Some small changes to recomputeLiveIns() to improve performance:
- Instead of copying the list of old live-ins, and then clearing
them, a new method swaps the list for an empty one.
- getLiveIns() now returns a constant reference to the list
As result, the list-data is never copied. Depending on the
implementation
details of the vector container, it can also save calls to allocate
and deallocate memory.
I see a small improvement on CTMark with these changes.
---------
Co-authored-by: Nikita Popov <github@npopov.com>
In SplitCriticalEdge, DebugLoc of the branch instruction in new created
MBB was set to empty. It should be set and we can find proper DebugLoc
for it in most cases. This patch set it to non empty merged DebugLoc of
current MBB branches.
We adjust the insertion point at the BB top for spills/copies during RA
to ensure they are placed after the exec restore instructions required
for the divergent control flow execution. This is, however, required
only for the vector operations. The insertions for scalar registers can
still go to the BB top.
Add subrange tracking and handling for LiveIntervals during PHI
elimination.
This requires extending MachineBasicBlock::SplitCriticalEdge to also
update subrange intervals.
28b9126879
introduced the path cloning format in the basic-block-sections profile.
This PR validates and applies path clonings.
A path cloning is valid if all of these conditions hold:
1. All bb ids in the path are mapped to existing blocks.
2. Each two consecutive bb ids in the path have a successor relationship
in the CFG.
3. The path does not include a block with indirect branches, except
possibly as the last block.
Applying a path cloning involves cloning all blocks in the path (except
the first one) and setting up their branches.
Once all clonings are applied, the cluster information is used to guide
block layout in the modified function.
Follow up fix for #68786 to address that MachineFunction handleInsertion
is actually called before a new instruction has been inserted into the
block. Hence new instructions must be recorded and SlotIndex updates
performed after the delegate call.
Remove use after free when attempting to update SlotIndexes in
MachineBasicBlock::SplitCriticalEdge.
Use MachineFunction delegate mechanism to capture target specific
manipulations of branch instructions and update SlotIndexes.
Temporal divergence that was present in input or introduced in IR
transforms, like code-sinking or LICM, is handled in SIFixSGPRCopies
by changing sgpr source instr to vgpr instr.
After 5b657f5, that moved LICM after AMDGPUCodeGenPrepare,
machine-sinking can introduce temporal divergence by sinking
instructions outside of the cycle.
Add isSafeToSink callback in TargetInstrInfo.
Add handling for subrange updates in LiveInterval preservation.
This requires extending MachineBasicBlock::SplitCriticalEdge
to also update subrange intervals.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D158144
This patch removes the `getBBIDOrNumber` which was introduced to allow emitting version 1.
Reviewed By: shenhan
Differential Revision: https://reviews.llvm.org/D158299
Record the call frame size on entry to each basic block. This is usually
zero except when a basic block has been split in the middle of a call
sequence.
This simplifies PEI::replaceFrameIndices which previously had to visit
basic blocks in a specific order and had special handling for
unreachable blocks. More importantly it paves the way for an equally
simple implementation of a backwards version of replaceFrameIndices,
which is required to fully convert PrologEpilogInserter to backwards
register scavenging, which is preferred because it does not rely on
accurate kill flags.
Differential Revision: https://reviews.llvm.org/D156113
Record the SP adjustment on entry to each basic block. This is almost
always zero except on targets like ARM which can split a basic block in
the middle of a call sequence.
This simplifies PEI::replaceFrameIndices which previously had to visit
basic blocks in a specific order and had special handling for
unreachable blocks. More importantly it paves the way for an equally
simple implementation of a backwards version of replaceFrameIndices,
which is required to fully convert PrologEpilogInserter to backwards
register scavenging, which is preferred because it does not rely on
accurate kill flags.
Differential Revision: https://reviews.llvm.org/D154281
In preparation for removing the `#include "llvm/ADT/StringExtras.h"`
from the header to source file of `llvm/Support/Error.h`, first add in
all the missing includes that were previously included transitively
through this header.
Make sure we do not crash in rfindDebugLoc when starting at
instr_rend(). Solution is to see it as we start one MI before the
first MI, so we can start searching forward at instr_begin()
instead.
This behavior is similar to how findPrevDebugLoc(instr_end()) works.
Differential Revision: https://reviews.llvm.org/D150577
- Add some unittests for the findDebugLoc, rfindDebugLoc,
findPrevDebugLoc and rfindPrevDebugLoc helpers in MachineBasicBlock.
- Clean up code comments and code formatting related to the functions
mentioned above.
This was extracted as a pre-commit to D150577, adn some of the tests
are commented out since they would crash/assert in a rather
uncontrolled way.
Add support for splitting critical edges coming from an indirect jump
using a jump table ("switch jumps").
This introduces the `TargetInstrInfo::getJumpTableIndex` callback to
allows targets to return an index into `MachineJumpTableInfo` for a
given indirect jump. It also updates to
`MachineBasicBlock::SplitCriticalEdge` to allow splitting of critical
edges by rewriting jump table entries.
This is largely based on work done by Zhixuan Huan in D132202.
Differential Revision: https://reviews.llvm.org/D140975
Toggle true/false values of the JumpToFallThrough
parameter to simplify code and make it consistent
with the documentation for the `getFallThrough(..)`
method.
Reviewed By: bcahoon
Differential Revision: https://reviews.llvm.org/D148139
Introduce a parameter in getFallThrough() to optionally
allow returning the fall through basic block in spite of
an explicit branch instruction to it. This parameter is
set to false by default.
Introduce getLogicalFallThrough() which calls
getFallThrough(false) to obtain the block while avoiding
insertion of a jump instruction to its immediate successor.
This patch also reverts the changes made by D134557 and
solves the case where a jump is inserted after another jump
(branch-relax-no-terminators.mir).
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D140790
Let Propeller use specialized IDs for basic blocks, instead of MBB number.
This allows optimizations not just prior to asm-printer, but throughout the entire codegen.
This patch only implements the functionality under the new `LLVM_BB_ADDR_MAP` version, but the old version is still being used. A later patch will change the used version.
####Background
Today Propeller uses machine basic block (MBB) numbers, which already exist, to map native assembly to machine IR. This is done as follows.
- Basic block addresses are captured and dumped into the `LLVM_BB_ADDR_MAP` section just before the AsmPrinter pass which writes out object files. This ensures that we have a mapping that is close to assembly.
- Profiling mapping works by taking a virtual address of an instruction and looking up the `LLVM_BB_ADDR_MAP` section to find the MBB number it corresponds to.
- While this works well today, we need to do better when we scale Propeller to target other Machine IR optimizations like spill code optimization. Register allocation happens earlier in the Machine IR pipeline and we need an annotation mechanism that is valid at that point.
- The current scheme will not work in this scenario because the MBB number of a particular basic block is not fixed and changes over the course of codegen (via renumbering, adding, and removing the basic blocks).
- In other words, the volatile MBB numbers do not provide a one-to-one correspondence throughout the lifetime of Machine IR. Profile annotation using MBB numbers is restricted to a fixed point; only valid at the exact point where it was dumped.
- Further, the object file can only be dumped before AsmPrinter and cannot be dumped at an arbitrary point in the Machine IR pass pipeline. Hence, MBB numbers are not suitable and we need something else.
####Solution
We propose using fixed unique incremental MBB IDs for basic blocks instead of volatile MBB numbers. These IDs are assigned upon the creation of machine basic blocks. We modify `MachineFunction::CreateMachineBasicBlock` to assign the fixed ID to every newly created basic block. It assigns `MachineFunction::NextMBBID` to the MBB ID and then increments it, which ensures having unique IDs.
To ensure correct profile attribution, multiple equivalent compilations must generate the same Propeller IDs. This is guaranteed as long as the MachineFunction passes run in the same order. Since the `NextBBID` variable is scoped to `MachineFunction`, interleaving of codegen for different functions won't cause any inconsistencies.
The new encoding is generated under the new version number 2 and we keep backward-compatibility with older versions.
####Impact on Size of the `LLVM_BB_ADDR_MAP` Section
Emitting the Propeller ID results in a 23% increase in the size of the `LLVM_BB_ADDR_MAP` section for the clang binary.
Reviewed By: tmsriram
Differential Revision: https://reviews.llvm.org/D100808
value() has undesired exception checking semantics and calls
__throw_bad_optional_access in libc++. Moreover, the API is unavailable without
_LIBCPP_NO_EXCEPTIONS on older Mach-O platforms (see
_LIBCPP_AVAILABILITY_BAD_OPTIONAL_ACCESS).
We currently have a bug where the legalizer, when dealing with phi operands,
may create instructions in the phi's incoming blocks at points which are effectively
dead due to a possible exception throw.
Say we have:
throwbb:
EH_LABEL
x0 = %callarg1
BL @may_throw_call
EH_LABEL
B returnbb
bb:
%v = phi i1 %true, throwbb, %false....
When legalizing we may need to widen the i1 %true value, and to do that we need
to create new extension instructions in the incoming block. Our insertion point
currently is the MBB::getFirstTerminator() which puts the IP before the unconditional
branch terminator in throwbb. These extensions may never be executed if the call
throws, and therefore we need to emit them before the call (but not too early, since
our new instruction may need values defined within throwbb as well).
throwbb:
EH_LABEL
x0 = %callarg1
BL @may_throw_call
EH_LABEL
%true = G_CONSTANT i32 1 ; <<<-- ruh'roh, this never executes if may_throw_call() throws!
B returnbb
bb:
%v = phi i32 %true, throwbb, %false....
To fix this, I've added two new instructions. The main idea is that G_INVOKE_REGION_START
is a terminator, which tries to model the fact that in the IR, the original invoke inst
is actually a terminator as well. By using that as the new insertion point, we
make sure to place new instructions on always executing paths.
Unfortunately we still need to make the legalizer use a new insertion point API
that I've added, since the existing `getFirstTerminator()` method does a reverse
walk up the block, and any non-terminator instructions cause it to bail out. To
avoid impacting compile time for all `getFirstTerminator()` uses, I've added a new
method that does a forward walk instead.
Differential Revision: https://reviews.llvm.org/D137905
Let Propeller use specialized IDs for basic blocks, instead of MBB number.
This allows optimizations not just prior to asm-printer, but throughout the entire codegen.
This patch only implements the functionality under the new `LLVM_BB_ADDR_MAP` version, but the old version is still being used. A later patch will change the used version.
####Background
Today Propeller uses machine basic block (MBB) numbers, which already exist, to map native assembly to machine IR. This is done as follows.
- Basic block addresses are captured and dumped into the `LLVM_BB_ADDR_MAP` section just before the AsmPrinter pass which writes out object files. This ensures that we have a mapping that is close to assembly.
- Profiling mapping works by taking a virtual address of an instruction and looking up the `LLVM_BB_ADDR_MAP` section to find the MBB number it corresponds to.
- While this works well today, we need to do better when we scale Propeller to target other Machine IR optimizations like spill code optimization. Register allocation happens earlier in the Machine IR pipeline and we need an annotation mechanism that is valid at that point.
- The current scheme will not work in this scenario because the MBB number of a particular basic block is not fixed and changes over the course of codegen (via renumbering, adding, and removing the basic blocks).
- In other words, the volatile MBB numbers do not provide a one-to-one correspondence throughout the lifetime of Machine IR. Profile annotation using MBB numbers is restricted to a fixed point; only valid at the exact point where it was dumped.
- Further, the object file can only be dumped before AsmPrinter and cannot be dumped at an arbitrary point in the Machine IR pass pipeline. Hence, MBB numbers are not suitable and we need something else.
####Solution
We propose using fixed unique incremental MBB IDs for basic blocks instead of volatile MBB numbers. These IDs are assigned upon the creation of machine basic blocks. We modify `MachineFunction::CreateMachineBasicBlock` to assign the fixed ID to every newly created basic block. It assigns `MachineFunction::NextMBBID` to the MBB ID and then increments it, which ensures having unique IDs.
To ensure correct profile attribution, multiple equivalent compilations must generate the same Propeller IDs. This is guaranteed as long as the MachineFunction passes run in the same order. Since the `NextBBID` variable is scoped to `MachineFunction`, interleaving of codegen for different functions won't cause any inconsistencies.
The new encoding is generated under the new version number 2 and we keep backward-compatibility with older versions.
####Impact on Size of the `LLVM_BB_ADDR_MAP` Section
Emitting the Propeller ID results in a 23% increase in the size of the `LLVM_BB_ADDR_MAP` section for the clang binary.
Reviewed By: tmsriram
Differential Revision: https://reviews.llvm.org/D100808
Interestingly, MathExtras.h doesn't use <cmath> declaration, so move it out of
that header and include it when needed.
No functional change intended, but there's no longer a transitive include
fromMathExtras.h to cmath.
There are two different senses in which a block can be "address-taken".
There can be a BlockAddress involved, which means we need to map the
IR-level value to some specific block of machine code. Or there can be
constructs inside a function which involve using the address of a basic
block to implement certain kinds of control flow.
Mixing these together causes a problem: if target-specific passes are
marking random blocks "address-taken", if we have a BlockAddress, we
can't actually tell which MachineBasicBlock corresponds to the
BlockAddress.
So split this into two separate bits: one for BlockAddress, and one for
the machine-specific bits.
Discovered while trying to sort out related stuff on D102817.
Differential Revision: https://reviews.llvm.org/D124697
waitcnt vmcnt instructions are currently generated in loop bodies before using
values loaded outside of the loop. In some cases, it is better to flush the
vmcnt counter in a loop preheader before entering the loop body. This patch
detects these cases and generates waitcnt instructions to flush the counter.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D115747
This reverts commit 7f230feeeac8a67b335f52bd2e900a05c6098f20.
Breaks CodeGenCUDA/link-device-bitcode.cu in check-clang,
and many LLVM tests, see comments on https://reviews.llvm.org/D121169
Print this basic block flag as inlineasm-br-indirect-target and parse
it. This allows you to write MIR test cases for INLINEASM_BR. The test
case I added is one that I wanted to precommit anyway for D110834.
Differential Revision: https://reviews.llvm.org/D111291
As a follow-up to https://reviews.llvm.org/D104129, I'm cleaning up the danling probe related code in both the compiler and llvm-profgen.
I'm seeing a 5% size win for the pseudo_probe section for SPEC2017 and 10% for Ciner. Certain benchmark such as 602.gcc has a 20% size win. No obvious difference seen on build time for SPEC2017 and Cinder.
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D104477
Pseudo probe are currently given a slot index like other regular instructions. This affects register pressure and lifetime weight computation because of enlarged lifetime length with pseudo probe instructions. As a consequence, program could get different code generated w/ and w/o pseudo probes. I'm closing the gap by excluding pseudo probes from stack index and downstream register allocation related passes.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D100334
Flipping the default value of SkipPseudoOp to true for those MIR APIs to favor maximum performance. Note that certain spots like branch folding and MIR if-conversion is are disabled for better counts quality. For these two optimizations, this is a no-diff change.
The counts quality with SPEC2017 before/after this change is unchanged.
Reviewed By: wmi
Differential Revision: https://reviews.llvm.org/D100332