7 Commits

Author SHA1 Message Date
Lang Hames
8d76c71154 [ORC] Add ThreadSafeModule and ThreadSafeContext wrappers to support concurrent
compilation of IR in the JIT.

ThreadSafeContext is a pair of an LLVMContext and a mutex that can be used to
lock that context when it needs to be accessed from multiple threads.

ThreadSafeModule is a pair of a unique_ptr<Module> and a
shared_ptr<ThreadSafeContext>. This allows the lifetime of a ThreadSafeContext
to be managed automatically in terms of the ThreadSafeModules that refer to it:
Once all modules using a ThreadSafeContext are destructed, and providing the
client has not held on to a copy of shared context pointer, the context will be
automatically destructed.

This scheme is necessary due to the following constraits: (1) We need multiple
contexts for multithreaded compilation (at least one per compile thread plus
one to store any IR not currently being compiled, though one context per module
is simpler). (2) We need to free contexts that are no longer being used so that
the JIT does not leak memory over time. (3) Module lifetimes are not
predictable (modules are compiled as needed depending on the flow of JIT'd
code) so there is no single point where contexts could be reclaimed.

JIT clients not using concurrency can safely use one ThreadSafeContext for all
ThreadSafeModules.

JIT clients who want to be able to compile concurrently should use a different
ThreadSafeContext for each module, or call setCloneToNewContextOnEmit on their
top-level IRLayer. The former reduces compile latency (since no clone step is
needed) at the cost of additional memory overhead for uncompiled modules (as
every uncompiled module will duplicate the LLVM types, constants and metadata
that have been shared).

llvm-svn: 343055
2018-09-26 01:24:12 +00:00
Lang Hames
7c4814306d [ORC] Simplify LLJIT::Create by removing the ExecutionSession parameter.
The Create method can just construct the ExecutionSession, rather than having the
client pass it in.

llvm-svn: 341872
2018-09-10 22:08:57 +00:00
Lang Hames
bf985258b9 [ORC] Make RuntimeDyldObjectLinkingLayer2 take memory managers by unique_ptr.
The existing memory manager API can not be shared between objects when linking
concurrently (since there is no way to know which concurrent allocations were
performed on behalf of which object, and hence which allocations would be safe
to finalize when finalizeMemory is called). For now, we can work around this by
requiring a new memory manager for each object.

This change only affects the concurrent version of the ORC APIs.

llvm-svn: 341579
2018-09-06 19:39:26 +00:00
Lang Hames
37a66413c1 [ORC] Add an addObjectFile method to LLJIT.
The addObjectFile method adds the given object file to the JIT session, making
its code available for execution.

Support for the -extra-object flag is added to lli when operating in
-jit-kind=orc-lazy mode to support testing of this feature.

llvm-svn: 340870
2018-08-28 20:20:31 +00:00
Lang Hames
d5f56c5979 [ORC] Rename VSO to JITDylib.
VSO was a little close to VDSO (an acronym on Linux for Virtual Dynamic Shared
Object) for comfort. It also risks giving the impression that instances of this
class could be shared between ExecutionSessions, which they can not.

JITDylib seems moderately less confusing, while still hinting at how this
class is intended to be used, i.e. as a JIT-compiled stand-in for a dynamic
library (code that would have been a dynamic library if you had wanted to
compile it ahead of time).

llvm-svn: 340084
2018-08-17 21:18:18 +00:00
Lang Hames
fd0c1e7169 [ORC] Replace SymbolResolvers in the new ORC layers with search orders on VSOs.
A search order is a list of VSOs to be searched linearly to find symbols. Each
VSO now has a search order that will be used when fixing up definitions in that
VSO. Each VSO's search order defaults to just that VSO itself.

This is a first step towards removing symbol resolvers from ORC altogether. In
practice symbol resolvers tended to be used to implement a search order anyway,
sometimes with additional programatic generation of symbols. Now that VSOs
support programmatic generation of definitions via fallback generators, search
orders provide a cleaner way to achieve the desired effect (while removing a lot
of boilerplate).

llvm-svn: 337593
2018-07-20 18:31:50 +00:00
Lang Hames
6a94134b11 [ORC] Add LLJIT and LLLazyJIT, and replace OrcLazyJIT in LLI with LLLazyJIT.
LLJIT is a prefabricated ORC based JIT class that is meant to be the go-to
replacement for MCJIT. Unlike OrcMCJITReplacement (which will continue to be
supported) it is not API or bug-for-bug compatible, but targets the same
use cases: Simple, non-lazy compilation and execution of LLVM IR.

LLLazyJIT extends LLJIT with support for function-at-a-time lazy compilation,
similar to what was provided by LLVM's original (now long deprecated) JIT APIs.

This commit also contains some simple utility classes (CtorDtorRunner2,
LocalCXXRuntimeOverrides2, JITTargetMachineBuilder) to support LLJIT and
LLLazyJIT.

Both of these classes are works in progress. Feedback from JIT clients is very
welcome!

llvm-svn: 335670
2018-06-26 21:35:48 +00:00