPIRVInstructionSelector.cpp
- add lowering of directx intrinsics to WaveActiveOp dxil op in
DXIL.td
- add test cases to illustrate passespendent pr merges.
```
Resolves#70106
---------
Co-authored-by: Finn Plummer <canadienfinn@gmail.com>
Closes https://github.com/llvm/llvm-project/issues/99116
Implements `firstbitlow` by extracting common functionality from
`firstbithigh` into a shared function while also fixing a bug for an edge
case where `u64x3` and larger vectors will attempt to create vectors
larger than the SPRIV max of 4.
---------
Co-authored-by: Steven Perron <stevenperron@google.com>
## Changes
- Delete DirectX length intrinsic
- Delete HLSL length lang builtin
- Implement length algorithm entirely in the header.
## History
- In the past if an HLSL intrinsic lowered to either a spirv op code or
a DXIL opcode we represented it with intrinsics
## Why we are moving away?
- To make HLSL apis more portable the team decided that it makes sense
for some intrinsics to be defined only in the header.
- Since there tends to be more SPIRV opcodes than DXIL opcodes the plan
is to support SPIRV opcodes either with target specific builtins or via
pattern matching.
There will be more changes coming in to `SemaHLSL::ActOnFinishBuffer` so
it would be good to move the packoffset validation out to a separate
function. This change also unifies the units for cbuffer offset
calculations to bytes.
## Changes
- Delete DirectX length intrinsic
- Delete HLSL length lang builtin
- Implement length algorithm entirely in the header.
## History
- In the past if an HLSL intrinsic lowered to either a spirv op code or
a DXIL opcode we represented it with intrinsics
## Why we are moving away?
- To make HLSL apis more portable the team decided that it makes sense
for some intrinsics to be defined only in the header.
- Since there tends to be more SPIRV opcodes than DXIL opcodes the plan
is to support SPIRV opcodes either with target specific builtins or via
pattern matching.
Support HLSL SV_GroupThreadId attribute.
For `directx` target, translate it into `dx.thread.id.in.group` in clang
codeGen and lower `dx.thread.id.in.group` to `dx.op.threadIdInGroup` in
LLVM DirectX backend.
For `spir-v` target, translate it into `spv.thread.id.in.group` in clang
codeGen and lower `spv.thread.id.in.group` to a `LocalInvocationId`
builtin variable in LLVM SPIR-V backend.
Fixes: #70122
This introduces `__builtin_hlsl_resource_getpointer`, which lowers to
`llvm.dx.resource.getpointer` and is used to implement indexing into
resources.
This will only work through the backend for typed buffers at this point,
but the changes to structured buffers should be correct as far as the
frontend is concerned.
Note: We probably want this to return a reference in the HLSL device
address space, but for now we're just using address space 0. Creating a
device address space and updating this code can be done later as
necessary.
Fixes#95956
Introduces `__builtin_hlsl_buffer_update_counter` clang buildin that is
used to implement the `IncrementCounter` and `DecrementCounter` methods
on `RWStructuredBuffer` and `RasterizerOrderedStructuredBuffer` (see
Note).
The builtin is translated to LLVM intrisic `llvm.dx.bufferUpdateCounter`
or `llvm.spv.bufferUpdateCounter`.
Introduces `BuiltinTypeMethodBuilder` helper in `HLSLExternalSemaSource`
that enables adding methods to builtin types using builder pattern like
this:
```
BuiltinTypeMethodBuilder(Sema, RecordBuilder, "MethodName", ReturnType)
.addParam("param_name", Type, InOutModifier)
.callBuiltin("buildin_name", { BuiltinParams })
.finalizeMethod();
```
Fixes#113513
[First version](llvm/llvm-project#114148) of this PR was reverted
because of build break.
This patch fixes:
clang/lib/Sema/SemaHLSL.cpp:2225:32: error: absolute value function
'abs' given an argument of type 'int64_t' (aka 'long') but has
parameter of type 'int' which may cause truncation of value
[-Werror,-Wabsolute-value]
Introduces `__builtin_hlsl_buffer_update_counter` clang buildin that is
used to implement the `IncrementCounter` and `DecrementCounter` methods
on `RWStructuredBuffer` and `RasterizerOrderedStructuredBuffer` (see
Note).
The builtin is translated to LLVM intrisic `llvm.dx.bufferUpdateCounter`
or `llvm.spv.bufferUpdateCounter`.
Introduces `BuiltinTypeMethodBuilder` helper in `HLSLExternalSemaSource`
that enables adding methods to builtin types using builder pattern like
this:
```
BuiltinTypeMethodBuilder(Sema, RecordBuilder, "MethodName", ReturnType)
.addParam("param_name", Type, InOutModifier)
.callBuiltin("buildin_name", { BuiltinParams })
.finalizeMethod();
```
Fixes#113513
- define intrinsic as builtin in Builtins.td
- link intrinsic in hlsl_intrinsics.h
- add semantic analysis to SemaHLSL.cpp
- lower to `llvm` or a `dx` intrinsic when applicable in CGBuiltin.cpp
- define DXIL intrinsic in IntrinsicsDirectX.td
- add DXIL op and mapping in DXIL.td
- enable scalarization of intrinsic
- add basic sema checking to asdouble-errors.hlsl
Resolves#99081
This commit addresses several null pointer issues identified by static
analysis by replacing dyn_cast<> with cast<> and getAs<> with castAs<>
in various parts of the Clang codebase. The cast and castAs method is
used to ensure that the type is correctly cast, which helps prevent
potential null pointer dereferences.
Changes:
1. ASTContext.cpp:
Replaced dyn_cast with cast to ensure that the type is correctly cast to
AttributedType.
2. SemaFunctionEffects.cpp:
Replaced getAs with castAs to ensure that the type is correctly cast to
FunctionProtoType.
3. SemaHLSL.cpp:
Replaced getAs with castAs to ensure that the type is correctly cast to
VectorType.
Implements elementwise firstbithigh hlsl builtin.
Implements firstbituhigh intrinsic for spirv and directx, which handles
unsigned integers
Implements firstbitshigh intrinsic for spirv and directx, which handles
signed integers.
Fixes#113486Closes#99115
This PR implements a new type trait as a builtin,
__builtin_hlsl_is_typed_resource_element_compatible
This type traits verifies that the given input type is suitable as a
typed resource element type.
It checks that the given input type is homogeneous, has no more than 4
sub elements, does not exceed 16 bytes, and does not contain any arrays,
booleans, or enums.
Fixes an issue in https://github.com/llvm/llvm-project/pull/113730 that
needed to cause that PR to be reverted.
Fixes https://github.com/llvm/llvm-project/issues/113223
Reverts llvm/llvm-project#113730
Reverting because test compiler-rt default failed, with:
error: comparison of different enumeration types ('Kind' and
'clang::Type::TypeClass')
This PR implements a new type trait as a builtin,
`__builtin_hlsl_is_typed_resource_element_compatible`
This type traits verifies that the given input type is suitable as a
typed resource element type.
It checks that the given input type is homogeneous, has no more than 4
sub elements, does not exceed 16 bytes, and does not contain any arrays,
booleans, or enums.
Fixes#113223
Moves `IsIntangibleType` from SemaHLSL to Type class and renames it to
`isHLSLIntangibleType`. The existing `isHLSLIntangibleType` is renamed
to `isHLSLBuiltinIntangibleType` and updated to return true only for the
builtin `__hlsl_resource_t` type.
This change makes `isHLSLIntangibleType` functionality accessible
outside of Sema, for example from clang CodeGen.
Moves the existing `llvm_unreachable` statement to the bottom of the
function and changes the case statement to deliberately fall through to
it.
Build break was introduced by #111203
It was not caught by the builders as they use Visual Studio 2019,
whereas this warning only appears in 2022.
---------
Co-authored-by: Matheus Izvekov <mizvekov@gmail.com>
Adds `@_init_resource_bindings()` function to module initialization that
includes `handle.fromBinding` intrinsic calls for simple resource
declarations. Arrays of resources or resources inside user defined types
are not supported yet.
While this unblocks our progress on [Compile a runnable shader from
clang](https://github.com/llvm/wg-hlsl/issues/7) milestone, this is
probably not the way we would like to handle resource binding
initialization going forward. Ideally, it should be done via the
resource class constructors in order to support dynamic resource binding
or unbounded arrays if resources.
Depends on PRs #110327 and #111203.
Part 1 of #105076
Scans each global variable declaration and its members and collects all
required resource bindings in a new `SemaHLSL` data member `Bindings`.
New fields are added `HLSLResourceBindingAttr` for storing processed
binding information so that it can be used by CodeGen (`Bindings` or any
other Sema information is not accessible from CodeGen.)
Adjusts the existing register binding attribute handling and diagnostics
to:
- do not create HLSLResourceBindingAttribute if it is not valid
- diagnose only the simple/local errors when a register binding
attribute is parsed
- additional diagnostic of binding type mismatches is done later and
uses the new `Bindings` data
Fixes#110719
- create a clang built-in in Builtins.td
- add semantic checking in SemaHLSL.cpp
- link the WaveReadLaneAt api in hlsl_intrinsics.h
- add lowering to spirv backend op GroupNonUniformShuffle
with Scope = 2 (Group) in SPIRVInstructionSelector.cpp
- add WaveReadLaneAt intrinsic to IntrinsicsDirectX.td and mapping
to DXIL.td
- add tests for HLSL intrinsic lowering to spirv intrinsic in
WaveReadLaneAt.hlsl
- add tests for sema checks in WaveReadLaneAt-errors.hlsl
- add spir-v backend tests in WaveReadLaneAt.ll
- add test to show scalar dxil lowering functionality
- note that this doesn't include support for the scalarizer to
handle WaveReadLaneAt will be added in a future pr
This is the first part #70104
- add degrees builtin
- link degrees api in hlsl_intrinsics.h
- add degrees intrinsic to IntrinsicsDirectX.td
- add degrees intrinsic to IntrinsicsSPIRV.td
- add lowering from clang builtin to dx/spv intrinsics in CGBuiltin.cpp
- add semantic checks to SemaHLSL.cpp
- add expansion of directx intrinsic to llvm fmul for DirectX in
DXILIntrinsicExpansion.cpp
- add mapping to spir-v intrinsic in SPIRVInstructionSelector.cpp
- add test coverage:
- degrees.hlsl -> check hlsl lowering to dx/spv degrees intrinsics
- degrees-errors.hlsl/half-float-only-errors -> check semantic warnings
- hlsl-intrinsics/degrees.ll -> check lowering of spir-v degrees
intrinsic to SPIR-V backend
- DirectX/degrees.ll -> check expansion and scalarization of directx
degrees intrinsic to fmul
Resolves#99104
- add additional lowering for directx backend in CGBuiltin.cpp
- add directx intrinsic to IntrinsicsDirectX.td
- add semantic check of arguments in SemaHLSL.cpp
- add mapping to DXIL op in DXIL.td
- add testing of semantics in WaveGetLaneIndex-errors.hlsl
- add testing of dxil lowering in WaveGetLaneIndex.ll
Resolves#70105
This change is part of this proposal:
https://discourse.llvm.org/t/rfc-all-the-math-intrinsics/78294
- Add HLSL frontend for atan2
- Add clang Builtin, map to new llvm.atan2
- SemaChecking restrict to floating point and 2 args
- SemaHLSL restrict to float or half.
- Add to clang ReleaseNotes.rst and LanguageExtensions.rst
- Add half-float-only-errors2.hlsl for 2 arg intrinsics, and update half-float-only-errors.hlsl with scalar case for consistency
- Remove fmod-errors.hlsl and pow-errors.hlsl now covered in half-float-only-errors2.hlsl
Part 3 for Implement the atan2 HLSL Function #70096.
This change add the elementwise fmod builtin to support HLSL function
'fmod' in clang for #99118
Builtins.td - add the fmod builtin
CGBuiltin.cpp - lower the builtin to llvm FRem instruction
hlsl_intrinsics.h - add the fmod api
SemaChecking.cpp - add type checks for builtin
SemaHLSL.cpp - add HLSL type checks for builtin
clang/docs/LanguageExtensions.rst - add the builtin in *Elementwise
Builtins*
clang/docs/ReleaseNotes.rst - announce the builtin
HLSL has a different set of usual arithmetic conversions for vector
types to resolve a common type for binary operator expressions.
This PR implements the current spec proposal from:
https://github.com/microsoft/hlsl-specs/pull/311
There is one case that may need additional handling for implicitly
truncating vector<T,1> to T early to allow other transformations.
Fixes#106253
Re-lands #108659
HLSL has a different set of usual arithmetic conversions for vector
types to resolve a common type for binary operator expressions.
This PR implements the current spec proposal from:
https://github.com/microsoft/hlsl-specs/pull/311
There is one case that may need additional handling for implicitly
truncating `vector<T,1>` to `T` early to allow other transformations.
Fixes#106253
When diagnosing register bindings we just need to make sure there is a
resource that matches the provided register type. We can emit the
diagnostics right away instead of collecting flags in the
RegisterBindingFlags struct. That also enables early exit when scanning
user defined types because we can return as soon as we find a matching
resource for the given register type.