We currently only support binary instructions in the alternate opcode shuffles.
This patch is an initial attempt at adding cast instructions as well, this raises several issues that we probably want to address as we continue to generalize the alternate mechanism:
1 - Duplication of cost determination - we should probably add scalar/vector costs helper functions and get BoUpSLP::getEntryCost to use them instead of determining costs directly.
2 - Support alternate instructions with the same opcode (e.g. casts with different src types) - alternate vectorization of calls with different IntrinsicIDs will require this.
3 - Allow alternates to be a different instruction type - mixing binary/cast/call etc.
4 - Allow passthrough of unsupported alternate instructions - related to PR30787/D28907 'copyable' elements.
Reapplied with fix to only accept 2 different casts if they come from the same source type.
Differential Revision: https://reviews.llvm.org/D49135
llvm-svn: 336812
We currently only support binary instructions in the alternate opcode shuffles.
This patch is an initial attempt at adding cast instructions as well, this raises several issues that we probably want to address as we continue to generalize the alternate mechanism:
1 - Duplication of cost determination - we should probably add scalar/vector costs helper functions and get BoUpSLP::getEntryCost to use them instead of determining costs directly.
2 - Support alternate instructions with the same opcode (e.g. casts with different src types) - alternate vectorization of calls with different IntrinsicIDs will require this.
3 - Allow alternates to be a different instruction type - mixing binary/cast/call etc.
4 - Allow passthrough of unsupported alternate instructions - related to PR30787/D28907 'copyable' elements.
Differential Revision: https://reviews.llvm.org/D49135
llvm-svn: 336804
This is an early step towards matching Instructions by attributes other than the opcode. This will be necessary for cast/call alternates which share the same opcode but have different types/intrinsicIDs etc. - which we could vectorize as long as we split them using the alternate mechanism.
Differential Revision: https://reviews.llvm.org/D48945
llvm-svn: 336344
Summary: It is common to have the following min/max pattern during the intermediate stages of SLP since we only optimize at the end. This patch tries to catch such patterns and allow more vectorization.
%1 = extractelement <2 x i32> %a, i32 0
%2 = extractelement <2 x i32> %a, i32 1
%cond = icmp sgt i32 %1, %2
%3 = extractelement <2 x i32> %a, i32 0
%4 = extractelement <2 x i32> %a, i32 1
%select = select i1 %cond, i32 %3, i32 %4
Author: FarhanaAleen
Reviewed By: ABataev, RKSimon, spatel
Differential Revision: https://reviews.llvm.org/D47608
llvm-svn: 336130
This code is only used by alternate opcodes so the InstructionsState has already confirmed that every Value is an Instruction, plus we use cast<Instruction> which will assert on failure.
llvm-svn: 336102
We were always using the opcodes of the first 2 scalars for the costs of the alternate opcode + shuffle. This made sense when we used SK_Alternate and opcodes were guaranteed to be alternating, but this fails for the more general SK_Select case.
This fix exposes an issue demonstrated by the fmul_fdiv_v4f32_const test - the SLM model has v4f32 fdiv costs which are more than twice those of the f32 scalar cost, meaning that the cost model determines that the vectorization is not performant. Unfortunately it completely ignores the fact that the fdiv by a constant will be changed into a fmul by InstCombine for a much lower cost vectorization. But at least we're seeing this now...
llvm-svn: 336095
Since D46637 we are better at handling uniform/non-uniform constant Pow2 detection; this patch tweaks the SLP argument handling to support them.
As SLP works with arrays of values I don't think we can easily use the pattern match helpers here.
Differential Revision: https://reviews.llvm.org/D48214
llvm-svn: 335621
Enable tryToVectorizeList to support InstructionsState alternate opcode patterns at a root (build vector etc.) as well as further down the vectorization tree.
NOTE: This patch reduces some of the debug reporting if there are opcode mismatches - I can try to add it back if it proves a problem. But it could get rather messy trying to provide equivalent verbose debug strings via getSameOpcode etc.
Differential Revision: https://reviews.llvm.org/D48488
llvm-svn: 335364
SLP currently only accepts (F)Add/(F)Sub alternate counterpart ops to be merged into an alternate shuffle.
This patch relaxes this to accept any pair of BinaryOperator opcodes instead, assuming the target's cost model accepts the vectorization+shuffle.
Differential Revision: https://reviews.llvm.org/D48477
llvm-svn: 335349
As described in D48359, this patch pushes InstructionsState down the BoUpSLP call hierarchy instead of the corresponding raw OpValue. This makes it easier to track the alternate opcode etc. and avoids us having to call getAltOpcode which makes it difficult to support more than one alternate opcode.
Differential Revision: https://reviews.llvm.org/D48382
llvm-svn: 335170
This is part of a move towards generalizing the alternate opcode mechanism and not just supporting (F)Add/(F)Sub counterparts.
The patch embeds the AltOpcode in the InstructionsState instead of calling getAltOpcode so often.
I'm hoping to eventually remove all uses of getAltOpcode and handle alternate opcode selection entirely within getSameOpcode, that will require us to use InstructionsState throughout the BoUpSLP call hierarchy (similar to some of the changes in D28907), which I will begin in future patches.
Differential Revision: https://reviews.llvm.org/D48359
llvm-svn: 335134
D47985 saw the old SK_Alternate 'alternating' shuffle mask replaced with the SK_Select mask which accepts either input operand for each lane, equivalent to a vector select with a constant condition operand.
This patch updates SLPVectorizer to make full use of this SK_Select shuffle pattern by removing the 'isOdd()' limitation.
The AArch64 regression will be fixed by D48172.
Differential Revision: https://reviews.llvm.org/D48174
llvm-svn: 335130
The getArithmeticInstrCost calls for shuffle vectors entry costs specify TargetTransformInfo::OperandValueKind arguments, but are just using the method's default values. This seems to be a copy + paste issue and doesn't affect the costs in anyway. The TargetTransformInfo::OperandValueProperties default arguments are already not being used.
Noticed while working on D47985.
Differential Revision: https://reviews.llvm.org/D48008
llvm-svn: 335045
Ensure we keep track of the input vectors in all cases instead of just for SK_Select.
Ideally we'd reuse the shuffle mask pattern matching in TargetTransformInfo::getInstructionThroughput here to easily add support for all TargetTransformInfo::ShuffleKind without mass code duplication, I've added a TODO for now but D48236 should help us here.
Differential Revision: https://reviews.llvm.org/D48023
llvm-svn: 334958
This is part of the work to cleanup use of 'alternate' ops so we can use the more general SK_Select shuffle type.
Only getSameOpcode calls getMainOpcode and much of the logic is repeated in both functions. This will require some reworking of D28907 but that patch has hit trouble and is unlikely to be completed anytime soon.
Differential Revision: https://reviews.llvm.org/D48120
llvm-svn: 334701
As discussed on PR33744, this patch relaxes ShuffleKind::SK_Alternate which requires shuffle masks to only match an alternating pattern from its 2 sources:
e.g. v4f32: <0,5,2,7> or <4,1,6,3>
This seems far too restrictive as most SIMD hardware which will implement it using a general blend/bit-select instruction, so replaces it with SK_Select, permitting elements from either source as long as they are inline:
e.g. v4f32: <0,5,2,7>, <4,1,6,3>, <0,1,6,7>, <4,1,2,3> etc.
This initial patch just updates the name and cost model shuffle mask analysis, later patch reviews will update SLP to better utilise this - it still limits itself to SK_Alternate style patterns.
Differential Revision: https://reviews.llvm.org/D47985
llvm-svn: 334513
Currently SmallSet<PointerTy> inherits from SmallPtrSet<PointerTy>. This
patch replaces such types with SmallPtrSet, because IMO it is slightly
clearer and allows us to get rid of unnecessarily including SmallSet.h
Reviewers: dblaikie, craig.topper
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D47836
llvm-svn: 334492
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
- Manual change to APInt
- Manually chage DOCS as regex doesn't match it.
In the transition period the DEBUG() macro is still present and aliased
to the LLVM_DEBUG() one.
Differential Revision: https://reviews.llvm.org/D43624
llvm-svn: 332240
Inspired by r331508, I did a grep and found these.
Mostly just change from dyn_cast to cast. Some cases also showed a dyn_cast result being converted to bool, so those I changed to isa.
llvm-svn: 331577
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
We use getExtractWithExtendCost to calculate the cost of extractelement and
s|zext together when computing the extract cost after vectorization, but we
calculate the cost of extractelement and s|zext separately when computing the
scalar cost which is larger than it should be.
Differential Revision: https://reviews.llvm.org/D45469
llvm-svn: 330143
Summary:
If the load/extractelement/extractvalue instructions are not originally
consecutive, the SLP vectorizer is unable to vectorize them. Patch
allows reordering of such instructions.
Patch does not support reordering of the repeated instruction, this must
be handled in the separate patch.
Reviewers: RKSimon, spatel, hfinkel, mkuper, Ayal, ashahid
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43776
llvm-svn: 329085
The primary issue here is that using NDEBUG alone isn't enough to guard
debug printing -- instead the DEBUG() macro needs to be used so that the
specific pass debug logging check is employed. Without this, every
asserts-enabled build was printing out information when it hit this.
I also fixed another place where we had multiple statements in a DEBUG
macro to use {}s to be a bit cleaner. And I fixed a place that used
errs() rather than dbgs().
llvm-svn: 329082
The primary issue here is that using NDEBUG alone isn't enough to guard
debug printing -- instead the DEBUG() macro needs to be used so that the
specific pass debug logging check is employed. Without this, every
asserts-enabled build was printing out information when it hit this.
I also fixed another place where we had multiple statements in a DEBUG
macro to use {}s to be a bit cleaner. And I fixed a place that used
`errs()` rather than `dbgs()`.
llvm-svn: 329046
We use two approaches for determining the minimum bitwidth.
* Demanded bits
* Value tracking
If demanded bits doesn't result in a narrower type, we then try value tracking.
We need this if we want to root SLP trees with the indices of getelementptr
instructions since all the bits of the indices are demanded.
But there is a missing piece though. We need to be able to distinguish "demanded
and shrinkable" from "demanded and not shrinkable". For example, the bits of %i
in
%i = sext i32 %e1 to i64
%gep = getelementptr inbounds i64, i64* %p, i64 %i
are demanded, but we can shrink %i's type to i32 because it won't change the
result of the getelementptr. On the other hand, in
%tmp15 = sext i32 %tmp14 to i64
%tmp16 = insertvalue { i64, i64 } undef, i64 %tmp15, 0
it doesn't make sense to shrink %tmp15 and we can skip the value tracking.
Ideas are from Matthew Simpson!
Differential Revision: https://reviews.llvm.org/D44868
llvm-svn: 329035
Summary:
If the load/extractelement/extractvalue instructions are not originally
consecutive, the SLP vectorizer is unable to vectorize them. Patch
allows reordering of such instructions.
Reviewers: RKSimon, spatel, hfinkel, mkuper, Ayal, ashahid
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43776
llvm-svn: 328980
When building the SLP tree, we look for reuse among the vectorized tree
entries. However, each gather sequence is represented by a unique tree entry,
even though the sequence may be identical to another one. This means, for
example, that a gather sequence with two uses will be counted twice when
computing the cost of the tree. We should only count the cost of the definition
of a gather sequence rather than its uses. During code generation, the
redundant gather sequences are emitted, but we optimize them away with CSE. So
it looks like this problem just affects the cost model.
Differential Revision: https://reviews.llvm.org/D44742
llvm-svn: 328316
Summary:
Reversed loads are handled as gathering. But we can just reshuffle
these values. Patch adds support for vectorization of reversed loads.
Reviewers: RKSimon, spatel, mkuper, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D43022
llvm-svn: 325134
Summary:
For better vectorization result we should take into consideration the
cost of the user insertelement instructions when we try to
vectorize sequences that build the whole vector. I.e. if we have the
following scalar code:
```
<Scalar code>
insertelement <ScalarCode>, ...
```
we should consider the cost of the last `insertelement ` instructions as
the cost of the scalar code.
Reviewers: RKSimon, spatel, hfinkel, mkuper
Subscribers: javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D42657
llvm-svn: 324893
Summary:
If the same value is going to be vectorized several times in the same
tree entry, this entry is considered to be a gather entry and cost of
this gather is counter as cost of InsertElementInstrs for each gathered
value. But we can consider these elements as ShuffleInstr with
SK_PermuteSingle shuffle kind.
Reviewers: spatel, RKSimon, mkuper, hfinkel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D38697
llvm-svn: 323662